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1. Formulation of the main results

Let us consider the differential system
dx;(1)
dt

where the functions f;:R X R" — R (i=1,...,n) satisfy the local Carathéodory condi-
tions and are periodic with respect to the first argument with period >0, i.e., the
equality

fi(t+ o,x1,...,x) = fi(t,x1,...,x,) (i=1,...,n) (1.2)

holds for almost all # € R and all (x;)!_; €R"; 14 :R— R (i,k=1,...,n) are measurable
functions such that

fi(t,xl(‘cil(t))""axn(rin(t))) (izla"'an)’ (11)

[ti(t + @) — Tip(D)]/0 (,k=1,...,n) are integer numbers (1.3)

for almost all 7 € R.

The problem on w-periodic solutions of systems of form (1.1) was investigated
by many authors (see, for instance, [1-23] and the references cited therein). In this
paper, new and optimal in a certain sense conditions of the existence, nonexistence and
uniqueness of an w-periodic solution of the above-mentioned system are established
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using the improved method of a priori estimation of periodic solutions of systems of
one-sided functional-differential inequalities proposed in [4, 9].

Before starting the formulation of the main results, we introduce the notation which
will be used throughout the paper. R is the set of real numbers; R” is an n-dimensional
real Euclidean space; x =(x;)!_; is an n-dimensional column-vector with components
Xleees Xy X = (X0 )] = is an n X n matrix with components x;; (i,k=1,...,n) and the
norm

=3 beal:

i,k=1

and (X ) is the spectral radius of the n x n matrix X.
If p:[0,w] — R is a summable function and j(’)w p(E)dE#£0, then

) —1
A(p)=[1— d ,
(») [ exp( /0 () «:)}
g(p)(t,S)=|A(p)|eXp</ p(é)dé) for0<s <t (1.4)

g(p)(t,s)=|A(p) — 1|exp(/ p(é)dé) for t<s < .

If ie{l,...,n}, then

Li={te[0,w]: t()#1}; (1.5)
vix(2) is the integer part of 7;(¢)/w, r?k(t):‘c,-k(t) — vir(t)w; (1.6)
S @6p1s-espn)

= max{| fi(t,x1,...,x)|: [x1] < p1,.-e, x| < o0} (1.7)

Theorem 1.1. Let for each i € {1,...,n} the condition

Sitxi,- o) sgn (o0x5) < piOal + > pu)|xe] + q(t) (1.8)
k=1

hold on the set [0,w] X R", and the conditions

0]
/ |pis)| ds| < pi),
t

3(t)
/ |G, |xil,- -y Xl ds
t

=P AGIEARI (1.9)
k=1

|fi(t, X1,y Xy ooy X)) — [l X1y X X)) < Li(8) | — X (1.10)
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hold on the set I; x R". Here p; :[0,w]— R, pi, q, and [;:[0,w] — [0, +o00[(i,k =1,
...,n) are summable functions, pj :[0,w]—[0,4+00[ (i,k=1,...,n) are essentially
bounded functions, o; € {—1,1}, and q* is a nonnegative number. Moreover, let

/wpi(t)dt<0 (i=1,...,n) (L.11)

0

and there exist a constant nonnegative matrix A = (ay)!,_, such that r(4)<1 and

| e st + 15 pi(s)ds
<ayp for0<t<ow (iLk=1,...,n). (1.12)
Then system (1.1) has at least one w-periodic solution.
Remark 1.1. If pi(t)<0 for 0<t<w and [ pi(t)dt<0 (i=1,...,n), then by

Eq. (1.4) we have fow g(o; p)(,8)| pi(s)|ds=1 (i=1,...,n). Now for condition (1.12)
to be fulfilled it is sufficient that the inequalities

pi() + L) pi(t) < aw|pi(t)| (G.k=1,...,n)

hold almost everywhere on [0, w].

Remark 1.2. 17 is easy to show that the nonnegative matrix A =(ax)},_, satisfies the
condition r(A) <1 iff and only iff when the real parts of the eigenvalues of the matrix
(air — 51‘/{)2 w—1> Where oy is the Kronecker symbol, are negative (see, for instance,
[11, Lemma 6.7]).

If 7;;(¢)=t, then [;=0 and conditions (1.9) and (1.10) in Theorem 1.1 become
unnecessary. Therefore, this theorem immediately implies

Corollary 1.1. Let t,;(1)=¢t (i=1,...,n) and for each i €{1,...,n} on the set [0, ] x
R" the condition (1.8) be fulfilled, where p;:[0,w]— R, pu,q : [0,w]— [0,+o0[ are
summable functions, o; € {—1,1}. Moreover, let inequalities (1.11) be fulfilled and
there exist a constant non-negative matrix A= (aj )} ;_, such that r(4)<1 and

/ g(oipi)(t,s)pu(s)ds <ay  for0<t<w (i,k=1,...,n). (1.13)
0
Then system (1.1) has at least one w-periodic solution.

Theorem 1.2. Let t;(t)=t (i=1,...,n) and for each i € {1,...,n} on the set [0,w] x
R" the conditions

O—Oiﬁ(taxla“‘axn) S fOi(t7x17°--7xl’l)xi - li(t)zaik‘xk‘ - ql(t)a (114)

k=1

| foi(t,x1, .. ,x)| < 1i(2) (1.15)
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be fulfilled, where fo;:[0,w] x R" — R is the function satisfying the local Carathéodory
conditions, I; and ¢q; :[0,w] — [0, +oo[ are summable functions different from zero on
sets of positive measure, oo € {—1,1}, and A :(a,»k);”k:1 is a nonnegative constant
matrix such that r(4) > 1. Then system (1.1) has no w-periodic solution.

Corollary 1.2. Let t;;(t)=t (i=1,...,n) and for eachi € {1,...,n} on the set [0,w]x
R" the inequality

— qoi(t) < o0 fi(tX1se X)) + ouli(Ox; + ()Y awlxi] < —qit) (1.16)
k=1

hold, where I;, q; and qg;:[0,w]— [0,+00[ are summable functions different from
zero on the sets of positive measure, oy;, 01; €{—1,1}, and A =(a )=y is a con-
stant nonnegative matrix. Then for system (1.1) to have an w-periodic solution it is
necessary and sufficient that r(4)<1.

Theorem 1.3. Let for almost all t €[0,w] the functions fi(t,,...,-):R"—=R (i=1,
...,n) have continuous partial derivatives with respect to the last n arguments and
Sfor each i€ {1,...,n} on the set [0,w] x R" the inequalities

(1) Ofitx1s- %)

< =1,... ,
ox,; o <Iy(t) (k=1,...,n) (1.17)

S pi(t)a ‘

hold, where p;:[0,w]— R and [ :[0,w] — [0, +oo[ are summable functions and o; €
{—1,1}. Moreover, let inequalities (1.11) be fulfilled and there exist a constant non-
negative matrix A= (ay)},_, such that r(4)<1 and

] ds

0(s)
/ 1(&)dé

<ayp for0<t<ow (iL,k=1,...,n). (1.18)

/0 9(0: p)(6:5) [(1 — Su)la(s) + Tus)

Then system (1.1) has one and only one w-periodic solution.

Theorem 1.3'. Let 1;(¢)=t(i=1,...,n) and for each i € {1,...,n} on the set [0,w] x
R" the condition

[fi(t,x1, ... x0) = fit, X1, ... X)) sgn (0i(x; — X))

< pi)0i = %) + Y pu(0) i — % | (1.19)
k=1

hold, where p;:[0,w]— R and py :[0,w]—[0,+o0[ are summable functions and
o, €{—1,1}. Moreover, let inequalities (1.11) and (1.13) be fulfilled, where A=
(ai)!,_, is a constant nonnegative matrix such that r(4)<1. Then system (1.1)
has one and only one w-periodic solution.
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2. Auxiliary propositions

By conditions (1.3) and (1.6) the problem on w-periodic solutions of system (1.1)
is equivalent to the periodic boundary value problem

v .
O fen@O) o @O) (=1, 1)

xi(0)=x;(0) (i=1,...,n), (2.2)

i.e., if system (1.1) has an w-periodic solution, then its restriction on [0, ®] is a solution
of problem (2.1), (2.2), and vice versa if problem (2.1), (2.2) is solvable, then the
periodic extension on R of its arbitrary solution is an w-periodic solution of system
(L.1). This fact and the principle of a priori boundedness proved in [14] readily imply
Lemma 2.1 on the existence of an w-periodic solution of system (1.1).

In this section, along with problem (2.1), (2.2) we shall also consider the system of
functional-differential inequalities

[xi(8) = hi()xi(1)] sgn (oix:(1)) < Zhik(f)”xk”c +ho(t) (i=1,....n) (2.3)
k=1

with boundary conditions (2.2), where A; : [0,w] — R, hy and Ay :[0,w] — [0, +oo[
(i,k=1,...,n) are summable functions, ¢; € {—1,1} and

[lxelle = max{|xi()]: 0 <t < w}.

By a solution of system (2.3) we shall understand an absolutely continuous vector
function (x;)!_; : [0, w] — R" which satisfies this system almost everywhere on [0, ®].
A solution of system (2.3) satisfying the boundary conditions (2.2) will be called a
solution of problem (2.3), (2.2).

Lemma 2.2 proved in this section contains the conditions of a priori boundedness
of solutions of problem (2.3), (2.2).

Lemma 2.1. Let there exist summable functions h;:[0,w]—R (i=1,...,n) and a
positive number p such that

/ hi(t)dt£0 (i=1,...,n) 2.4)
0
and for any A€ 10,1[ an arbitrary solution (x;)!_, of the differential system
dx;(t) 0 0 .
P (1 = Dhi(O)xi(8) + 2fi(t,x1(771(2)), - o xn(75,(2)))  (i=1,...,n)  (2.5)

satisfying the boundary conditions (2.2), admits the estimate
> lxille <p. (2.6)
i=1

Then system (1.1) has at least one w-periodic solution.
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Proof. By condition (2.4) the differential system

dx;(7)
dt

with boundary conditions (2.2) has only the trivial solution. Hence Corollary 2 from
[14] implies that under the conditions of Lemma 2.1 problem (2.1), (2.2) is solvable.
But, as mentioned above, the solvability of problem (2.1), (2.2) guarantees the existence
of an w-periodic solution of system (1.1). [J

=h(O)xi(t) (i=1,...,n)

Lemma 2.2. Let

)
ai/ hi(t)dt<0 (i=1,...,n) (2.7)
0
and there exist a constant nonnegative matrix A= (ay)},_, such that r(4)<1 and
w
/ gh)(t,sHhp(s)ds < ay for0<t<w (Lk=1,...,n). (2.8)
0
Then any solution (x;)!_, of problem (2.3), (2.2) admits the estimate
n w
S lle < po / ho(t) dt, (29)
i=1 0
where
po=|I(E—4)7" Z sup{g(h;)(ts): 0 <t s < w} (2.10)

i=1

and E is the unit matrix.

Proof. Let (x;)_, be some solution of problem (2.3), (2.2). Assume that

i) =), hoi()=yi(t) — hi(O)yi(t) (=1,....n).

Then for each i € {1,...,n} the function y; is a solution of the boundary value problem
dy;(¢t
O b0+ b0, ()= 20),
and the function Ay, satisfies the inequality
oihoi(t) <> (1) yelle + ho(t) (2.11)
k=1

almost everywhere on [0, »].
On the other hand, by condition (2.7) the homogeneous problem

d’(‘i(;) — h(Ou(),  u(w)=u(0) (2.12)




I Kiguradze, B. PiiZa | Nonlinear Analysis 42 (2000) 229-242 235

has only the trivial solution. Denoting its Green function by g;, we have

(1) = /0 0i(t,5)hoi(s) ds. 2.13)

By conditions (1.4) and (2.7)
0:9i(t,s)=g(h;)(t,s)>0 for 0<s,t<w (i=1,...,n).

Taking into account this and inequality (2.11), from (2.13) we obtain the inequality

J’i(f)<2{/ gChi)(t,s)hu(s)ds | [|yellc
k=1 170

+/ g(hi)(t,s)ho(s)ds for 0 <t<w (i=1,...,n)
0

which by virtue of condition (2.8) and nonnegative functions y; implies

HylHCSZalk”ka—i_rll (izl,...,l’l),

k=1
ie.,
(E = A)yille)zy < m, (2.14)
where
n; =sup{g(h;)(t,s): 0 < t,s < w}/ ho(s)ds, n=(5)i,. (2.15)
0

By the nonnegativity of the matrix 4 and the inequalities 7(4) <1, the matrix £ — 4
has the nonnegative inverse (E — A)~!. Therefore (2.14) implies

(il )y < (E—A4) "'y

Hence by equalities (2.15) we obtain estimate (2.9), where py is the number given by
equality (2.10). O
3. Proofs of the main results
Proof of Theorem 1.1. Set
ho(t)=q(t) + " _ 1i(t),  hi(t)= 01 pi(0),

i=1
hi(t) = pu(t) + Li(O pp(t)  (Lk=1,....n).

Then inequalities (2.7) and (2.8) are fulfilled by virtue of conditions (1.11) and (1.12).

(3.1)
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Let py be the number given by equality (2.10) and

p=po /0 o) d. (3.2)

By Lemma 2.1, to prove the theorem it is sufficient to establish that every solution of
problem (2.5), (2.2) for any A€ ]0,1[ admits estimate (2.6).
Let (x;)!_, be a solution of problem (2.5), (2.2) for some A€ ]0,1[. Then

dx;(2)

a0 Dh(xi) + A x1 (T, (0), - (T (1))

+A0;(t) (i=1,...,n), (3.3)
where

Si(t) = fit,x1 (T (1)), Xi(TH())s o, xa(T0(2)))
— Fit,x1 (T (), xi (), X (D))

Let i€ {l,...,n} be fixed arbitrarily. If ¢ € [;, then by conditions (1.9), (1.10) and

(2.5) we have
(1)
/ x;(s)ds
t

(1)
/ [(1 = ) pils)xi(s) + ALi(s,x1(TH () - ., xi(To,(5)))] ds

0(t)
/ |pi(s)] ds
t

[0:(0)] < Li(O)lei(i(1)) — xi(0)] = Li(t)

= 1i(t)

[lxillc

< 1i(1) [(1 —4)

(1)
+ 4 S lxlles - llxallc) ds

t

|

< 1(t) [(1 ~ DO xille + 4 phOllulle + ¢
k=1

< 1(0) [Zp;;mnxkncw* . (3.4)

k=1

If t € [0,w]\[;, then 0;(¢) =0. Therefore inequality (3.4) holds throughout [0, ®].
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Taking into account conditions (1.8), (3.1) and (3.4), we find from system (3.3)
[x/(1) — hi()xi(t)] sgn(oixi(£)) = = Api(D)|xi(0)] + A fi(t,x1(Th (1), ..,
X Xi(1), -, x,(1(1)))sgn(axi(1))
+ A40;(¢)sgn(o:x;(1))
<A + 4> (1= 85) pu ()i (g (1))
k=1

+q(t) + Ali(2) [Z P llxellc + ¢

k=1

< Ipa0) + L) pi(O] il + q(0) + g 1i(t)
k=1

< Z hie ()| x|l c + ho(2).
=1

Thus we have proved that (x;)!_, is a solution of problem (2.3),(2.2). On the other
hand, since all conditions of Lemma 2.2 are fulfilled for this problem, estimate (2.6)
is valid, where p is the number given by equalities (2.10) and (3.2). [

Proof of Theorem 1.2. By the constraints imposed on the functions /; and ¢; (i=1,
...,n) and notation (1.4)

/w li(s)ds >0 (i=1,...,n), (3.5)
0

w
/ qi(s)ds >0 (i=1,...,n) (3.6)
0
and there exists 0 >0 such that
g(li)(t,s) >0, g(—=l)(t,s)>d for 0<ts<w (i=1,...,n). (3.7)

Assume now that the theorem is not true and system (1.1) has an w-periodic solution
(x:)7_. Set

hi(t) = a0 foi(t,x1 (T (1)), - Xa(T5(1))),  hoi(1) = X[(2) — hi(1)xi(0),
w; =min{|x;(¢)]: 0 < ¢t < w}.

Then for each i € {1,...,n} the restriction of x; on [0, ®] is a solution of the boundary
value problem
dx;(¢)
de

= hi(O)xi(1) + hoi(1),  xi(@) = x,(0). (3.8)
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On the other hand, by the virtue of conditions (1.14) and (1.15) the inequalities

— oothoi(1) > 1i(1) Y awpe + qi(t), (3.9)
k=1

|hi(0)] < 1) (3.10)

are fulfilled almost everywhere on [0, w].
According to equalities (3.8)

x;(0) = exp </0w hi(s) ds> x;(0) + /Ow exp </w hi(é)dé> hoi(s) ds.

Hence, with inequalities (3.6) and (3.9) taken into account, we find

Ooi {exp (/Ow h,(s)ds) — 1] x;(0) > /Ow exp (/w hi(f)dﬁ) qi(s)ds > 0.

Therefore,

/w hi(s)ds # 0
0

and thus the homogeneous problem (2.12) has only the trivial solution.
Let g; be the Green function of problem (2.12) and the number ;€ {—1,1} be
such that

i hi(s)d 0. 3.11
o /0 (5)ds > G.11)
Then
gi(t,s)= — aig(h; )(1,5)
and
xi(t)=— o; /w g(hi)(t,s)ho;(s)ds. (3.12)
0

On the other hand, by conditions (3.5), (3.10) and (3.11)
g(hi)(tys) Z g(aili)(tzs) for 0 S t,s S .

Taking into account this inequality and inequalities (3.7) and (3.9), we find from
equality (3.12)

10) n n
|x: ()] > [/ g(a,-l,—)(t,s)l,—(s)ds} Za,—kuk +n= Za,-kuk +n for 0<t <o,
0 k=1 k=1

where

nizé/ qi(s)ds > 0.
0
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Therefore,
ﬂizzaikﬂk“"”li (izla"'an)a
k=1
ie.,
w=Ap+n,
where u=(w;)i_;, 1=,
The last inequality implies
k
w> (Y 4 |n (k=0.12,..)
j=0

and

Vo= Z&, o =min{ny,.... 7. }.

1 Mo

i=

Therefore,

k—+o00

k
lim ZAf < + 0.
j=0

But this is impossible, since 7(4)>1. The obtained contradiction proves the
theorem. [

Proof of Corollary 1.2. Condition (1.16) implies, on the one hand, inequality (1.8)
and, on the other, inequalities (1.14) and (1.15), where ¢; = 6¢;01;,

pit)=—1i(t), pa(t)=apli(t), q(t)=max{qi(t),....qu(t),qy(1),...,q, ()},
Soi(t.xt,...,x,) = — o1 Li(t).

Hence by Corollary 1.1 and Remark 1.1 (by Theorem 1.2) it follows that if #(4) < 1
(if 7(4) > 1), then system (1.1) has at least one m-periodic solution (has no w-periodic
solution). [J
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Proof of Theorem 1.3. For arbitrary i and k € {1,...,n} we introduce the functions

aﬁ(t,X],. . -7xl’l)

ﬁk(taxla"'axn): a
Xk

>

1
Qitt(6, X1,y Xy X1y X)) = / St sxp + (1 —8)x1,...,8%, + (1 —s)x,)ds.
0

Then for each i € {1,...,n} we shall have

filtxt, X)) = fi(t,0,..,0) + Y @ultx1, ..., %0, 00 (3.13)
k=1

and
fi(t,x1, . x0) — filt, X1,...,%,)
n

=D @t X1s e X Fr, B )k — B (3.14)
k=1

On the other hand, according to condition (1.17) the inequalities
O-iq)ii(t:xla . ',xnaila . 'ain) g pl(t)y
|(pik(ta-xl’"'7xn7-fl""a-fn)‘ S llk(t) (Zakzlsvn) (315)

hold on the set [0, ] x R*". Moreover, it can be assumed without loss of generality
that

| pi(0)| < La(2). (3.16)
Conditions (3.13)—(3.16) immediately imply conditions (1.8)—(1.10), where

)
pi(t)=(1 = 0u)lu(t), 1i(t)=1(2), P}Z(t)|/ li(s)ds| (k=1,...,n),

q(t) =max{|f1(40,...,0)|,...,| f2(20,...,0)|}, q*:/o q(s)ds.

By condition (1.18) for such py, pj and [; (i,k=1,...,n) inequalities (1.12) hold
and besides r(4)<1. Therefore, all conditions of Theorem 1.1 are fulfilled, which
guarantees that system (1.1) has at least one w-periodic solution.

To complete the proof, it remains for us to show that system (1.1) has at most one
w-periodic solution.

Let (x;)!_, and (X)!_, be two arbitrary w-periodic solutions of system (1.1). We set

yi(t)zx,-(t) —)Ei(t) (ZZ 1,...,7’[),

Yir(1) = Qa1 21(T (1)), s Xa( T () F1 (T (1)) Fu( T, (1))). (3.17)
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Then
dyl(t)

Z Vi (Oye(Tg(0),  yi(@)=yi(0) (=1,....n)

and therefore,

dy,(t)

= () yi(1) + Z (1 = Su Wik () yu (T (1))

r(t)
+¢”(r)z | memends =1

Hence by conditions (3.15)—(3.17) it follows that the restriction of (y;)7_, on [0, ®]
is a solution of the system of functional-differential inequalities

[V/(t) — hi(O)yi(O] sgn(oryi() < D ha(®l|yillc  G=1,....n) (3.18)

k=1

under the periodic boundary conditions, where

(1)
hi(t)=o:pi(t),  hu(t) =1 — Su)lu(t) + 1i(t) / li(s)ds| .
t
But by inequalities (1.18) the functions 4; and hy (i,k=1,...,n) satisfy condition
(2.8). Since, in addition, we have r(4)<1, Lemma 2.2 implies y;(¢) =0 (i=1,...,n).
Therefore x;(¢) = x;(t) (i=1,...,n). [

Proof of Theorem 1.3'. Note first that condition (1.19) implies condition (1.8), where
q(t) =max{|f1(£,0,...,0)|,...,| fn(£,0,...,0)|}.

Therefore all conditions of Corollary 1.1 are fulfilled, which guarantees that system
(1.1) has at least one w-periodic solution.

Let us now prove the uniqueness. Let (x;)’_, and (X;)!_, be arbitrary w-periodic
solutions of system (1.1) and y;(¢)=x;(t) — x;(¢) (i=1,...,n). Then by condition
(1.19) the restriction of (y;)’_, on [0,w] is a solution of system (3.18) under the
periodic boundary conditions, where

hi(t)=0;pi(t), hy(t)= pu(t)

with h; and hy (i,k=1,...,n) satisfying the conditions of Lemma 2.2. Therefore
yi()=0(3G=1,...,n), e, x;(t) =%(¢t) (i=1,...,n). O
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