(1994-2008 )

1. J. N. Pandey and O. P. Singh, Characterization of functions with Fourier-transform supported on orthants. J. Math. Anal. Appl. 185 (1994), No. 2, 438-463.

[55]

2. G. Moscariello, On the integrability of the Jacobian in Orlicz spaces. Math. Japon. 40 (1994), No. 2, 323-329.

[2]

3. A. A. Kilbas, M. Saigo, and S. Bubakar, On two-weighted estimates for integral operators with general kernels. Bull. Central Res. Inst. Fukuoka Univ., 1994, No. 163, 99-119.

[97]

4. B. Franchi, E. Cristian, and E. L. Wheeden, Weighted Sobolev-Poincar inequalities for Grushin type operators. Comm. Partial Differential Equations 19 (1994), No. 3-4, 523-604.

[70]

5. R. L. Wheeden, Poincar-Sobolev and isoperimetric inequalities, maximal functions, and half-space estimates for the gradient. Nonlinear analysis, function spaces and applications, Vol. 5 (Prague, 1994), 231-265, Prometheus, Prague, 1994.

[91, 93, 94, 97]

6. D. E. Edmunds, P. Gurka, and L. Pick, Compactness of Hardy-type integral operators in weighted Banach function spaces. Studia Math. 109 (1994), No. 1, 73-90.

[54]

7. S. Bloom and R. Kerman, Weighted Orlicz space integral-inequalities for the Hardy-Littlewood maximal operator. Studia Math. 110 (1994), No. 2, 149-167.

[2]

8. V. D. Stepanov, Weighted norm inequalities for integral operators and related topics. Nonlinear Analysis, Function Spaces and Applications, Vol. 5, (Prague 1994), 139-175, Prometheus, Prague, 1994.

[49]

9. F. J. Martin-Reyes, Weights, one-sided operators, singular integrals and ergodic theorems. Nonlinear Analysis, Function Spaces and Applications, Vol. 5, (Prague 1994), 103-137, Prometheus, Prague, 1994.

[81]           

10. W. D. Evans, D. J. Harris, and L. Pick, Weighted Hardy and Poincare inequalities on trees. J. London Math. Soc. (2) 52 (1995), 121-136.

[51]

11. C. Capone and A. Fiorenza, Maximal inequalities in weighted Orlicz spaces. Rend. Accad. Sci. Fis. Mat. Napoli (4) 62 (1995), 213-224.

[2]

12. W. Farkaş, Calderon-Zygmund extension theorem for abstract Sobolev spaces. Stud. Cerc. Mat. 47 (1995), No. 5-6, 379-395.

[47]

13. H. Triebel, Interpolation theory, function spaces, differential operators. Johann Ambrosius Barth, Heidelberg, 1995.

[64]

14. L. E. Verbitsky and R. L. Wheeden, Weighted trace inequalities for fractional integrals and applications to semilinear equations. J. Funct. Anal. 129 (1995), No. 1, 221-241.

[3]

15. O. V. Besov, Weighted spaces of differentiable functions of variable smoothness. (Russian) Trudy Mat. Inst. Steklov. 210 (1995), 31-40.

[2, 88, 91, 101]

16. L. Pick, Three types of weighted inequalities for integral operators. Fourier analysis and partial differential equations (Miraflores de la Sierra, 1992), 285-296, Stud. Adv. Math., CRC, Boca Raton, FL, 1995.

[2]

17. H. O. Kita, On maximal functions in Orlicz spaces. Proc. Amer. Math. Soc. 124 (1996), No. 10, 3019-3025.

[2]

18. H. P. Heinig and A. Kufner, Hardy operators of monotone functions and sequences in Orlicz spaces. J. London Math. Soc. (2) 53 (1996), 256-270.

[2]

19. L. Zhizhiashvili, Trigonometric Fourier series and their conjugates. (Translated from the Russian) Mathematics and its Applications, 372. Kluwer Academic Publishers Group, Dordrecht, 1996.

[71]

20. T. Miyamoto, On a weighted norm inequality for the Hardy-Littlewood maximal function in $L(\log\sp + L)\sp \lambda+L(\log\sp -L)\sp {-\epsilon}$. Math. Japon. 43 (1996), No. 1, 161-174.

[2, 89]

21. T. Sobukawa, Extrapolation theorem on quasi-normed $L\sp p$-spaces. Math. Japon. 43 (1996), No. 2, 241-251.

[2, 87]

22. E. T. Sawyer, R. L. Wheeden, and S. Zhao, Weighted norm inequalities for operators of potential type and fractional maximal functions. Potential Anal. 5 (1996), No. 6, 523-580.

[98, 101]

23. H. Kita, On a converse inequality for maximal functions in Orlicz spaces. Studia Math. 118 (1996), No. 1, 1-10.

[2]

24. H. Q. Bui, M. Paluszynski, and M. H. Taibleson, A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces. Studia Math. 119 (1996), No. 3, 219-246.

[47]

25. O. V. Besov, Imbeddings for spaces of variable smoothness functions. Dokl. Akad. Nauk 347 (1996), No. 1, 7-10.

[53, 67]

26. V. S. Guliev, The Besov space of Banach-valued functions. (Russian) Proceedings of Azerbaijan Mathematical Society, Vol. 2 (Russian), 33-49, 232, Tr. Azerb. Mat. Obshch., 2, Izdat. lm, Baku, 1996.

[101, 103, 108]

27. Y. Rakotondratsimba, Weighted $L\sb \Phi$ iIntegral inequalities for maximal operators. Georgian Math. J. 3 (1996), No. 6, 583-600.

[109, 114]

 

28. L. Zhizhiashvili, Some problems of multidimensional harmonic analysis. (Russian). Tbilisi University Press, Tbilisi, 1996.

[17, 19, 20, 62, 69]

29. A. Meskhi, Two-weight inequalities for singular integrals on Heisenberg groups. Bull. Georgian Acad. Sci. 153 (1996), No. 1, 34-36.

[106]

30. M. Khabazi, On the boundedness and convergence of partial sums of Fourier series in the weighted Orlicz classes. Bull. Georgian Acad. Sci. 153 (1996), No. 3, 342-344.

[102, 104, 105]

31. H. Kita, On Hardy-Littlewood maximal functions in Orlicz spaces. Math. Nachr. 183 (1997), 135-155.

[2]

32. A. Bttcher and Yu. I. Karlovich, Carleson curves, Muckenhoupt weights, and Toeplitz operators. Progress in Mathematics, 154. Birkhuser Verlag, Basel, 1997.

[49]

33. P. Drabek, H. P. Heinig, and A. Kufner, Weighted modular inequalities for monotone functions. J. Inequal. Appl. 1 (1997), No. 2, 183-197.

[2]

34. H. Q. Bui, M. Paluszynski, and M. Taibleson, Characterization of the Besov-Lipschitz and Triebel-Lizorkin spaces the case $q<1$. J. Fourier Anal. Appl. 3 (1997), 837-846.

[47]

35. Sh. Zhao, Weighted weak-type inequalities for the maximal function of nonnegative integral transforms over approach regions. Proc. Amer. Math. Soc. 125 (1997), No. 7, 2013-2020.

[94, 98, 101]

36. A. Fiorenza, BMO regularity for one-dimensional minimizers of some Lagrange problems. J. Convex Anal. 4 (1997), No. 2, 289-303.

[2]

37. A. Cianchi and D. E. Edmunds, On fractional integration in weighted Lorentz spaces. Q. J. Math. 48 (1997), No. 192, 439-451.

[2]

38. F. J. MartinReyes and A. delaTorre, Some weighted inequalities for general one-sided maximal operators. Studia Math. 122 (1997), No. 1, 1-14.

[80]

39. A. Yu. Karlovich, Singular integral operators with regulated coefficients in reflexive Orlicz spaces. (Russian) Sibirsk. Mat. Zh. 38 (1997), No. 2, 297-311; English transl.: Siberian Math. J. 38 (1997), No. 2, 253-266.

[2, 102, 105]

40. V. S. Guliev and R. C. Mustafaev, Fractional integrals on spaces of homogeneous type. Dokl. Akad. Nauk 354 (1997), No. 6, 730-732.

[53]

41. O. V. Besov, Embeddings of spaces of differentiable functions of variable smoothness. (Russian) Tr. Mat. Inst. Steklova 214 (1997), 25-58.

[2, 53, 91, 97]

42. A. Gogatishvili, Two-weight mixed inequalities in Orlicz classes for fractional maximal functions defined on homogeneous type spaces. Proc. A. Razmadze Math. Inst. 112 (1997), 23-56.

[94, 98, 108]

 

43. A. Meskhi, Two-weight inequalities for potentials defined on homogeneous groups. Proc. A. Razmadze Math. Inst. 112 (1997), 91-111.

[54, 97, 109]

44. V. S. Rychkov, Some weighted Hardy-type inequalities and applications. Proc. A. Razmadze Math. Inst. 112 (1997), 113-129.

[54]

45. M. Khabazi, Metric properties of Fourier series in weighted function classes. Proc. A. Razmadze Math. Inst. 112 (1997), 133-137.

[77, 104, 105]

46. A. Meskhi, Two-weight inequalities for potentials on the Lorentz spaces defined on homogeneous groups. Proc. A. Razmadze Math. Inst. 112 (1997), 148-150.

[2, 54, 104]

47. V. S. Guliev,  Integral operators, function spaces and some topics of approximation on the Heisenberg groups.  (Russian) ELM, Baku, 1997.

[49], [108]

48. M. Dolores and S. Gavilan, Weighted Lorentz norm inequalities for general maximal operators associated with certain families of Borel measures. Proc. Roy Soc. Edinburgh Sect. A 128 (1998), 403-424.

[2]

49. Y. Rakotondratsimba, Two-weight norm inequality for Calderon-Zygmund operators. Acta Math. Hungar. 80 (1998), No. 1-2, 39-54.

[106]

50. E. D. Nursultanov, Net spaces and inequalities of Hardy-Littlewood type. Sb. Math. 189 (1998), No. 3-4, 399-419.

[28]

51. A. Cianchi and B. Stroffolini, An extension of Hedbergs convolution inequality and applications. J. Math. Anal. Appl. 227 (1998), No. 1, 166-186.

[2]

52. E. Harboure, O. Salinas, and B. Viviani, Reverse-Holder classes in the Orlicz spaces setting. Studia Math. 130 (1998), No. 3 245-261.

[2]

53. E. D. Nursultanov, Net spaces and Fourier transforms. Dokl. Akad. Nauk 361 (1998), No. 5, 597-599.

[28]

54. Y. Rakotondratsimba, On the boundedness of classical operators on weighted Lorentz spaces. Georgian Math. J. 5 (1998), No. 2, 177-200.

[117, 118]

55. Y. Rakotondratsimba, Characterization of a two-weighted vector-valued inequality for fractional maximal operators. Georgian Math. J. 5 (1998), No. 6, 583-600.

[116, 117, 118]

56. I. Gabisonija and A. Meskhi, Two-weighted inequalities for a discrete Hilbert transform. Proc. A. Razmadze Math. Inst. 116 (1998), 107-122.

[54, 106, 117]

57. A. Meskhi, Boundedness and compactness weighted criteria for Riemann-Liouville and one-sided maximal operators. Proc. A. Razmadze Math. Inst. 117 (1998), 126-128.

[3, 53, 108]

 

58. I. Gabisonija, Two-weight inequalities for discrete operators. Proc. A. Razmadze Math. Inst. 117 (1998), 144-146.

[53, 106, 118]

59. A. Meskhi, Weighted Inequalities for Riemann-Liouville Transform. Proc. A. Razmadze Math. Inst. 117 (1998), 150-152.

[3, 54]

60. C. Bardaro, J. Musielak, and G. Vinti, Some modular inequalities related to the Fubini-Tonelli theorem. Proc. A. Razmadze Math. Inst. 118 (1998), 3-19.

[2]

61. I. Gabisonija and A. Meskhi, Two-weight inequalities for discrete Hardy-type and Hilbert transforms. Bull. Georgian Acad. Sci. 158 (1998), No. 2, 191-193.

[54, 117, 118]

62. E. I. Berezhnoi, Two-weighted estimations for the Hardy-Littlewood maximal function in ideal Banach spaces. Proc. Amer. Math. Soc. 127 (1999), No. 1, 79-87.

[72]

63. A. Cianchi, Strong and weak type inequalities for some classical operators in Orlicz spaces. J. London Math. Soc. (2) 60 (1999), 187-202.

[2]

64. A. Gogatishvili, Fractional maximal functions in weighted Banach function spaces. Real Anal. Exchange 25 (1999/00), No. 1, 291-316.

[3, 91]

65. N. Samko, Singular integral operators in weighted spaces with generalized Hlder condition. Proc. A. Razmadze Math. Inst. 120 (1999), 107-134.

[4]

66. F. Mamedov, On two-weighted Sobolev inequality in unbounded domains. Proc. A. Razmadze Math. Inst. 121 (1999), 117-123.

[109]

67. A. Meskhi, Criteria for the Boundedness and Compactness for the Generalized Riemann-Liouville Transform. Proc. A. Razmadze Math. Inst. 121 (1999), 161-162.

[3, 108]

68. I. Gabisonija, Two-weight inequalities for discrete Hilbert transform. Bull. Georgian Acad. Sci. 159 (1999), No. 1, 9-10.

[106, 118]

69. V. S. Guljev, Function spaces, integral operators and two-weighted estimates on homogeneous groups. (Russian) Some Applications, Casşioğcu, Baky, 1999.

[49]

70. V. S. Guliev, Function spaces, integral operators  and two-weighted inequalities on homogeneous groups. Some applications. (Russian) Casioglu, Baku, 1999.

[49], [75], [108]

71. A. Kufner and L. E. Persson, Integral inequalities with weights. World Scientific, New-Jersey, London, Hong-Kong, 2000.

[58]

72. A. Gaziev, Zygmund type inequalities for double singular Cauchy-Stieltjes integral. Math. Inequal. Appl. 3 (2000), No. 2, 223-237.

[16]

73. C. Perez, Sharp weighted inequalities for the vector-valued maximal function. Trans. Amer. Math. Soc. 352 (2000), No. 7, 3265-3288.

[67]

74. P. Hajłash and P. Koskela, Sobolev met Poincar. Mem. Amer. Math. Soc. 145 (2000), No. 688, 1-101.

[3]

75. R. A. Macas and M. S. Riveros, One-sided extrapolation at infinity and singular integrals. Proc. Roy. Soc. Edinburgh Sect. A 130 (2000), No. 5, 1081-1102.

[2, 106]

76. A. Fiorenza and M. Krbec, On the domain and range of the maximal operator. Nagoya Math. J. 158 (2000), 43-61.

[2, 13]

77. M. J. Carro and H. Heinig, Modular inequalities for the Calderon operator. Tohoku Math. J. (2) 52 (2000), No. 1, 31-46.

[2]

78. A. Gaziev, Zygmund type inequalities for double singular Cauchy-Stieltjes integral. Math. Inequal. Appl. 3 (2000), No. 2, 223-237.

[4]

79. E. D. Nursultanov, On the coefficients of multiple Fourier series in $L\sb p$-spaces. Izv. Math. 64 (2000), No. 1, 93-120.

[28]

80. E. D. Nursultanov, On the coefficients of multiple Fourier series from $L\sb p$-spaces. (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 64 (2000), No. 1, 95-122; English, trasl.: Izv. Math. 64 (2000), No. 1, 93-120.

[11, 27]

81. A. Yu. Karlovich, On the essential norm of the Cauchy singular integral operator in weighted rearrangement-invariant spaces. Integral Equations Operator Theory 38 (2000), No. 1, 28-50.

[2, 104, 105]

82. A. Meskhi, On the boundedness and compactness of ball fractional integral operators. Fract. Calc. Appl. Anal. 3 (2000), No. 1, 13-30.

[2, 3]

83. A. Meskhi, Criteria for the boundedness and compactness of generalized one-sided potentials. Real Anal. Exchange 26 (2000/01), No. 1, 217-235.

[3, 101, 128]

84. O. V. Besov, The Sobolev embedding theorem for a domain with an irregular boundary. Dokl. Math. 62 (2000), No. 1, 22-25.

[70]

85. O. V. Besov, The Sobolev embedding theorem for a domain with irregular boundary. (Russian) Dokl. Akad. Nauk 373 (2000), No. 2, 151-154.

[91, 101]

86. D. Cruz-Uribe, New proofs of two-weight norm inequalities for the maximal operator. Georgian Math. J. 7 (2000), No. 1, 33-42.

[110]

87. R. Duduchava and B. Silbermann, Boundary value problems in domains with peaks. Mem. Differential Equations Math. Phys. 21 (2000), 1-122.

[4]

88. Z. Meshveliani and V. Paatashvili, On Smirnov classes of harmonic functions, and the Dirichlet problem. Proc. A. Razmadze Math. Inst. 123 (2000), 61-91.

[106, 115, 119, 125, 126]

89. A. Mekshi, On the measure of non-compactness and singular numbers for the Volterra integral operators. Proc. A. Razmadze Math. Inst. 123 (2000), 162-165.

[3, 128]

90. N. Karapetiants and S. Samko, Equations with involutive operators. Birkhuser Boston, Inc., Boston, MA, 2001.

[2]

91. V. S. Rychkov, Littlewood-Paley theory and function spaces with $A\sp {\rm loc}\sb p$ weights. Math. Nachr. 224 (2001), 145-180.

[47]

92. D. M. Israfilov, Approximation by p-Faber polynomials in the weighted Smirnov class $E\sp p(G,\omega)$ and the Bieberbach polynomials. Constr. Approx. 17 (2001), No. 3, 335-351.

[29]

93. A. Meskhi, Criteria foe the boundedness and compactness of integral transforms with positive kernels. Proc. Edinburgh Math. Soc. (2) 44 (2001), 267-284.

[54, 136]

94. E. Nakai, On generalized fractional integrals. Taiwanese J. Math. 5 (2001), No. 3, 587-602.

[2]

95. M. J. Carro, Modular inequalities for averaging-type operators. J. Math. Anal. Appl. 263 (2001), No. 1, 135-152.

[2]

96. K. Tachizawa, On weighted dyadic Carlesons inequalities. J. Inequal. Appl. 6 (2001), No. 4, 415-433.

[2, 87]

97. C. Prez and R. L. Wheeden, Uncertainty principle estimates for vector fields. J. Funct. Anal. 181 (2001), No. 1, 146-188.

[2, 3, 91]

98. J. Y. Chung, Hilbert transform of generalized functions of $L\sp p$-growth. Integral Transform. Spec. Funct. 12 (2001), No. 2, 149-160.

[61]

99. E. Nakai, In Proc. of the Conf. Function Spaces, Interpolation Theory and Related Topics, held in Gund (Sweden), 17-21, 2001.

[3, 91, 93]

100. E. Nakai and H. Sumitomo, On generalized Riesz potentials and spaces of some smooth functions. Sci. Math. Jpn. 54 (2001), No. 3, 463-472.

[2]

101. E. Nakai, On generalized fractional integrals in the Orlicz spaces on spaces of homogeneous type. Sci. Math. Jpn. 54 (2001), No. 3, 473-487.

[3, 91]

102. O. V. Besov, Compactness of embeddings of weighted Sobolev spaces on a domain with an irregular boundary. Dokl. Math. 63 (2001), No. 1, 95-100.

[70]

103. O. V. Besov, Sobolevs embedding theorem for a domain with irregular boundary. Sb. Math. 192 (2001), No. 3-4, 323-346.

[68]

104. D. M. Israfilov, Approximation by p-Faber polynomials in the weighted Smirnov class $E\sp p(G,\omega)$ and the Bieberbach polynomials. Constr. Approx. 17 (2001), No. 3, 335-351.

[7, 15, 16, 17]

105. A. Meskhi, On the singular numbers for some integral operators. Rev. Mat. Complut. 14 (2001), No. 2, 379-393.

[128]

106. O. V. Besov, Sobolevs embedding theorem for a domain with an irregular boundary. (Russian) Mat. Sb. 192 (2001), No. 3, 3-26.

[91]

107. O. V. Besov, On the compactness of embeddings of weighted Sobolev spaces on a domain with an irregular boundary. (Russian) Tr. Mat. Inst. Steklova 232 (2001), 72-93.

[3]

108. A. Saginashvili, On Volterra type singular integral equations. Georgian Math. J. 8 (2001), No. 3, 639-644.

[128]

109. Z. Meshveliani, The Neumann problem in domains with piecewise smooth boundaries in weight classes of harmonic Smirnov type functions. Proc. A. Razmadze Math. Inst. 126 (2001), 37-52.

[15, 119, 125]

110. G. Meshveliani and V. Paatashvili, On the Dirichlet problem in Smirnov classes of harmonic functions. Proc. A. Razmadze Math. Inst. 126 (2001), 53-57.

[106, 115, 126]

111. S. G. Samko, Hypersingular integrals and their applications. Analytical Methods and Special Functions, 5. Taylor & Francis, Ltd., London, 2002.

[2]

112. S. Bloom and R. Kerman, Extrapolation of $L\sp p$ data from a modular inequality. Canadian Math. Bull. 45 (2002), No. 1, 25-35.

[2]

113. J. Mal and L. Pick, The sharp Riesz potential estimates in metric spaces. Indiana Univ. Math. J. 51 (2002), No. 2, 251-268.

[3]

114. A. Y. Karlovich, Algebras of singular integral operators with PC coefficients in rearrangement-invariant spaces with Muckenhoupt weights. J. Operator Theory 47 (2002), No. 2, 303-323.

[2]

115. A. Kufner and L. E. Persson, Integral ineqaualities. Berlin, 2002, 389-401.

[49, 103, 123]

116. V. G. Mazya and A. A. Soloviev, Boundary integral equations of plane elasticity in domains with peaks. Addendum. Georgian Math. J. 9 (2002), No. 2, 403-404.

[4]

117. E. Gordadze, On a problem of linear conjugation in the case of nonsmooth lines and some measurable coefficients. Georgian Math. J. 9 (2002), No. 3, 507-524.

[4]

118. M. Khabazi, Modular weighted inequalities for partial sums of Fourier-Vilenkin series. Proc. A. Razmadze Math. Inst. 129 (2002), 53-63.

[102, 104, 105]

119. M. Khabazi, Weighted Orlicz class inequalities for certain Fourier operators. Proc. A. Razmadze Math. Inst. 129 (2002), 77-86.

[102, 104, 105]

 

120. M. Khabazi, The mean convergence of trigonometric Fourier series in weighted Orlicz classes. Proc. A. Razmadze Math. Inst. 129 (2002), 65-75.

[104, 105]

121. D. E. Edmunds and A. Meskhi, On a measure of non-compactness for maximal operators. Math. Nachr. 254/255 (2003), 97-106.

[2, 91]

122. N. Aissaoui, Weighted strongly nonlinear potential theory. Houston J. Math. 29 (2003), No. 1, 207-230.

[2]

123. D. R. Adams and R. Hurri-Syrjanen, Vanishing exponential integrability for functions whose gradients belong to $L\sp n(\log(e+L))\sp \alpha$. J. Funct. Anal. 197 (2003), No. 1, 162-178.

[2]

124. A. Fiorenza and A. Prignet, Orlicz capacities and applications to some existence questions for elliptic PDES having measure data. ESAIM Control Optim. Calc. Var. 9 (2003), 317-341.

[2]

125. D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer, The maximal function on variable $L\sp p$ spaces. Ann. Acad. Sci. Fenn. Math. 28 (2003), No. 1, 223-238.

[153]

126. M. J. Carro and L. Nikolova, Some extensions of the Marcinkiewicz interpolation theorem in terms of modular inequalities. J. Math. Soc. Japan 55 (2003), No. 2, 385-394.

[2]

127. A. Yu. Karlovich, Fredholmness of singular integral operators with piecewise continuous coefficients on weighted Banach function spaces. J. Integral Equatons Appl. 15 (2003), No. 3, 263-320.

[143, 148]

128. J. Mal, Core integration in metric spaces. In: Nonlinear Analysis, Function Spaces and Applications, vol. 7, Proccedings, B. Opic et. al. (eds.), Math. Inst. Publishing Hause, Prague, 2003, 149-192.

[3]

129. V. Mazya and A. Soloviev, A direct method for boundary integral equations on a contour with a peak. Georgian Math. J. 10 (2003), No. 3, 573-593.

[4]

130. P. Harjulehto, P. Hst, and M. Koskenoja, The Dirichlet energy integral on intervals in variable exponent Sobolev spaces. Z. Anal. Anwendungen 22 (2003), No. 4, 911-923.

[142]

131. P. Harjulehto and P. Hst, An overview of variable exponent Lebesgue and Sobolev spaces. Future trends in geometric function theory, 85-93, Rep. Univ. Jyvskyl Dep. Math. Stat., 92, Univ. Jyvskyl, Jyvskyl, 2003.

[149]

132. D. V. Prokhorov and V. D. Stepanov, Weighted estimates for Riemann-Liouville operators and their applications. (Russian) Tr. Mat. Inst. Steklova 243 (2003), Funkts. Prostran., Priblizh., Differ. Uravn., 289-312; English transl.: Proc. Steklov Inst. Math. 2003, No. 4 (243), 278-301.

[49]

133. P. Harjulehto, P. Hst, Lebesgue points in variable exponent spaces. Ann. Acad. Sci. Fenn. Math. 29 (2004), No. 2, 295-306.

[149]

 

134. J. Garca-Cuerva and A. E. Gatto, Boundedness properties of fractional integral operators associated to non-doubling measures. Studia Math. 162 (2004), No. 3, 245-261.

[130]

135. L. Dienning, P. Hst, and A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces. In: Function Spaces, Differential Operators and Nonlinear Analysis, Proc. Conf. in honour of A. Kufner, Surtka, May 27-June 1, 2004, Math. Inst. acad. Sci of Czech Republic, Praha, 2005, 152-175.

[136, 137, 138, 139, 143, 149]

136. Changmei Tan, Integral inequalities for Littlewood-Paley operators. Georgian Math. J. 12 (2005), 163-169.

Monograph [2]

137. L. V. Zhizhiashvili, Some problems of multidimensional harmonic analysis. (Russian) Izd. Tbillisk. Univ., Tbilisi, 2005.

[136, 137, 138, 139, 143, 149]

138.  V. S. Guliev, Two-weight inequalities for integral operators defined on homogeneous type spaces, Function Spaces, Differential Operators. Problems of Mathematical Education. Proceedings of International Conference Dedicated to 75-th Anniversary of Corresponding Member of RAN L. D. Kudriavtsev, Vol. 1, 189-192, Izd. Ross. Univ. Druzhbi Narodov.

[101], [109]

139. V. S. Guliev and R. A. Bandaliev, Two-weight inequalities for integral operators in Lp-spaces of Banach-valued functions and their applications. (Russian) Dedicated to the 70th birthday of Corresponding Member of the RAS Oleg Vladimirovich Besov (Russian). Tr. Mat. Inst. Steklova 243 (2003), Funkts. Prostran., Priblizh., Differ. Uravn., 194-212.

(Monograph [1], [49])

140. V. S. Guliev, Some inequalities for integral operators, associated with the Bessel differential operator. Function Spaces, Differential Operators and Nonlinear Analysis. The Hans Triebel Anniversry Volume, D. Haroske, T. Runst, H.-J. Schmeisser (eds), Birkhauser, Basel, 2003.

[101], [108]

141. E. Guliev, Two weight inequality for some sublinear operators in Lebesgue spaces, associated with the Laplace-Bessel differential operators, Proc. A. Razmadze Math. Inst. 139 (2005), 5-32.

(Monograph [3], [49], [108])

142. Sh. A. Nazirova, Two-weighted norm inequalities for some anisotropic sublinear operators with Rough kernel. Thai Journal of Mathematics 3 (2005), No. 2, 171-184.

[49], [101], [108]

143.  P. Harjulehto, P. Hasto and M. Koskenoja, Hardys inequality in variable exponent Sobolev spaces. Georgian Math. J. 12 (2005), No. 3, 431-442.

[149]

144. Y. Rakotondratsimba, Two-dimensional discrete Hardy operators in weighted Lebesgue spaces with mixed norms. Proc. A. Razmadze Math. Inst. 123 (2000), 117-134.

[49]

145. Ch. A. Okpoti L.-E. Persson and G. Sinnamon, An equivalence theorem for some integral conditions with general measures related to Hardys inequality. Proc. A. Razmadze Math. Inst. 138 (2005), 63-84.

[49]

146. Y. Komori, Weighted estimates for operators generated by maximal functions on on homogeneous spaces. Georgian Math. J. 12 (2005), No. 1, 121-130.

[78, 130, monograph 5]

 

147. P. Harjulehto and  P. Hasto, A capacitary approach to the Poincare  inequality and Sobolev imbeddings in variable exponent Sobolev spaces. Rev. Mat. Compl. 17 (2004), No.1, 129-146.

[149]

148. A. Yu. Karlovich, Algebras of singular integral operators. Izvestia VUZOV Est. Nauki, 2005, 135-142.

[151, 153]

149. P. Hst, Counter-examples of regularity in variable exponent Sobolev spaces, The p-Harmonic Equation and Recent Advances in Analysis (Manhattan, KS, 2004), 133-143, Contemp. Math. 367, Amer. Math. Soc., Providence, RI, 2005.

[137, 139, 143, 149]

150. P. Harjulehto, P. Hst, M. Koskenoja and S. Varonen, Variable Sobolev capacity and the assumptions on the exponent. Orlicz Centenary Volume II, Banach Center Publ. 68 (2005), 51-59.

[149]

151.  A. D. Gadjiev and E. V. Guliyev, Parabolic Two-weighted Inequality for Singular Integrals in Lebesgue Spaces, Associated with the Laplace-Bessel Differential Operator. Proc. A. Razmadze Math. Inst. 138 (2005), 1-15.

Monograph [4], [49], [108]

152. V. S. Guliyev and F. M. Mushtagov,  Parabolic Equations with VMO Coefficients in Weighted Lebesgue Spaces. Proc. A. Razmadze Math. Inst. 137 (2005), 1-27

Monograph [4], [49], [108]

153. D. Cruz-Uribe, A. Fiorenza, J. M. Martell and C. Prez, The boundedness of classical operators on variable $L\sp p$ spaces. Ann. Acad. Sci. Fenn. Math. 31 (2006), 239-264.

[135, [142]

154. D. Cruz-Uribe, J. M. Martell and C. Prez, Extensions of Rubio de Francias extrapolation theorem. Proceedings of the 7th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial 2004), Collect. Math., 2006, 195-231.

Monograph [2]

155. F. M. Mushtagov, Two-weighted inequality for parabolic sublinear operators in Lebesgue spaces. Methods of Functional Analysis and Topology 12 (2006), No. 1, 74-81.

[49], [101], [108]

156. Y. Sawano, A Vector-Valued Sharp Maximal Inequality on Morrey Spaces with on-Doubling Measures. Georgian Math. J. 13 (2006), No. 1, 153-172.

[78, 130, monograph 5]

157. P. Hst, On the variable exponent Dirichlet energy integral, Comm. Pure Appl. Anal. 5 (2006), No. 3, 413-420.

[149]

158. P. Hasto, The maximal operator in Lebesgue spaces with variable exponent near 1, Math. Nachr. (to appear).

(currently: http://mathstat.helsinki.fi/analysis/varsobgroup/english/publications.html)

[143, 148, 149]

159. P. Hasto, On the density of continuous functions in variable exponent Sobolev space. Revista Mat. Iberoamericana (to appear).

(currently: http://mathstat.helsinki.fi/analysis/varsobgroup/english/publications.html)

[148,149]

160. P. Harjulehto, P. Hst and M. Pere, Variable exponent Sobolev spaces on metric measure spaces, Funct. Approx. Comment. Math. (to appear)

(currently: http://mathstat.helsinki.fi/analysis/varsobgroup/english/publications.html).

[149]

161. T. Futamura, P. Harjulehto, P. Hst, Y. Mizuta and T. Shimomura, Variable exponent spaces on metric measure spaces. Preprint, University of Helsinki.

[142]

162. P. Harjulehto, J. Kinnunen and K. Tuhkanen, Hlder quasicontinuity in variable exponent Sobolev spaces. Preprint, University of Helsinki.                     

[149]

163. Jia, Huilian; Li, Dongsheng; Wang, Lihe; Regularity theory in Orlicz spaces for elliptic equations in Reifenberg domains. J. Math. Anal. Appl. 334 (2007), no. 2, 804-817.

 

164. Jia, Huilian; Li, Dongsheng; Wang, Lihe; Regularity of Orlicz spaces for the Poisson equation. Manuscripta Math. 122 (2007), no. 3, 265-275.

 

165. Ralph; Fiorenza, Alberto; Convergence and decay rate to equilibrium of bounded solutions of quasilinear parabolic equations. J. Differential Equations 228 (2006), no. 2, 611-632.

 

166. Harboure, Eleonor; Salinas, Oscar; Viviani, Beatriz; Sharp estimates for some iterated operators in Orlicz  spaces. Rocky Mountain J. Math. 36 (2006), no. 5, 1527--1541.

 

167. Aguilar Canestro, M. Isabel; Ortega Salvador, Pedro; Weighted weak type inequalities with variable exponents for Hardy and maximal operators. Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 8, 126-130.

 

168. Ortega Salvador, Pedro; Ramirez Torreblanca, Consuelo; Weighted modular inequalities for Hardy-Steklov operators. J. Math. Anal. Appl. 322 (2006), no. 2, 803--814.

 

169. Curbera, Guillermo P.; Garcia-Cuerva, Jose; Martell, Jose Maria; Perez, Carlos; Extrapolation with weights, rearrangement-invariant function spaces, modular inequalities and applications to singular integrals. Adv. Math. 203 (2006), no. 1, 256-318.

 

170. amajska, Agnieszka; Pietruska-Pa\l uba, Katarzyna; Gagliardo-Nirenberg inequalities in weighted Orlicz spaces. Studia Math. 173 (2006), no. 1, 49-71.

 

171.  Diening, Lars; Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math. 129 (2005), no. 8, 657-700.

 

172. Carro, Maria J. Modular inequalities for $l\sp \alpha$-operators. Math. Proc. Cambridge Philos. Soc. 135 (2003), no. 3, 481-491.

 

173. Fiorenza, Alberto; Prignet, Alain; Orlicz capacities and applications to some existence questions for elliptic PDEs having measure data. ESAIM Control Optim. Calc. Var. 9 (2003), 317-341 (electronic).

 

174. Carro, Maria J.; Nikolova, Ludmila; Some extensions of the Marcinkiewicz interpolation theorem in terms of modular inequalities. J. Math. Soc. Japan 55 (2003), no. 2, 385-394.

 

175. Adams, David R.; Hurri-Syrjanen, Ritva; Vanishing exponential integrability for functions whose gradients belong to $L\sp n(\log(e+L))\sp \alpha$. J. Funct. Anal. 197(2003), no. 1, 162-178.

 

176. Aissaoui, Noureddine; Weighted strongly nonlinear potential theory. Houston J. Math. 29 (2003), no. 1, 207--230 (electronic).

 

177. Karlovich, Alexei Yu. Algebras of singular integral operators with PC coefficients in rearrangement-invariant spaces with Muckenhoupt weights. J. Operator Theory 47 (2002), no. 2, 303-323.

 

178. Bloom, Steven; Kerman, Ron; Extrapolation of $L\sp p$ data from a modular inequality. Canad. Math. Bull. 45 (2002), no. 1, 25-35.

 

179. Carro, Maria J. Modular inequalities for averaging-type operators. J. Math. Anal. Appl. 263 (2001), no. 1, 135-152.

 

180. Nakai, Eiichi; On generalized fractional integrals. Taiwanese J. Math. 5 (2001), no. 3, 587-602.

 

181. Lu, Qihong; Tao, Xiangxing; Characterization of maximal operators in Orlicz-Morrey spaces of homogeneous type. Appl. Math. J. Chinese Univ. Ser. B 21 (2006), no. 1, 52-58.

 

182. Neugebauer, C. J. Orlicz-type integral inequalities for operators. J. Korean Math. Soc. 38 (2001), no. 1, 163-176.

 

183. Krbec, M. Inequalities for classical operators in Orlicz spaces. Fourier analysis and partial differential equations (Miraflores de la Sierra, 1992), 211-226, Stud. Adv. Math., CRC, Boca Raton, FL, 1995.

 

184. Nakai, Eiichi; The Campanato, Morrey and H\"older spaces on spaces of homogeneous type. Studia Math. 176 (2006), no. 1, 1-19.

 

185. Edmunds, David E.; Fiorenza, Alberto; Meskhi, Alexander; On a measure of non-compactness for some classical operators. Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 6, 1847-1862.

 

186. Bernardis, Ana; Hartzstein, Silvia; Pradolini, Gladis; Weighted inequalities for commutators of fractional integrals on spaces of homogeneous type. J. Math. Anal. Appl. 322 (2006), no. 2, 825-846.

 

187. Zeren, Yusuf; Guliyev, Vagif S. Two-weight norm inequalities for some anisotropic sublinear operators. Turkish J. Math. 30 (2006), no. 3, 329-350.

 

188. Bownik, Marcin; Ho, Kwok-Pun; Atomic and molecular decompositions of anisotropic Triebel-Lizorkin spaces. Trans. Amer. Math. Soc. 358 (2006), no. 4, 1469-1510 (electronic

 

189. Mushtagov, F. M. Two-weight norm inequality for some sublinear operators. Methods Funct. Anal. Topology 11 (2005), no. 4, 397--408.

 

190. Lerner, Andrei K.; Perez, Carlos; Self-improving properties of generalized Poincare type inequalities through rearrangements. Math. Scand. 97 (2005), no. 2, 217-234.

 

191. Kita, Hiro-o Weighted inequalities for iterated maximal functions in Orlicz spaces. Math. Nachr. 278 (2005), no. 10, 1180-1189.

 

192. Edmunds, D. E.; Meskhi, A. On a measure of non-compactness for maximal operators. Math. Nachr. 254/255 (2003), 97-106.

 

193. Kita, H. A reverse weighted inequality for the Hardy-Littlewood maximal function in Orlicz spaces. Acta Math. Hungar. 98 (2003), no. 1-2, 85-101.

 

194. Karlovich, Alexei Yu. Algebras of singular integral operators with PC coefficients in rearrangement-invariant spaces with Muckenhoupt weights. J. Operator Theory 47 (2002), no. 2, 303-323.

 

195. Mal\'y, Jan; Pick, Lubo\v s; The sharp Riesz potential estimates in metric spaces. Indiana Univ. Math. J. 51 (2002), no. 2, 251-268.

 

196. Meskhi, A. Criteria for the boundedness and compactness of integral transforms with positive kernels. Proc. Edinb. Math. Soc. (2) 44 (2001), no. 2, 267-284.

 

197. Nakai, Eiichi; On generalized fractional integrals. Taiwanese J. Math. 5 (2001), no. 3, 587-602.

 

198. Karlovich, Alexei Yu.; Maligranda, Lech; On the interpolation constant for Orlicz spaces. Proc. Amer. Math. Soc. 129 (2001), no. 9, 2727-2739 (electronic).

 

199. Rakotondratsimba, Yves; Local weighted inequalities for the fractional integral operator. Kobe J. Math. 17 (2000), no. 2, 153-189.

 

200. Prokhorov, D. V.; Stepanov, V. D. On Riemann-Liouville operators. (Russian) Dokl. Akad. Nauk 382(2002), no. 4, 452-455.

 

201. H\"ast\"o, Peter A. On the density of continuous functions in variable exponent Sobolev space. Rev. Mat. Iberoam. 23 (2007), no. 1, 213-234.

 

202. Samko, N. G.; Samko, S. G.; Vakulov, B. G. Weighted Sobolev theorem in Lebesgue spaces with variable exponent. J. Math. Anal. Appl. 335 (2007), no. 1, 560-583.

 

203. Mashiyev, R. A.; Cekic, B.; Mamedov, F. I.; Ogras, S. Hardy's inequality in power-type weighted $L\sp {p()}(0,\infty)$ spaces. J. Math. Anal. Appl. 334 (2007), no. 1, 289-298.

 

204. Xu, Jing-shi; The boundedness of multilinear commutators of singular integrals on Lebesgue spaces with variable exponent. Czechoslovak Math. J. 57(132) (2007), no. 1, 13-27.

 

205. H\"ast\"o, Peter A. The maximal operator in Lebesgue spaces with variable exponent near 1. Math. Nachr. 280 (2007), no. 1-2, 74-82.

 

206. Edmunds, David E.; Fiorenza, Alberto; Meskhi, Alexander; On a measure of non-compactness for some classical operators. Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 6, 1847-1862.

 

207. Harjulehto, Petteri; H\"ast\"o, Peter; Latvala, Visa; Sobolev embeddings in metric measure spaces with variable dimension. Math. Z. 254 (2006), no. 3, 591-609.

 

208. Futamura, Toshihide; Mizuta, Yoshihiro; Shimomura, Tetsu Sobolev embeddings for variable exponent Riesz potentials on metric spaces. Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 495-522.

 

209. Samko, S.; Vakulov, B. Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators. J. Math. Anal. Appl. 310 (2005), no. 1, 229-246.

 

210. Karlovich, Alexei Yu.; Lerner, Andrei, K. Commutators of singular integrals on generalized $L\sp p$ spaces with variable exponent. Publ. Mat. 49 (2005), no. 1, 111-125.

 

211. Samko, S. On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators. Integral Transforms Spec. Funct. 16(2005), no. 5-6, 461-482.

 

212. Harjulehto, Petteri; H\"ast\"o, Peter; Lebesgue points in variable exponent spaces. Ann. Acad. Sci. Fenn. Math. 29 (2004), no. 2, 295-306.

 

213. Kokilashvili, V.; Samko, S. On Sobolev theorem for Riesz-type potentials in Lebesgue spaces with variable exponent. Z. Anal. Anwendungen 22 (2003), no. 4, 899-910.

 

214. Cruz-Uribe, D.; Fiorenza, A.; Neugebauer, C. J. The maximal function on variable $L\sp p$ spaces. Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 223-238.

 

215. Samko, N. G.; Samko, S. G.; Vakulov, B. G. Weighted Sobolev theorem in Lebesgue spaces with variable exponent. J. Math. Anal. Appl. 335(2007), no. 1, 560-583.

 

216. Harjulehto, Petteri; H\"ast\"o, Peter; Latvala, Visa; Sobolev embeddings in metric measure spaces with variable dimension. Math. Z. 254 (2006), no. 3, 591-609.

 

217. Futamura, Toshihide; Mizuta, Yoshihiro; Shimomura, Tetsu; Sobolev embeddings for variable exponent Riesz potentials on metric spaces. Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 2, 495-522.

 

218. Cruz-Uribe, D.; Fiorenza, A.; Martell, J. M.; Perez, C. The boundedness of classical operators on variable $L\sp p$ spaces. Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 1, 239-264.

 

219. Zhang, Qihu; Existence of radial solutions for $p(x)$-Laplacian equations in $\Bbb R\sp N$. J. Math. Anal. Appl. 315 (2006), no. 2, 506-516.

 

220. Mizuta, Yoshihiro; Shimomura, Tetsu; Sobolev's inequality for Riesz potentials with variable exponent satisfying a log-H\"older condition at infinity. J. Math. Anal. Appl. 311(2005), no. 1, 268-288.

 

221. Samko, S.; Vakulov, B. Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators. J. Math. Anal. Appl. 310 (2005), no. 1, 229-246.

 

222. Samko, S. On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators. Integral Transforms Spec. Funct. 16 (2005), no. 5-6, 461-482.

 

223. Vakulov, B. G. Samko, S. G. A weighted Sobolev theorem for spatial and spherical potentials in Lebesgue spaces with variable exponents. (Russian) Dokl. Akad. Nauk 403 (2005), no. 1, 7-10.

 

224. Okpoti, Christopher A.; Persson, Lars-Erik; Sinnamon, Gord; An equivalence theorem for some integral conditions with general measures related to Hardy's inequality. II. J. Math. Anal. Appl. 337 (2008), no. 1, 219-230.

 

225. Guliyev, Vagif S.; Serbetci, Ayhan; Ekincioglu, Ismail; Necessary and sufficient conditions for the boundedness of rough $B$-fractional integral operators in the Lorentz spaces. J. Math. Anal. Appl. 336 (2007), no. 1, 425-437.

 

226. Okpoti, Christopher A.; Persson, Lars-Erik; Sinnamon, Gord; An equivalence theorem for some integral conditions with general measures related to Hardy's inequality. J. Math. Anal. Appl. 326 (2007), no. 1, 398-413.

 

227. Edmunds, D. E.; Meskhi, A. On a measure of non-compactness for maximal operators. Math. Nachr. 254/255 (2003), 97-106.

 

228. Meskhi, A. Criteria for the boundedness and compactness of integral transforms with positive kernels. Proc. Edinb. Math. Soc. (2) 44 (2001), no. 2, 267-284.

 

229. Edmunds, David E.; Fiorenza, Alberto; Meskhi, Alexander; On a measure of non-compactness for some classical operators. Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 6, 1847-1862.

 

230. Zeren, Yusuf; Guliyev, Vagif S. Two-weight norm inequalities for some anisotropic sublinear operators. Turkish J. Math. 30 (2006), no. 3, 329-350.

 

231. Mushtagov, F. M. Two-weighted inequality for parabolic sublinear operators in Lebesgue spaces. Methods Funct. Anal. Topology 12 (2006), no. 1, 74-81.

 

232. Mushtagov, F. M. Two-weight norm inequality for some sublinear operators. Methods Funct. Anal. Topology 11 (2005), no. 4, 397-408.

 

233. Rakotondratsimba, Y. , Two-weight norm inequality for Calder\'on-Zygmund operators. English summary) Acta Math. Hungar. 80 (1998), no. 1-2, 39-54.

 

234. Cruz-Uribe, D.; Fiorenza, A.; Martell, J. M.; Perez, C. The boundedness of classical operators on variable $L\sp p$ spaces. Ann. Acad. Sci. Fenn. Math. 31 (2006), no. 1, 239-264.

 

235. Zhang, Qihu; Existence of radial solutions for $p(x)$-Laplacian equations in $\Bbb R\sp N$. J. Math. Anal. Appl. 315 (2006), no. 2, 506-516.

 

236. Samko, S.; Vakulov, B. Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators. J. Math. Anal. Appl. 310 (2005), no. 1, 229-246.

 

237. Samko, S. On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators. Integral Transforms Spec. Funct. 16 (2005), no. 5-6, 461-482.

 

238. Fiorenza, A.; Rakotoson, J. M. Relative rearrangement and Lebesgue spaces $L\sp{p()}$ with variable exponent. J. Math. Pures Appl. (9) 88(2007), no. 6, 506--521.

 

239. H\"ast\"o, Peter A. The maximal operator in Lebesgue spaces with variable exponent near 1.

Math. Nachr. 280 (2007), no. 1-2, 74-82.

 

240. Samko, S.; Vakulov, B. Weighted Sobolev theorem with variable exponent for spatial and spherical potential operators. J. Math. Anal. Appl. 310 (2005), no. 1, 229-246.

 

241. Samko, S. On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators. Integral Transforms Spec. Funct. 16 (2005), no. 5-6, 461-482.

 

242. Zeren, Yusuf; Guliyev, Vagif S. Two-weight norm inequalities for some anisotropic sublinear operators. Turkish J. Math. 30 (2006), no. 3, 329-350.

 

243. Mushtagov, F. M. Two-weighted inequality for parabolic sublinear operators in Lebesgue spaces. Methods Funct. Anal. Topology 12 (2006), no. 1, 74-81.

 

244. Mushtagov, F. M. Two-weight norm inequality for some sublinear operators. Methods Funct. Anal. Topology 11 (2005), no. 4, 397-408.

 

245. Meskhi, A. Criteria for the boundedness and compactness of integral transforms with positive kernels. Proc. Edinb. Math. Soc. (2) 44 (2001), no. 2, 267-284.

 

246. Rakotondratsimba, Yves.  Local weighted inequalities for the fractional integral operator. Kobe J. Math. 17 (2000), no. 2, 153-189.

 

247. Garcia-Cuerva, Jose; Gatto, A. Eduardo; Boundedness properties of fractional integral operators associated to non-doubling measures. Studia Math. 162 (2004), no. 3, 245-261.

 

248. Fan, Xianling (PRC-LAN) Boundary trace embedding theorems for variable exponent Sobolev spaces. (English summary) J. Math. Anal. Appl. 339 (2008), no. 2, 1395-1412.

 

249. H\"ast\"o, Peter A. On the density of continuous functions in variable exponent Sobolev space. Rev. Mat. Iberoam. 23 (2007), no. 1, 213-234. 46E35 PDF Doc Del Clipboard Journal Article.

 

250. H\"ast\"o, Peter A. The maximal operator in Lebesgue spaces with variable exponent near 1. Math. Nachr. 280(2007), no. 1-2, 74-82.

 

251. Mashiyev, R. A.; CekiC, B.; Mamedov, F. I.; Ogras, S. Hardy's inequality in power-type weighted $L\sp {p()}(0,\infty)$ spaces. J. Math. Anal. Appl. 334(2007), no. 1, 289-298.

 

252. Aguilar Canestro, M. Isabel; Ortega Salvador, Pedro; Weighted weak type inequalities with variable exponents for Hardy and maximal operators. Proc. Japan Acad. Ser. A Math. Sci. 82 (2006), no. 8, 126-130.