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1 Statement of the problem and formulation
of the main results

Problems on the existence and asymptotic estimates of rapidly growing and blow-up solutions occupy
an important place in the qualitative theory of ordinary differential equations and they have been
investigated in sufficient detail for a wide class of nonlinear non-autonomous differential equations
(see, [1–12] and the references therein). However, for delay ordinary differential equations these
problems still remain unstudied. The present paper is devoted to filling this existing gap.

We consider the differential equation

u(n)(t) = f(t, u(τ(t))), (1.1)

where n is an arbitrary natural number, f : R
+
× R

+
→ R

+
is a continuous function, R

+
= [0,+∞[ ,

and τ : R
+
→ R is a continuous function such that

τ(t) ≤ t for t ∈ R
+
, lim

t→+∞
τ(t) = +∞.

Definition 1.1. Let a ∈ R
+

, b ∈ ]a,+∞[ , and

a0 = min{τ(t) : t ≥ a} < a
(
a0 = min{τ(t) : a ≤ t ≤ b} < a

)
.

An n-times continuously differentiable function u : [a,+∞[→ R+ (u : [a, b[→ R+) is said to be a
solution to equation (1.1) in the interval [a,+∞[ (in the interval [a, b[) if there exists a continuous
function u0 : [a0, a] → R

+
such that equality (1.1) is satisfied in that interval, where

u(t) = u0(t) for a0 ≤ t ≤ a.

Definition 1.2. A solution u to equation (1.1), defined in some infinite interval [a,+∞[⊂ R+ , is said
to be rapidly growing (slowly growing) if

lim
t→+∞

u(n−1)(t) = +∞
(

lim
t→+∞

u(n−1)(t) < +∞
)
.

Definition 1.3. A solution u to equation (1.1), defined in some finite interval [a, b[⊂ R+ , is said to
be blow-up (bounded) if

lim
t→b

u(t) = +∞
(

lim
t→b

u(t) < +∞
)
.

For equation (1.1), in the nonnegative semi-axis R+ and in some finite interval [0, b[⊂ R+ , the
Cauchy problem with the initial data

u(t) = u0(t) for t∗ ≤ t < 0, u(i−1)(0) = ci (i = 1, . . . , n) (1.2)

is investigated in the cases where the function τ satisfies the conditions

τ(t) < t for t ∈ R
+
, lim

t→+∞
τ(t) = +∞ (1.3)

and
τ(t) < t for t ∈ [0, b[ , τ(b) = b, (1.4)

respectively.
Here

t∗ = min{τ(t) : t ∈ R+}
(
t∗ = min{τ(t) : 0 ≤ t < b}

)
,

(c1, . . . , cn) ∈ Rn
+

, while u0 : [t∗, 0] → R+ is a continuous function such that u0(0) = c1.
A solution u to equation (1.1), defined in the interval R

+
(in the interval [0, b[) and satisfying the

initial conditions (1.2), is said to be a solution to problem (1.1), (1.2) in that interval.
Condition (1.3) (condition (1.4)) guarantees the existence of a unique solution to problem (1.1), (1.2)

in the interval R
+

(in the interval [0, b[). Our aim is to find conditions under which the above men-
tioned solution is, respectively, rapidly growing or slowly growing (blow-up or bounded).

Put

f∗(t, x) = max{f(t, y) : 0 ≤ y ≤ x} for (t, x) ∈ R2
+
, ∥u0∥ = max{u0(t) : t∗ ≤ t ≤ 0}.
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Theorem 1.1. Let along with (1.3) the conditions

f(t, x) ≥ f0(t, x) for t ≥ t0, x ≥ 0, (1.5)
(c1, . . . , cn) ∈ Rn

+
, c1 = u0(0), cn > 0 (1.6)

hold, where t0 ≥ 0 and f0 : [t0,+∞[×R
+
→ R

+
is a nondecreasing in the second argument continuous

function such that
+∞∫
t0

f0
(
t, |τ(t)|n−1x

)
dt = +∞ for x > 0. (1.7)

Then the solution to problem (1.1), (1.2) is rapidly growing. If along with (1.3) the condition

lim
x→0

+∞∫
0

f∗(t, (1 + |τ(t)|)n−1x
)

x
dt = 0 (1.8)

is satisfied, then there exists ε > 0 such that in the case, where

∥u0∥ ≤ ε, c1 = u0(0), 0 ≤ ci < ε (i = 1, . . . , n), (1.9)

the solution to problem (1.1), (1.2) is slowly growing.
Corollary 1.1. Let along with (1.3) the condition

p(t)xλ ≤ f(t, x) ≤ ℓp(t)xλ for (t, x) ∈ R2
+

(1.10)

hold, where λ > 1, ℓ > 1, and p : R+ → R+ is a continuous function. Then the condition
+∞∫
0

|τ(t)|(n−1)λp(t) dt = +∞ (1.11)

is necessary and sufficient for the solution to problem (1.1), (1.2) to be rapidly growing for any con-
tinuous function u0 : [t∗, 0] → R

+
and the initial data, satisfying condition (1.6).

The question arises: may equation (1.1) have a rapidly growing solution if condition (1.8) is sat-
isfied? Theorems 1.2 and 1.3 below and their corollaries give a positive answer to this question.
According to these statements, equation (1.1) may have an n-parametric set of rapidly growing solu-
tions even in the case where condition (1.10) is satisfied but condition (1.11) is violated.
Theorem 1.2. Let conditions (1.3) and (1.5) hold, where t0 is a positive number, while f0 :
[t0,+∞[×R

+
→ R

+
is a continuous and nondecreasing in the second argument function such that the

differential equation
v(n)(t) = f0(t, v(τ(t))) (1.12)

in the interval [t0,+∞[ has a rapidly growing solution v. Then there exist numbers r > 0 and a ≥ t0
such that if

(c1, . . . , cn) ∈ Rn
+
, c1 = u0(0), cn ≥ r, (1.13)

then the solution to problem (1.1), (1.2) is rapidly growing and admits the estimates

u(i−1)(t) ≥ v(i−1)(t) for t ≥ a (i = 1, . . . , n). (1.14)

Corollary 1.2. Let the functions f and τ satisfy the inequalities

f(t, x) ≥ tµxλ for t ≥ t0, x ≥ 0, (1.15)
tα − δ ≤ τ(t) < t for t ≥ 0, (1.16)

where
λ > 1, µ ∈ R, α ∈ ]λ−1, 1[ , δ ≥ 1, t0 ≥ 1.

Then for any γ > n − 1 there is a positive number r = r(γ) such that if condition (1.13) is fulfilled,
then the solution to problem (1.1), (1.2) is rapidly growing and admits the estimate

inf
{
t−γu(t) : t ≥ t0

}
> 0. (1.17)
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Corollary 1.3. Let the functions f and τ satisfy the inequalities

f(t, x) ≥ exp(µt)xλ for t ≥ t0, x ≥ 0, (1.18)
αt− δ ≤ τ(t) < t for t ≥ 0, (1.19)

where
λ > 1, µ ∈ R, α ∈ ]λ−1, 1], δ > 0, t0 > 0.

Then for any γ > 0 there is a positive number r = r(γ) such that if condition (1.13) is fulfilled, then
the solution to problem (1.1), (1.2) is rapidly growing and admits the estimate

inf
{

exp(−γt)u(t) : t ≥ t0
}
> 0. (1.20)

Corollary 1.4. Let the function f satisfy the inequality

exp(µt)xλ ≤ f(t, x) ≤ tνxλ for t ≥ t0, x ≥ 0, (1.21)

and let the function τ satisfy inequality (1.19), where

t0 > 0, λ > 1, µ < 0, ν < −(n− 1)λ− 1, α ∈ ]λ−1, 1], δ > 0.

Then there exists ε > 0 such that if condition (1.9) is fulfilled, then the solution to problem (1.1), (1.2)
is slowly growing. On the other hand, for any γ > 0 there is a number r = r(γ) > ε such that if
condition (1.13) is satisfied, then the solution to problem (1.1), (1.2) is rapidly growing and admits
estimate (1.20).

Theorem 1.2 is not applicable in the case where the function f does not have a nondecreasing in
the second argument nontrivial nonnegative minor. Theorem 1.3 below deals with this case.

Let n ≥ 2, t0 > 0, and the function f admit estimate (1.5), where f0 : [t0,+∞[×R+ → R+ is a
continuous function. Put

Fn(t, x) =

(
n

(n− 2)!

x∫
0

(x− y)n−2f0(t, y) dy

) 1
n

for t ≥ t0, x ≥ 0, (1.22)

and consider the differential equation

v′(t) = Fn(t, v(τ(t))). (1.23)

Theorem 1.3. Let n ≥ 2 and there exist a positive number t0 and a nonincreasing in the first argument
continuous function f0 : [t0,+∞[×R

+
→ R

+
such that the function τ is continuously differentiable in

the interval [t0,+∞[ ,
τ(t0) = 0, τ(t) > 0, 0 ≤ τ ′(t) ≤ 1 for t ≥ t0, (1.24)

and conditions (1.3), (1.5) hold. Let, moreover, the differential equation (1.23) in the interval [t0,+∞[
has a solution v, satisfying the equality

lim
t→+∞

v(t)

tn−1
= +∞. (1.25)

Then for any continuous function u0 : [t∗, 0] → R+ there are numbers r = r(u0) > 0, a = a(u0) > t0
such that if condition (1.13) holds, then the solution to problem (1.1), (1.2) is rapidly growing and
admits the estimate

u(t) ≥ v(t) for t ≥ a. (1.26)

Corollary 1.5. Let n ≥ 2 and there exist numbers

t0 ≥ 1, λ > 1, α ∈
] n

n− 1 + λ
, 1
[
, µ ∈ R

+
, (1.27)
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and a continuous function ω : R+ → R+ such that

τ(t) = tα − tα0 for t ∈ R
+

(1.28)
f(t, x) ≥ tµω(x) for t ≥ t0, x ∈ R

+
, (1.29)

x∫
0

ω(s) ds ≥ xλ+1 − 1 for x ∈ R
+
. (1.30)

Then for any continuous function u0 : [t∗, 0] → R
+

and any number γ > n − 1 there is a positive
number r = r(u0, γ) such that if condition (1.13) holds, then the solution to problem (1.1), (1.2) is
rapidly growing and admits estimate (1.17).
Example 1.1. Let t0, λ, α, and µ be numbers satisfying condition (1.27), n ≥ 2,

δk = 2−1−k(1 + λ)−1k−λ (k = 1, 2, . . . ),

and let ω : R+ → R+ be a continuous function whose restriction to an arbitrary interval [k− 1, k] has
the form

ω(x) =


(λ+ 1)xλ for k − 1 ≤ x ≤ k − 2δk,

|x− k + δk|
δk

(λ+ 1)xλ for k − 2δk < x ≤ k.

(1.31)

Consider the differential equation

u(n)(t) = tµω(u(tα − tα0 )). (1.32)

The function ω in the interval R
+

does not have a positive nondecreasing minor since

ω(k − δk) = 0 (k = 1, 2, . . . ). (1.33)

Thus Theorem 1.2 leaves open the question on the existence of rapidly growing solutions to equation
(1.32).

On the other hand, in view of (1.31), for an arbitrarily fixed natural number m we have
x∫

0

ω(y) dy > (λ+ 1)

x∫
0

yλdy − (λ+ 1)

m∑
k=1

k∫
k−2δk

(
1− |y − k + δk|

δk

)
yλdy

> xλ+1 − 2(λ+ 1)

m∑
k=1

kλδk = xλ+1 −
m∑

k=1

2−k > xλ+1 − 1 for m− 1 ≤ x < m.

Consequently, inequality (1.30) holds. However, by virtue of Corollary 1.5 this inequality guarantees
the existence of an n-parametric set of rapidly growing solutions to equation (1.32).

Note that if
µ < −(n− 1)αλ,

then by Theorem 1.1 equation (1.32) along with rapidly growing solutions has an n-parametric set of
slowly growing solutions as well.
Corollary 1.6. Let n ≥ 2 and there exist numbers

t0 > 0, λ > 1, α ∈
] n

n− 1 + λ
, 1
]
, µ ∈ R, (1.34)

and a continuous function ω : R
+
→ R

+
such that along with inequality (1.30) the conditions

τ(t) = α(t− t0) for t ∈ R
+
,

f(t, x) ≥ exp(µt)ω(x) for t ≥ t0, x ∈ R
+

are satisfied. Then for any continuous function u0 : [t∗, 0] → R
+

and any positive number γ there
is a positive number r = r(u0, γ) such that if condition (1.13) holds, then the solution to problem
(1.1), (1.2) is rapidly growing and admits estimate (1.20).
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Example 1.2. Suppose t0, λ, α, and µ are numbers satisfying condition (1.34), n ≥ 2, ω : R+ → R+

is a continuous function whose restriction to an arbitrary interval [k − 1, k] has form (1.31).
Consider the differential equation

u(n)(t) = exp(µt)ω(u(α(t− t0))). (1.35)

In view of equalities (1.33), Theorem 1.2 is not applicable to this equation. On the other hand, as
shown above, the function ω satisfies inequality (1.30). Hence by Corollary 1.6 it follows the existence
of an n-parametric set of rapidly growing solutions to equation (1.35). If µ < 0, then by Theorem 1.1
this equation along with rapidly growing solutions has an n-parametric set of slowly growing solutions
as well.

Theorems 1.4, 1.5 and their corollaries given at the end of this section contain conditions guaran-
teeing the existence of an n-parametric set of blow-up solutions to equation (1.1).

Theorem 1.4. Let the function τ satisfy condition (1.4), and let the function f satisfy the inequality

f(t, x) ≥ f0(t, x) for t0 ≤ t ≤ b, x ∈ R
+
, (1.36)

where t0 ∈ ]0, b[ and f0 : [t0, b] × R+ → R+ is a nondecreasing in the second argument continuous
function such that the differential equation (1.12) in the interval [t0, b[ has a blow-up solution v. Then
there are numbers r > 0 and a ∈ ]t0, b[ such that if condition (1.13) holds, then the solution to problem
(1.1), (1.2) is blow-up and admits the estimates

u(i−1)(t) ≥ v(i−1)(t) for a ≤ t < b (i = 1, . . . , n).

Corollary 1.7. Let the functions τ and f satisfy the inequalities

α(t− b) + b ≤ τ(t) < t for 0 ≤ t < b,

f(t, x) ≥ (b− t)µxλ for t0 ≤ t < b, x ∈ R
+
,

where
α > 1, t0 > 0, µ ∈ R, λ > 1.

Then for any positive number γ there is a positive number r = r(γ) such that if condition (1.13) holds,
then the solution to problem (1.1), (1.2) is blow-up and admits the estimate

inf
{
(b− t)γu(t) : t0 ≤ t < b

}
> 0. (1.37)

Theorem 1.5. Let n ≥ 2, t0 ∈ ]0, b[ , let the function τ have the form

τ(t) =
b(t− t0)

b− t0
for 0 ≤ t ≤ b, (1.38)

and let the function f satisfy inequality (1.36), where f0 : [t0, b[×R
+
→ R

+
is a nonincreasing in the

first argument continuous function. Let, moreover, the differential equation

v′(t) =
(b− t0

b

)n−1
n

Fn(t, v(τ(t))),

where Fn is a function given by equality (1.22), in the interval [t0, b[ has a blow-up solution v. Then
for any continuous function u0 : [t∗, 0] → R

+
there are numbers r = r(u0) > 0, a = a(u0) ∈ ]t0, b[

such that if condition (1.13) holds, then the solution to problem (1.1), (1.2) is blow-up and admits the
estimate

u(t) ≥ v(t) for a ≤ t < b.

Corollary 1.8. Let n ≥ 2 and there exist numbers

t0 > 0, λ > 1, µ ≥ 0
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and a continuous function ω : R+ → R+ such that identity (1.38) holds and along with (1.30) the
inequality

f(t, x) ≥ (b− t)µω(x) for t0 ≤ t ≤ b, x ∈ R
+

is satisfied. Then for any continuous function u0 : [t∗, 0] → R+ and any positive number γ there
is a positive number r = r(u0, γ) such that if condition (1.13) holds, then the solution to problem
(1.1), (1.2) is blow-up and admits estimate (1.37).

Example 1.3. Let

n ≥ 2, t0 > 0, λ > 1, µ ≥ 0, δk = 2−1−k(1 + λ)−1k−λ (k = 1, 2, . . . ),

and let ω : R
+
→ R

+
be a continuous function whose restriction to an arbitrary interval [k− 1, k] has

form (1.31). Consider the differential equation

u(n)(t) = (b− t)µω
(
u
(b(t− t0)

b− t0

))
. (1.39)

In view of condition (1.33), Theorem 1.4 leaves open the question on the existence of blow-up solutions
of that equation. On the other hand, by virtue of condition (1.30) and Corollary 1.8 equation (1.39)
has an n-parametric set of blow-up solutions.

2 Auxiliary propositions
Along with problem (1.1), (1.2) we consider the problem

v(n)(t) = f0(t, v(τ(t))), (2.1)
v(t) = v(t0) for t∗ ≤ t < 0, v(i−1)(0) = c0i (i = 1, . . . , n). (2.2)

Moreover, we assume that f : R
+
× R

+
→ R

+
, f0 : R

+
× R

+
→ R

+
, τ : R

+
→ R, u0 : [t∗, 0] → R

+
,

v0 : [t∗, 0] → R
+

are continuous functions,

c1 = u0(0), (c1, . . . , cn) ∈ Rn
+
, c01 = v0(0), (c01, . . . , c0n) ∈ Rn

+
.

If condition (1.3) (condition (1.4)) holds, then there exists an increasing sequence of positive
numbers (ti)

+∞
i=1 such that

τ(t) < 0 for 0 ≤ t < t1, τ(t1) = 0,

τ(t) < ti for ti ≤ t < ti+1, τ(ti+1) = ti (i = 1, 2, . . . ),

lim
t→+∞

ti = +∞
(

lim
t→+∞

ti = b
)
.

From this fact it immediately follows the validity of the following lemma.

Lemma 2.1. If condition (1.3) (condition (1.4)) holds, then problem (1.1), (1.2) in the interval R+

(in the interval [0, b[ ) has a unique solution u and for any natural k the equality

u(t) = uk(t) for 0 ≤ t ≤ tk (2.3)

is satisfied, where

uk(t) = u0(t) for t∗ ≤ t < 0, uk(t) =

n∑
i=1

ci
(i− 1)!

ti−1

+
1

(n− 1)!

t∫
0

(t− s)n−1f(s, uk−1(τ(s)))ds for 0 ≤ t ≤ tk (k = 1, 2 . . . ). (2.4)
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Now we consider the case where one of the following two inequalities is satisfied:

f(t, x) ≥ f0(t, x) for t ∈ R+ , x ∈ R+ , (2.5)
f(t, x) ≥ f0(t, x) for 0 ≤ t < b, x ∈ R+ . (2.6)

Lemma 2.2. Let along with conditions (1.3) and (2.5) (along with conditions (1.4) and (2.6)) the
inequalities

u0(t) ≥ v0(t) for t∗ ≤ t < 0, ci ≥ c0i (i = 1, . . . , n) (2.7)

be satisfied. If, moreover, one of the functions f and f0 is nondecreasing in the second argument, then
in the interval R+ (in the interval [0, b[ ) the inequalities

u(i−1)(t) ≥ v(i−1)(t) (i = 1, . . . , n) (2.8)

hold, where u and v are solutions to problems (1.1), (1.2) and (2.1), (2.2), respectively.

Proof. According to Lemma 2.1, problem (2.1), (2.2) is uniquely solvable and its solution for any
natural k admits the representation

v(t) = vk(t) for 0 ≤ t ≤ tk, (2.9)

where

vk(t) = v0(t) for t∗ ≤ t < 0, vk(t) =

n∑
i=1

c0i
(i− 1)!

ti−1

+
1

(n− 1)!

t∫
0

(t− s)n−1f0(s, vk−1(τ(s)))ds for 0 ≤ t ≤ tk (k = 1, 2 . . . ). (2.10)

If along with conditions (2.5) and (2.7) (along with conditions (2.6) and (2.7)) we take into account
the fact that one of the functions f and f0 is nondecreasing in the second argument, then the validity
of the inequality

u1(t) =

n∑
i=1

ci
(i− 1)!

ti−1 +
1

(n− 1)!

t∫
0

(t− s)n−1f(s, u0(τ(s)))ds

≥
n∑

i=1

c0i
(i− 1)!

ti−1 +
1

(n− 1)!

t∫
0

(t− s)n−1f0(s, v0(τ(s)))ds = v1(t) for 0 ≤ t ≤ t1

becomes evident. By virtue of this inequality, representations (2.3), (2.4) and (2.9), (2.10) yield
estimate (2.8).

Definition 2.1. An n-times continuously differentiable function u : R+ → R+ (u : [0, b[→ R+) is said
to be a solution of the differential inequality

u(n)(t) ≥ f0(t, u(τ(t))) (2.11)

in the interval R
+

(in the interval [0, b[ ) if there exists a continuous function u0 : [t∗, 0] → R
+

such that in this interval inequality (2.11) holds, where

u(t) = u0(t) for t∗ ≤ t ≤ 0.

Definition 2.2. A function u : R
+

→ R
+

(u : [0, b[→ R
+

) is said to be a solution of problem
(2.11), (1.2) in the interval R

+
(in the interval [0, b[ ) if it is a solution of the differential equation

(2.11) in that interval, satisfying the initial conditions (1.2).
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Lemma 2.3. Let conditions (1.3), (2.7) (conditions (1.4), (2.7)) hold, the function f0 do not decrease
in the second argument, and let u and v be solutions of problems (2.11), (1.2) and (2.1), (2.2) in the
interval R

+
(in the interval [0, b[ ), respectively. Then inequalities (2.8) holds in that interval.

Proof. Assume
δ(t) = u(n)(t)− f0(t, u(τ(t))).

In view of (2.11), δ is a continuous and nonnegative function defined in the interval R
+

(in the interval
[0, b[ ). On the other hand, the function u is a solution of the differential equation

u(n)(t) = f0(t, u(τ(t))) + δ(t)

under the initial conditions (1.2). If now we apply Lemma 2.2, then the validity of Lemma 2.3 becomes
evident.

Lemma 2.4. Let n ≥ 2 and conditions (1.3), (1.5) (conditions (1.4), (1.36)) hold, where t0 > 0
(t0 ∈ ]0, b[) , and let f0 : [t0,+∞[×R+ → R+ (f0 : [t0, b[×R+ → R+) be nonincreasing in the first
argument continuous function. Let, moreover, the function τ be continuously differentiable in the
interval [t0,+∞[ (in the interval [t0, b[ ) and satisfy the condition

τ(t0) = 0, τ(t) > 0 for t > t0, 0 ≤ τ ′(t) ≤ α (2.12)

in that interval, where α is a positive constant. Then for any continuous function u0 : [t∗, 0] → R
+

there is a positive number r0 = r0(u0(0)) such that if

(c1, . . . , cn) ∈ Rn
+
, c1 = u0(0), cn > r0, (2.13)

then the solution to problem (1.1), (1.2) in the interval [t0,+∞[ (in the interval [t0, b[ ) satisfies the
differential inequality

u′(t) ≥ α−n−1
n Fn(t, u(τ(t))), (2.14)

where Fn is a function defined by equality (1.22).

Proof. We prove the lemma for the case where n ≥ 3 and conditions (1.3), (1.5) are satisfied. The
case, where n = 2 or conditions (1.4), (1.36) are satisfied, can be proved analogously.

Put

δ =

(n!)−ntn−2
0 for t0 ≥ 1,

(n!)−nt
n(n−1)
0 for t0 < 1,

r0 = 1 + δ−1
( n−1∑

k=1

α−kck−1
1

) c1∫
0

f0(t0, y) dy,

fk(t, x) =
α−k

(k − 1)!

x∫
0

(x− y)k−1f0(t, y) dy (k = 1, . . . , n− 1).

By Lemma 2.1 problem (1.1), (1.2) has a unique solution u. In view of the nonnegativeness of the
functions f , u0, and conditions (2.12), (2.13), the function u admits the estimates

u(n−k)(t0)(u
′(t0))

k ≥ t
(n−1)k−1
0

((n− 2)!)k(k − 1)!
ck+1
n > δr0 (k = 1, . . . , n− 2), (2.15)

(u′(t0))
n ≥ t

(n−2)n
0

((n− 2)!)n
cnn > nδr0, (2.16)

u′(t) ≥ α−1τ ′(t)u′(τ(t)) for t ≥ t0. (2.17)
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On the other hand, according to the definitions of the number r0 and the functions fk (k = 1, . . . , n−1),
we have

fk(t, c1) ≤ α−kck−1
1

c1∫
0

f0(t0, y) dy < δr0 for t ≥ t0 (k = 1, . . . , n− 1). (2.18)

From estimates (1.5), (2.17) it follows that

u(n)(t)u′(t) = f(t, u(τ(t)))u′(t) ≥ α−1f0(t, u(τ(t)))u
′(τ(t))τ ′(t) for t ≥ t0.

If we integrate this inequality from t0 to t and take into account the fact that f0 is nonincreasing in
the first argument, we get

u(n−1)(t)u′(t) =

t∫
t0

u(n−1)(s)u′′(s) ds+ u(n−1)(t0)u
′(t0) + α−1

t∫
t0

f0(s, u(τ(s))) du(τ(s))

≥ u(n−1)(t0)u
′(t0)− f1(t0, c1) + f1(t, u(τ(t))) for t ≥ t0.

Hence, due to estimates (2.15), (2.18), we get

u(n−1)(t)u′(t) > f1(t, u(τ(t))) for t ≥ t0. (2.19)

Now we have to prove that for any k ∈ {1, . . . , n− 2} the inequality

u(n−k)(t)(u′(t))k > fk(t, u(τ(t))) for t ≥ t0 (2.20)

holds. In view of (2.19), it remains to consider the case, where n ≥ 4.
Assume that for some k ∈ {1, . . . , n−3} inequality (2.20) holds. Then by virtue of estimate (2.17)

we have
u(n−k)(t)(u′(t))k+1 > α−1fk(t, u(τ(t)))u

′(τ(t))τ ′(t) for t ≥ t0.

Hence, due to estimates (2.15), (2.18), it follows that

u(n−k−1)(t)(u′(t))k+1 ≥ (k + 1)

t∫
t0

u(n−k−1)(s)(u′(s))ku′′(s) ds+ u(n−k−1)(t0)(u
′(t0))

k+1

−fk+1(t0, c1) + fk+1(t, u(τ(t))) > fk+1(t, u(τ(t))) for t ≥ t0.

Thus it is proved that inequality (2.20) holds for any k ∈ {1, . . . , n− 2}, and consequently,

u′′(t)(u′(t))n−2 > fn−2(t, u(τ(t))) for t ≥ t0.

Therefore,
u′′(t)(u′(t))n−1 > α−1fn−2(t, u(τ(t)))u

′(τ(t))τ ′(t) for t ≥ t0.

If we integrate this inequality from t0 to t and take into account estimates (2.16) and (2.18), we get

(u′(t))n

n
≥ (u′(t0))

n

n
− fn−1(t0, c1) + fn−1(t, u(τ(t))) > fn−1(t, u(τ(t))) for t ≥ t0,

i.e.,
u′(t) >

(
nfn−1(t, u(τ(t)))

) 1
n for t ≥ t0.

Hence in view of (1.22) it follows that the function u is a solution of the differential inequality (2.14)
in the interval [t0,+∞[ .
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3 Proof of the main results
Proof of Theorem 1.1. First we consider the case where along with (1.3) conditions (1.5)–(1.7) hold.
By Lemma 2.1, problem (1.1), (1.2) has a unique solution u. On the other hand, in view of (1.3) and
(1.6) we have

u(t) ≥ xtn−1 for t ≥ 0, τ(t) > 0 for t > t0,

where x = cn/(n − 1)!, and t0 is a sufficiently large positive number. Hence by virtue of conditions
(1.5) and (1.7) we get

u(n−1)(t) ≥
t∫

t0

f0
(
s, (τ(s))n−1x

)
ds → +∞ as t → +∞.

Consequently, u is a rapidly growing solution.
Now consider the case where conditions (1.3) and (1.8) hold.
Put

τ∗(t) =
(
τ(t) + |τ(t)|

)
/2,

and choose ε > 0 such a small that the inequality

+∞∫
0

f∗(s, (n+ 2)(1 + |τ(s)|)n−1ε
)
ds < ε (3.1)

is satisfied.
Let condition (1.9) be fulfilled. Then the solution u of problem (1.1), (1.2) admits the estimates

u(n−1)(0) < ε, u(τ(t)) < (1 + |τ(t)|)n−1
(
nε+ u(n−1)(τ∗(t))

)
.

Therefore,

u(n−1)(t) < ε+

t∫
0

f∗(s, (1 + |τ(s)|)n−1(nε+ u(n−1)(τ∗(s)))
)
ds for t ≥ 0. (3.2)

Our aim is to prove that
u(n−1)(t) < 2ε for t ≥ 0. (3.3)

Assume the contrary. Then there exists t0 > 0 such that

u(n−1)(t) < 2ε for 0 ≤ t < t0, u(n−1)(t0) = 2ε.

Thus inequalities (3.1) and (3.2) yield

2ε < ε+

t0∫
0

f∗(s, (n+ 2)(1 + |τ(s)|)n−1ε
)
ds < 2ε.

The contradiction obtained proves the validity of estimate (3.3). Consequently, the solution u is slowly
growing.

To be convinced of the validity of Corollary 1.1, it is enough to note that if along with (1.3)
conditions (1.10), (1.11) hold, then conditions (1.5), (1.7) are satisfied as well, where

f0(t, x) = p(t)xλ.

If condition (1.10) is satisfied but condition (1.11) is violated, then condition (1.8) holds.
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Proof of Theorem 1.2. By virtue of condition (1.3), there exists a number a ∈ ]t0,+∞[ such that

a = min
{
τ(t) : t ≥ t0

}
.

Put

ũ0(t) = u(t) for t0 ≤ t ≤ a, c̃i = u(i−1)(a) (i = 1, . . . , n),

ṽ0(t) = v(t) for t0 ≤ t ≤ a, c̃0i = v(i−1)(a) (i = 1, . . . , n),

and choose r > 1 such that the inequality

r tn−i
0

(n− i)!
≥ c̃0i (i = 1, . . . , n) (3.4)

is satisfied. Then the restrictions of the functions u and v to the interval [a,+∞[ are solutions to the
differential equations (1.1) and (1.12), respectively, under the initial conditions

u(t) = ũ0(t) for t0 ≤ t < a, u(i−1)(a) = c̃i (i = 1, . . . , n),

v(t) = ṽ0(t) for t0 ≤ t < a, v(i−1)(a) = c̃0i (i = 1, . . . , n).

On the other hand, due to (1.13) and (3.4) we have

ũ0(t) ≥
cnt

n−1
0

(n− 1)!
≥ c̃01 ≥ ṽ0(t) for t0 ≤ t ≤ a, (3.5)

c̃i ≥
cna

n−i

(n− i)!
>

r tn−i
0

(n− i)!
> c̃0i (i = 1, . . . , n). (3.6)

By Lemma 2.2, inequalities (1.5), (3.5), and (3.6) imply estimates (1.14).

Proof of Corollary 1.2. By virtue of Theorem 1.2, to prove Corollary 1.2 it is enough to state that for
any γ > n− 1 the differential equation

v(n)(t) = tµvλ(τ(t)) (3.7)

in the interval [t0,+∞[ has a solution v, admitting the estimate

inf
{
t−γv(t) : t ≥ t0

}
> 0. (3.8)

Without loss of generality we can assume that

−(λα− 1)γ − n ≤ µ. (3.9)

Let

ρ =
[(

1 +
(
1 +

δ

t0

)γ−n
) n−1∏

i=0

(γ − i)
] 1

λ−1

.

We introduce the function

p(t) = ρ1−λ
( n−1∏

i=0

(γ − i)
)
(t+ δ)γ−n(τ(t) + δ)−λγ for t ≥ t0. (3.10)

It is clear that
(t+ δ)γ−n <

(
1 +

(
1 +

δ

t0

)γ−n
)
tγ−n for t ≥ t0.

On the other hand, in view of (1.16) we have

(τ(t) + δ)−λγ ≤ t−λαγ for t ≥ t0.
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According to condition (3.9), the last two inequalities yield the estimate

p(t) ≤ tµ for t ≥ t0. (3.11)

Consider the differential equation

w(n)(t) = p(t)wλ(τ(t)).

By identity (3.10), this equation in the interval [t0,+∞[ has a rapidly growing solution

w(t) = ρ(t+ δ)γ for t ≥ t0.

Let
t1 = min

{
τ(t) : t ≥ t0

}
.

By virtue of Lemmas 2.1, 2.2 and inequality (3.11), the differential equation (3.7) in the interval
[t0,+∞[ has a unique solution v, satisfying the initial conditions

v(t) = ρ(t+ δ)γ for t1 ≤ t < t0, v(i−1)(t0) = w(i−1)(t0) (i = 1, . . . , n),

and this solution admits the estimate

v(t) ≥ w(t) for t ≥ t0.

Thus
t−γv(t) ≥ ρ

(
1 +

δ

t

)γ
≥ ρ for t ≥ t0,

and, consequently, estimate (3.8) is valid.

Corollary 1.3 can be proved analogously to Corollary 1.2.
Corollary 1.4 immediately follows from Theorem 1.1 and Corollary 1.4.

Proof of Theorem 1.3. Let u0 : [t∗, 0] → R
+

be an arbitrarily fixed continuous function. Then by
Lemma 2.4 there exists a positive number r0 such that for any initial values c2, . . . , cn, satisfying the
inequalities

ci ≥ 0 (i = 2, . . . , n), cn ≥ r0, (3.12)
the solution u of problem (1.1), (1.2) in the interval [t0,+∞[ satisfies the differential inequality

u′(t) ≥ Fn(t, u(τ(t))) for t ≥ t0. (3.13)

Due to condition (1.3), there exists a number a > t0 such that

min
{
τ(t) : t ≥ a

}
= a.

Put
r = (n− 1)! t1−n

0 v(a) + r0.

Then, if condition (1.13) holds, condition (3.12) holds as well, and according to the above said, the
solution u of problem (1.1), (1.2) satisfies the differential inequality (3.13).

On the other hand, in view of (1.13) we have

u(t0) ≥
tn−1
0

(n− 1)!
cn ≥ tn−1

0

(n− 1)!
r > v(a).

The last inequality yields the inequality

u(t) > v(t) for t0 ≤ t ≤ a, (3.14)

since u and v are nondecreasing in the interval [t0, a] functions.
However, by Lemma 2.3 conditions (1.3), (3.13), and (3.14) guarantee the validity of estimate

(1.26) since Fn is a nondecreasing in the second argument function. From (1.25) and (1.26) it follows
that the solution u is rapidly growing.
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Proof of Corollary 1.5. Let

Ωn(x) =

(
n

(n− 2)!

x∫
0

(x− y)n−2ω(y) dy

) 1
n

for x ≥ 0.

By Theorem 1.3 it is enough to state that for any γ > n− 1 the differential equation

v′(t) = t
µ
nΩn(v(τ(t))) (3.15)

in the interval [t0,+∞[ has a solution v admitting estimate (3.8).
First note that estimate (1.30) implies the estimate

1

(n− 2)!

x∫
0

(x− y)n−2ω(y) dy > (λ+ 1)

n−1∏
i=1

(λ+ i)−1xλ+n−1 − 1

(n− 2)!
xn−2

> 2ℓ−1xλ+n−1
(
1− ℓ

2
x−λ−1

)
> ℓ−1xλ+n−1 for x > ℓ

1
λ+1 ,

where

ℓ =

n−1∏
i=1

(λ+ i).

Thus
Ωn(x) >

(n
ℓ

) 1
n

x
λ+n−1

n for x > ℓ
1

λ+1 . (3.16)

Without loss of generality, we will assume below that

−
(
(λ+ n− 1)α− n

)
γ − n ≤ µ. (3.17)

Let
ρ = ℓ

1
λ+1 +

(
γ
( ℓ
n

) 1
n (

1 + tα−1
0

)γ−1
) n

λ−1

. (3.18)

Introduce the function
p(t) = ργ(t+ tα0 )

γ−1/Ωn

(
ρ(τ(t) + tα0 )

γ
)
, (3.19)

and consider the initial value problem

w′(t) = p(t)Ωn(w(τ(t))),

w(t) = ρ(t+ tα0 )
γ for 0 ≤ t < t0, w(t0) = ρ(t0 + tα0 )

γ .

It is evident that this problem has a solution

w(t) = ρ(t+ tα0 )
γ for t ≥ t0, (3.20)

which by Lemma 2.1 is unique.
Due to (1.28) and (3.18), we have

ρ
(
τ(t) + tα0

)γ ≥ ρtαγ > ℓ
1

λ+1 for t ≥ t0,

according to which from (3.16) and (3.19) we get

Ωn

(
ρ(τ(t) + tα0 )

γ
)
>
(n
ℓ

) 1
n (

ρ(τ(t) + tα0 )
γ
)λ+n−1

n ≥
(n
ℓ

) 1
n

ρ
λ+n−1

n t
(λ+n−1)α

n γ for t ≥ t0,

and
p(t) ≤ ρ

1−λ
n

( ℓ
n

) 1
n

γ(1 + tα−1
0 )γ−1t−

((λ+n−1)α−n)γ+n
n for t ≥ t0.
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Hence by conditions (3.17) and (3.18) we get the inequality

p(t) ≤ t
µ
n for t ≥ t0. (3.21)

By virtue of Lemmas 2.1, 2.2, and inequality (3.21), the differential equation (3.15) in the interval
[t0,+∞[ has a unique solution v, satisfying the initial condition

v(t) = ρ(t+ tα0 )
γ for 0 ≤ t < t0, v(t0) = ρ(t0 + tα0 )

γ ,

and admitting the estimate v(t) ≥ w(t) for t ≥ t0. Therefore estimate (3.8) is satisfied as well.

Corollary 1.6 can be proved analogously to Corollary 1.5.
Theorem 1.4 and Corollary 1.7 can be proved analogously to Theorem 1.2 and Corollary 1.2, while

the proofs of Theorem 1.5 and Corollary 1.8 are analogous to those of Theorem 1.3 and Corollary 1.5.
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