Blow-Up Solutions of the Cauchy Problem for Nonlinear Delay Ordinary Differential Equations

Ivan Kiguradze

Andrea Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University Tbilisi, Georgia E-mail: ivane.kiguradze@tsu.ge

Problems on the existence and asymptotic estimates of blow-up solutions occupy an important place in the qualitative theory of ordinary differential equations and have been studied in sufficient detail for a wide class of nonlinear nonautonomous ordinary differential equations (see [1–9] and the references therein). However, for delay differential equations this problem remained practically unstudied. Most probably, [10] is the first work done in this direction. Here theorems on the existence of blow-up solutions are proved for the equation that does not contain intermediate derivatives. In the present paper, similar results are given for the equation of general type.

On a finite interval [0, b] we investigate the delay differential equation

$$u^{(n)}(t) = f(t, u(\tau(t)), \dots, u^{(n-1)}(\tau(t)))$$
(1)

with the initial conditions

$$u^{(i-1)}(t) = c_i(t) \text{ for } a \le t \le 0 \ (i = 1, \dots, n).$$
 (2)

Here *n* is an arbitrary natural number, $f : [0, b] \times \mathbb{R}^n_+ \to \mathbb{R}_+$ is a continuous function, $\mathbb{R}_+ = [0, +\infty[, \tau : [0, b] \to \mathbb{R}]$ is a continuous function, satisfying the conditions

$$\tau(t) < t \text{ for } 0 \le t < b, \quad \tau(b) = b,$$

$$a = \min \{\tau(t) : 0 \le t \le b\},$$
(3)

and $c_i: [a, 0] \to \mathbb{R}_+$ (i = 1, ..., n) are also continuous functions.

Definition 1. Let $t_0 \in [0, b]$ and

$$t_* = \min \{ \tau(t) : t_0 \le t \le b \}.$$

An *n*-times continuously differentiable function $u : [t_0, b] \to \mathbb{R}_+$ is said to be a solution of equation (1) in the interval $[t_0, b]$ if

$$u^{(i-1)}(t) \ge 0$$
 for $t_0 \le t < b$ $(i = 1, ..., n),$

and there exist continuous functions $u_{0i} : [t_*, t_0] \to \mathbb{R}_+$ (i = 1, ..., n) such that in that interval equality (1) is satisfied, where

$$u^{(i-1)}(t) = u_{0i}(t)$$
 for $t_* \le t \le t_0$ $(i = 1, ..., n)$.

A solution u of equation (1), defined in the interval [0, b] and satisfying the initial conditions (2), is said to be a solution of problem (1), (2).

Definition 2. A solution u of equation (1) defined in some interval $[t_0, b]$ is said to be **blow-up** if

$$\lim_{t \to b} u^{(n-1)}(t) = +\infty.$$

A blow-up solution $u: [t_0, b] \to \mathbb{R}_+$ is said to be strongly blow-up (weakly blow-up) if

$$\lim_{t \to b} u(t) = +\infty \quad \left(\lim_{t \to b} u(t) < +\infty\right).$$

Definition 3. A solution $u : [t_0, b] \to \mathbb{R}_+$ of equation (1), having the finite limits $\lim_{t\to b} u^{(i-1)}(t)$ (i = 1, ..., n), is said to be **regular**.

According to condition (3), there exists an increasing sequence of numbers $t_i \in]0, b[$ (i = 1, 2, ...) such that

$$\tau(t) < 0 \text{ for } 0 \le t < t_1, \quad \tau(t_1) = 0,$$

$$\tau(t) < t_i \text{ for } t_i \le t < t_{i+1}, \quad \tau(t_{i+1}) = t_i \quad (i = 1, 2, ...),$$

$$\lim_{i \to +\infty} t_i = b.$$

From this fact it immediately follows

Lemma 1. For arbitrarily fixed continuous functions $c_i : [a, 0] \to \mathbb{R}_+$ (i = 1, 2, ..., n), problem (1), (2) in the interval [0, b] has a unique solution u and for any natural number k the equality

$$u(t) = u_k(t)$$
 for $0 \le t \le t_k$

is valid, where

$$u_1^{(i-1)}(t) = c_i(t) \text{ for } a \le t \le 0 \ (i = 1, \dots, n), \quad u_1(t) = \sum_{i=1}^n \frac{c_i(0)}{(i-1)!} t^{i-1} + \frac{1}{(n-1)!} \int_0^t (t-s)^{n-1} f\left(s, c_1(\tau(s)), \dots, c_n(\tau(s))\right) ds \text{ for } 0 \le t \le t_1,$$

$$u_{k+1}^{(i-1)}(t) = c_i(t) \text{ for } a \le t \le 0 \ (i = 1, \dots, n), \quad u_{k+1}(t) = \sum_{i=1}^n \frac{c_i(0)}{(i-1)!} t^{i-1} + \frac{1}{(n-1)!} \int_0^t (t-s)^{n-1} f\left(s, u_k(\tau(s)), \dots, u_k^{(n-1)}(\tau(s))\right) ds \text{ for } 0 \le t \le t_{k+1} \ (k = 1, 2, \dots).$$

Theorem 1. Let along with (3) the condition

$$f(t, x_1, \dots, x_n) \ge f_0(t, x_1, \dots, x_n) \text{ for } t_0 \le t \le b, \ (x_1, \dots, x_n) \in \mathbb{R}^n_+$$

be satisfied, where $t_0 \in]0, b[$, and $f_0 : [0, b] \times \mathbb{R}^n_+ \to \mathbb{R}_+$ is a nondecreasing in the phase variables continuous function such that the differential equation

$$v^{(n)}(t) = f_0(t, v(\tau(t)), \dots, v^{(n-1)}(\tau(t)))$$

in the interval $[t_0, b]$ has a blow-up solution v. Then there exist numbers r > 0 and $t^* \in]t_0, b]$ such that if

$$c_n(0) > r,\tag{4}$$

then the solution u of problem (1), (2) is blow-up as well and admits the estimates

$$u^{(i-1)}(t) \ge v^{(i-1)}(t)$$
 for $t^* \le t < b$ $(i = 1, ..., n)$.

Based on this comparison theorem, effective criteria for the existence of blow-up solutions of problem (1), (2) are obtained. In particular, the following statement is true.

Corollary 1. Let the functions f and τ satisfy the inequalities

$$f(t, x_1, \dots, x_n) \ge \ell(b-t)^{\mu} x_k^{\lambda} \text{ for } t_0 \le t \le b, \quad (x_1, \dots, x_n) \in \mathbb{R}^n_+,$$
$$\alpha(t-b) + b \le \tau(t) < t \text{ for } 0 \le t < b,$$

where $k \in \{1, ..., n\}$, $t_0 \in]0, b[, \ell > 0, \mu \ge 0, \lambda > 1, \alpha > 1$. Then for an arbitrary $\gamma > 0$ there exists a positive number $r = r(\gamma)$ such that if inequality (4) holds, then the solution u of problem (1), (2) is strongly blow-up and admits the estimate

$$\inf\left\{ (b-t)^{\gamma} u(t): \ t_0 \le t < b \right\} > 0.$$
(5)

An important particular case of (1) is the differential equation

$$u^{(n)}(t) = \sum_{i=1}^{n-1} p_i(t) \left(u^{(i-1)}(\alpha(t-b)+b) \right)^{\lambda_i},$$
(6)

where $p_i : \mathbb{R}_+ \to \mathbb{R}_+$ (i = 1, ..., n) are continuous functions, $\lambda > 1$, $\alpha > 1$.

For this equation we consider the Cauchy problem with the initial conditions (2), where $a = -(\alpha - 1)b$, and $c_i : [a, 0] \to \mathbb{R}_+$ (i = 1, ..., n) are continuous functions.

Corollary 2. There exists $\varepsilon > 0$ such that if

$$\sum_{i=1}^{n} c_i(t) < \varepsilon \text{ for } a \le t \le 0,$$

then the solution of problem (6), (2) is regular. And if

$$p_k(t) \ge \ell (b-t)^{\mu} \text{ for } 0 \le t \le b,$$

where $k \in \{1, ..., n\}, \ell > 0, \mu \ge 0$, then for an arbitrary $\gamma > 0$ there exists a positive number $r = r(\gamma)$ such that in the case where inequality (4) holds, the solution u of problem (6), (2) is strongly blow-up and admits estimate (5).

The first part of the corollary can be easily obtained from Lemma 1, while the second part follows from Corollary 1.

Example 1. Let n > 2, $\alpha > 1$, $\lambda > 2$, $\ell_0 = ((\lambda - 1)\alpha^{\frac{\lambda}{1-\alpha}})^{\frac{1}{1-\lambda}}$, b > 0, $a = -(\alpha - 1)b$. We choose positive numbers ρ_i (i = 1, ..., n) so that the function, defined by the equality

$$u(t) = \sum_{i=1}^{n-1} \frac{(t-a)^{i-1}}{(i-1)!} \rho_i + (-1)^{n-1} \ell_0 \prod_{i=1}^{n-1} \left(n-i-\frac{1}{\lambda-1}\right)^{-1} (b-t)^{n-1-\frac{1}{\lambda-1}} \text{ for } a \le t < b,$$

satisfies the conditions

$$u^{(i-1)}(t) \ge 0$$
 for $a \le t \le 0$ $(i = 1, ..., n-1)$.

Then the restriction of the function u to [0, b] is a solution of the differential equation

$$u^{(n)}(t) = \left(u^{(n-1)}(\alpha(t-b)+b)\right)^{\lambda}$$
(7)

with the initial functions

$$c_i(t) = u^{(i-1)}(t)$$
 for $a \le t \le 0$ $(i = 1, ..., n)$.

Moreover, it is clear that $u^{(i-1)}$ (i = 1, ..., n-1) have finite limits

$$u^{(i-1)}(b-0)$$
 $(i=1,\ldots,n-1),$

and

$$\lim_{t \to b} u^{(n-1)}(t) = +\infty.$$

Consequently, u is a weakly blow-up solution of equation (6).

On the other hand, by virtue of Corollary 2 equation (7) has infinite sets of strongly blow-up and regular solutions.

The example constructed above shows that if the functions f and τ satisfy the conditions of either Theorem 1 or one of its corollaries, then equation (7) can simultaneously have strongly blow-up, weakly blow-up and regular solutions.

Example 2. Theorem 1 and its corollaries are specific for delay equations and they have no analogs for equations without delay. To make sure of this, in the interval [0, b] we consider the differential equation

$$u^{(n)}(t) = (u^{(n-1)}(t))^{\lambda},$$
(8)

where $n \ge 2$, $\lambda > 2$. We choose positive numbers ρ_i (i = 1, ..., n) so that the function, defined by the equality

$$u_0(t) = \sum_{i=1}^{n-1} \frac{\rho_i}{(i-1)!} t^{i-1} + (-1)^{n-1} (\lambda - 1)^{\frac{1}{1-\lambda}} \prod_{i=1}^{n-1} \left(n - i - \frac{1}{\lambda - 1} \right)^{-1} (b-t)^{n-1 - \frac{1}{1-\lambda}} \text{ for } 0 \le t < b,$$

satisfies the conditions

$$u_0^{(i-1)}(0) \ge 0 \ (i=1,\ldots,n-1).$$

Then every solution of equation (8), defined in the interval [0, b] and blowing up at the point b, has the form $u(t) \equiv u_0(t)$, and, consequently, it is weakly blow-up. On the other hand, no matter how the number

$$r > u_0^{(n-1)}(0)$$

is, equation (8) does not have a solution $u: [0, b] \to \mathbb{R}_+$, satisfying the inequalities

$$u^{(i-1)}(0) \ge 0$$
 $(i = 1, ..., n-1), \quad u^{(n-1)}(0) \ge r.$

Theorem 2. Let $n \geq 2$,

$$\tau(t) = \frac{b(t-t_0)}{b-t_0} \text{ for } 0 \le t \le b,$$

and let the function f satisfy the inequality

$$f(t, x_1, \dots, x_n) \ge \ell(b-t)^{\mu} \omega(x_k) \text{ for } t_0 \le t \le b, \ (x_1, \dots, x_n) \in \mathbb{R}^n_+,$$

where $t_0 \in [0, b[$, $k \in \{1, ..., n\}$, $\ell > 0$, $\mu \ge 0$, and $\omega : \mathbb{R}_+ \to \mathbb{R}_+$ is a continuous function. Let, moreover, there exist a number $\lambda > 1$ such that

$$\int_{0}^{x} \omega(y) \, dy > x^{\lambda} - 1 \quad for \ x \ge 0.$$
(9)

Then for an arbitrary $\gamma > 0$ there exists a positive number $r = r(\gamma)$ such that if inequality (4) holds, then the solution u of problem (1), (2) is strongly blow-up and admits estimate (5).

Example 3. Consider the differential equation

$$u^{(n)}(t) = (b - y)^{\mu} \omega \left(u \left(\frac{b(t - t_0)}{b - t_0} \right) \right), \tag{10}$$

where $\mu \ge 0, t_0 \in]a, b[$, and $\omega : \mathbb{R}_+ \to \mathbb{R}_+$ is a continuous function which along with (9) satisfies the condition

$$\omega(x_m) = 0 \ (m = 1, 2, \dots).$$
(11)

Here $\lambda > 1$, and $x_m \in \mathbb{R}_+$ (m = 1, 2, ...) is an increasing sequence of numbers converging to $+\infty$. The example of such a function is constructed in [10, p. 44].

In view of (11), Theorem 1 and their corollaries leave open the question on the existence of blow-up solutions of equation (10). On the other hand, by Theorem 2 this equation has an infinite set of blow-up solutions.

References

- I. V. Astashova, On Kiguradze's problem on power-law asymptotic behavior of blow-up solutions to Emden-Fowler type differential equations. *Georgian Math. J.* 24 (2017), no. 2, 185–191.
- [2] I. V. Astashova, Asymptotic behavior of singular solutions of Emden–Fowler type equations. (Russian) Differ. Uravn. 55 (2019), no. 5, 597–606; translation in Differ. Equ. 55 (2019), no. 5, 581–590.
- [3] I. V. Astashova and М. Yu. Vasilev, On nonpower-law behavior blowof Emden-Fowler higher-order solutions totype differential equations. Abup stracts of the International Workshop on the Qualitative Theory of Differential Equations – QUALITDE-2018, Tbilisi, Georgia, December 1–3, pp. 11–15; https://rmi.tsu.ge/eng/QUALITDE-2018/Astashova_Vasilev_workshop_2018.pdf.
- [4] R. Bellman, Stability Theory of Differential Equations. McGraw-Hill Book Co., Inc., New York–Toronto–London, 1953.
- [5] N. A. Izobov, Continuable and noncontinuable solutions of a nonlinear differential equation of arbitrary order. (Russian) Mat. Zametki 35 (1984), no. 6, 829–839.
- [6] I. T. Kiguradze, The asymptotic behavior of the solutions of a nonlinear differential equation of Emden–Fowler type. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 29 (1965), 965–986.
- [7] I. T. Kiguradze, Some Singular Boundary Value Problems for Ordinary Differential Equations. (Russian) Izdat. Tbilis. Univ., Tbilisi, 1975.
- [8] I. T. Kiguradze and T. A. Chanturia, Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Springer-Science, Business Media, B.V., 2012.
- [9] I. T. Kiguradze and G. G. Kvinikadze, On strongly increasing solutions of nonlinear ordinary differential equations. Ann. Mat. Pura Appl. (4) 130 (1982), 67–87.
- [10] I. Kiguradze and N. Partsvania, Rapidly growing and blow-up solutions to higher order nonlinear delay ordinary differential equations. *Mem. Differential Equations Math. Phys.* **90** (2023), 39–54.