On the Set of Solutions of the Cauchy Problem for Higher Order Non-Lipshitzian Ordinary Differential Equations

Ivan Kiguradze
Andrea Razmadze Mathematical Institute of Ivane Javakhishvili Tbilisi State University
Tbilisi, Georgia
E-mail: ivane.kiguradze@tsu.ge

In the present report, the initial value problem

$$
\begin{gather*}
u^{(n)}=f\left(t, u, \ldots, u^{(n-1)}\right) \tag{1}\\
u^{(i-1)}(a)=0 \quad(i=1, \ldots, n) \tag{2}
\end{gather*}
$$

is considered, where n is an arbitrary natural number, $-\infty<a<b<+\infty$, while $f:[a, b] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a continuous function. We are interested in the case where the function f with respect to the phase variables does not satisfy the Lipshitz condition in the neighborhood of the point $(0, \ldots, 0) \in \mathbb{R}^{n}$. In this case, as far as we know, the questions on the unique and multivalued solvability of problem $(1),(2)$ remain actually open. The structure of a set of solutions of that problem is insufficiently studied as well (see, e.g., $[1-5]$ and the references therein). The results given below fill to some extent this gap. Those cover the case where the function f admits one of the following four representations:

$$
\begin{align*}
& f\left(t, x_{1}, \ldots, x_{n}\right)=f_{0}\left(t, x_{1}, \ldots, x_{n}\right)+\sum_{i=1}^{n} g_{i}(t)\left|x_{i}\right|^{\lambda_{i}}, \tag{3}\\
& f\left(t, x_{1}, \ldots, x_{n}\right)=f_{0}\left(t, x_{1}, \ldots, x_{n}\right)+\sum_{i=1}^{n} g_{i}(t) \omega\left(\left|x_{i}\right|\right), \tag{4}\\
& f\left(t, x_{1}, \ldots, x_{n}\right)=f_{0}\left(t, x_{1}, \ldots, x_{n}\right)+\sum_{i=1}^{n} g_{i}(t)\left|x_{i}\right|^{\lambda_{i}}+g(t), \tag{5}\\
& f\left(t, x_{1}, \ldots, x_{n}\right)=f_{0}\left(t, x_{1}, \ldots, x_{n}\right)+\sum_{i=1}^{n} g_{i}(t) \omega\left(\left|x_{i}\right|\right)+g(t) . \tag{6}
\end{align*}
$$

Here $\left.\lambda_{i} \in\right] 0,1[(i=1, \ldots, n)$,

$$
\omega(x)= \begin{cases}\frac{1}{\ln (1+1 / x)} & \text { for } x>0 \\ 0 & \text { for } x=0\end{cases}
$$

while $f_{0}:[a, b] \times \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}, g_{i}:[a, b] \rightarrow \mathbb{R}_{+}(i=1, \ldots, n), g:[a, b] \rightarrow \mathbb{R}_{+}$are continuous functions. It is also assumed that the function f_{0} on the set $[a, b] \times \mathbb{R}^{n}$ satisfies one of the following two conditions:

$$
\begin{gather*}
f_{0}(t, 0, \ldots, 0)=0, f_{0}\left(t, x_{1}, \ldots, x_{n}\right) \leq r\left(1+\sum_{i=1}^{n}\left|x_{i}\right|\right), \tag{7}\\
f_{0}(t, 0, \ldots, 0)=0,\left|f_{0}\left(t, x_{1}, \ldots, x_{n}\right)-f\left(t, y_{1}, \ldots, y_{n}\right)\right| \leq r \sum_{i=1}^{n}\left|x_{i}-y_{i}\right|, \tag{8}
\end{gather*}
$$

where r is a positive constant.
We use the following notation.

$$
\begin{aligned}
& \mathbb{R}_{+}=[0,+\infty[\\
& \mathcal{D}^{n}(] a, b[; g)=\left\{\left(t, x_{1}, \ldots, x_{n}\right) \in\right] a, b\left[\times \mathbb{R}^{n}: x_{i} \geq \frac{1}{(n-i)!} \int_{a}^{t}(t-s)^{n-i} g(s) d s \quad(i=1, \ldots, n)\right\}
\end{aligned}
$$

$S_{f}\left([a, b] ; t_{0}\right)$, where $t_{0} \in[a, b[$, is the set of solutions of problem (1), (2) defined on the interval $[a, b]$ and satisfying the conditions

$$
u^{(i-1)}(t)=0 \text { for } a \leq t \leq t_{0}, \quad u^{(i-1)}(t)>0 \text { for } t_{0}<t \leq b \quad(i=1, \ldots, n)
$$

$S_{f}([a, b])$ is the set of all nontrivial solutions of problem (1), (2) on the interval $[a, b]$.
Theorem 1. Let

$$
f(t, 0, \ldots, 0)=0 \text { for } a \leq t \leq b \text {, }
$$

and let on the set $[a, b] \times \mathbb{R}^{n}$ one of the following two conditions

$$
\begin{aligned}
& \sum_{i=1}^{n} g_{i}(t)\left|x_{i}\right|^{\lambda_{i}} \leq f\left(t, x_{1}, \ldots, x_{n}\right) \leq r\left(1+\sum_{i=1}^{n}\left|x_{i}\right|\right), \\
& \sum_{i=1}^{n} g_{i}(t) \omega\left(\left|x_{i}\right|\right) \leq f\left(t, x_{1}, \ldots, x_{n}\right) \leq r\left(1+\sum_{i=1}^{n}\left|x_{i}\right|\right)
\end{aligned}
$$

be satisfied, where $\left.\lambda_{i} \in\right] 0,1\left[(i=1, \ldots, n)\right.$ and $r>0$ are constants, and $g_{i}:[a, b] \rightarrow \mathbb{R}_{+}(i=$ $1, \ldots, n)$ are continuous functions such that

$$
\begin{equation*}
\sum_{i=1}^{n} g_{i}(t)>0 \text { for } a<t<b \tag{9}
\end{equation*}
$$

Then

$$
\begin{equation*}
S_{f}\left([a, b] ; t_{0}\right) \neq \varnothing \text { for } a \leq t_{0}<b, \quad S_{f}([a, b])=\bigcup_{a \leq t_{0}<b} S_{f}\left([a, b] ; t_{0}\right) . \tag{10}
\end{equation*}
$$

Corollary 1. If the function f admits representation (3) or (4), then for condition (10) to be satisfied it is sufficient that inequalities (7) and (9) hold.

Theorem 2. Let there exist continuous functions $g:[a, b] \rightarrow \mathbb{R}_{+}$and $\left.h_{i}:\right] a, b\left[\rightarrow \mathbb{R}_{+}(i=1, \ldots, n)\right.$ such that the function f on the set $[a, b] \times \mathbb{R}^{n}$ admits the estimate

$$
f\left(t, x_{1}, \ldots, x_{n}\right) \geq g(t)
$$

while on the set $\mathcal{D}^{n}(] a, b[; g)$ satisfies the Lipschitz condition

$$
\left|f\left(t, x_{1}, \ldots, x_{n}\right)-f\left(t, y_{1}, \ldots, y_{n}\right)\right| \leq \sum_{i=1}^{n} h_{i}(t)\left|x_{i}-y_{i}\right| .
$$

If, moreover,

$$
\int_{a}^{b}(t-a)^{n-i} h_{i}(t) d t<+\infty \quad(i=1, \ldots, n)
$$

then problem (1), (2) has a unique solution.

Corollary 2. Let the function f admit representation (5) and let there exist a nonnegative constant α such that along with (8) the conditions

$$
\begin{gather*}
\liminf _{t \rightarrow a} \frac{g(t)}{(t-a)^{\alpha}}>0, \tag{11}\\
\int_{a}^{b}(t-a)^{(n-i+1) \lambda_{i}-\left(1-\lambda_{i}\right) \alpha-1} g_{i}(t) d t<+\infty \quad(i=1, \ldots, n) \tag{12}
\end{gather*}
$$

are satisfied. Then problem (1),(2) is uniquely solvable and its solution satisfies the inequalities

$$
\begin{equation*}
u^{(i-1)}(t)>0 \text { for } a<t \leq b \quad(i=1, \ldots, n) . \tag{13}
\end{equation*}
$$

Remark 1. In view of the continuity of the functions $g_{i}:[a, b] \rightarrow \mathbb{R}_{+}(i=1, \ldots, n)$, for condition (12) to be satisfied it is sufficient that the constant α satisfy the inequality

$$
\begin{equation*}
\alpha<\min \left\{\frac{(n-i+1) \lambda_{i}}{1-\lambda_{i}}: \quad i=1, \ldots, n\right\} . \tag{14}
\end{equation*}
$$

Corollary 3. Let the function f admit representation (6) and let there exist a nonnegative constant α such that along with (8) and (11), the conditions

$$
\begin{equation*}
\int_{a}^{b}(t-a)^{-\alpha} g_{i}(t) d t<+\infty \quad(i=1, \ldots, n) \tag{15}
\end{equation*}
$$

are satisfied. Then problem (1), (2) is uniquely solvable and its solution satisfies inequalities (13).
As an example, consider the differential equations

$$
\begin{align*}
& u^{(n)}=\sum_{i=1}^{n} g_{i}(t)\left|u^{(i-1)}\right|^{\lambda_{i}} \tag{16}\\
& u^{(n)}=\sum_{i=1}^{n} g_{i}(t)\left|u^{(i-1)}\right|^{\lambda_{i}}+g(t), \tag{17}\\
& u^{(n)}=\sum_{i=1}^{n} g_{i}(t) \omega\left(\left|u^{(i-1)}\right|\right) \tag{18}\\
& u^{(n)}=\sum_{i=1}^{n} g_{i}(t) \omega\left(\left|u^{(i-1)}\right|\right)+g(t), \tag{19}
\end{align*}
$$

where $\left.\lambda_{i} \in\right] 0,1\left[(i=1, \ldots, n)\right.$, while $g_{i}:[a, b] \rightarrow \mathbb{R}_{+}(i=1, \ldots, n), g:[a, b] \rightarrow \mathbb{R}_{+}$are continuous functions.

From Corollaries 1 and 2 it follows
Corollary 4. Let conditions (9) and (11) hold, where α is a nonnegative constant satisfying inequality (14). Then problem (16), (2) has a continuum of solutions, while problem (17), (2) has a unique solution.

From Corollaries 1 and 3 follows
Corollary 5. Let conditions (9), (11) and (15) hold, where α is a nonnegative constant. Then problem (18), (2) has a continuum of solutions, while problem (19), (2) is uniquelly solvable.

Therefore, a multivalued solvable initial value problem can be made uniquely solvable by using an arbitrarily small perturbation of the equation under consideration.

References

[1] R. P. Agarwal and D. O'Regan, An Introduction to Ordinary Differential Equations. Universitext. Springer, New York, 2008.
[2] R. P. Agarwal and D. O'Regan, Ordinary and Partial Differential Equations. With Special Functions, Fourier Series, and Boundary Value Problems. Universitext. Springer, New York, 2009.
[3] C. Chicone, Ordinary Differential Equations with Applications. Second edition. Texts in Applied Mathematics, 34. Springer, New York, 2006.
[4] P. Hartman, Ordinary Differential Equations. John Wiley \& Sons, Inc., New York-LondonSydney, 1964.
[5] W. Walter, Differential and Integral Inequalities. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 55 Springer-Verlag, New York-Berlin, 1970.

