FREE RESOLUTIONS FOR DIFFERENTIAL MODULES OVER DIFFERENTIAL ALGEBRAS

Abstract

T. Kadeishvili and P. Real

Abstract. A free resolution $(R, d+h) \rightarrow(M, d)$ for a $D G$-module (M, d) over a $D G$-algebra (A, d) is constructed in the sense of a perturbation of the differential in a free bigraded resolution $(R, d) \rightarrow M$ of the underlying graded module M over an underlying graded algebra A.

CONTENTS

\qquad

1. Free Resolution for a Graded Module over a Graded Algebra 4
1.1. Minimal resolution 7
1.2. Bar resolution 10
2. Free Resolution for a $D G$-Module Over a $D G$-Algebra 10
2.1. Comparison theorem 16
2.2. Equivalence of perturbations 17
3. Application: Koszul Resolution 19
References 22

Introduction

To obtain a differential homological algebra, i.e., to construct a free resolution for a differential graded $(D G)$ module $\left(M, d_{M}\right)$ over a $D G$-algebra $\left(A, d_{A}\right)$, the bar resolution

$$
\alpha:\left(A \otimes \bar{B}(A) \otimes M, d_{H}\right) \longrightarrow M
$$

of the underlying graded module M over the underlying graded algebra A is usually taken, first with the horizontal differential

$$
d_{H}\left(a\left[a_{1}|\cdots| a_{n}\right] m\right)=a \cdot a_{1}\left[a_{2}|\cdots| a_{n}\right]+\sum_{k} \pm a\left[a_{1}|\cdots| a_{k} \cdot a_{k+1}|\cdots| a_{n}\right] m \pm a\left[a_{1}|\cdots| a_{n-1}\right] a_{n} \cdot m
$$

Translated from Sovremennaya Matematika i Ee Prilozheniya (Contemporary Mathematics and Its Applications), Vol. 43, Topology and Its Applications, 2006.

Then the differentials d_{A} and d_{M} automatically induce a suitable perturbation of d_{H} - the vertical differential

$$
d_{V}\left(a\left[a_{1}|\cdots| a_{n}\right] m\right)=d_{A} a_{1}\left[a_{1}|\cdots| a_{n}\right]+\sum_{k} \pm a\left[a_{1}|\cdots| d_{A} a_{k}|\cdots| a_{n}\right] m \pm a\left[a_{1}|\cdots| a_{n}\right] d_{M} m
$$

so that

$$
\alpha:\left(A \otimes \bar{B}(A) \otimes M, d_{H}+d_{V}\right) \longrightarrow\left(M, d_{M}\right)
$$

is a resolution of $\left(M, d_{M}\right)$ over $\left(A, d_{A}\right)$. This happens since the bar resolution is too large and functorial in a certain sense, which implies that d_{A} and d_{M} induce a perturbation $h=d_{V}$, which, in general, is not a case for smaller resolutions.

In this paper, we present the method of constructing the resolutions of differential graded $(D G)$-modules over $D G$-algebras.

We are doing it in the spirit of Gugenheim at al. [3, 4] that differential homological algebra is obtained from homological algebra by perturbing bigraded objects to graded filtered objects (citation from [5]).

Namely, to construct a free resolution of a $D G$-module $\left(M, d_{M}\right)$ over a $D G$-algebra $\left(A, d_{A}\right)$, we, forgetting for a moment about the differentials d_{A} and d_{M}, begin with a free bigraded resolution of M over A:

$$
\begin{align*}
& M_{2} \stackrel{\alpha}{\longleftarrow} R_{2,0} \stackrel{d}{\longleftarrow} R_{2,1} \longleftarrow \cdots \\
& M_{1} \longleftarrow \alpha \tag{0.1}\\
& M_{0} \longleftarrow R_{1,0} \longleftarrow{ }^{\alpha} \longleftarrow R_{1,1} \longleftarrow \\
& \cdots
\end{align*}
$$

where each column $R_{*, q}$ is a free A-module, i.e., $R_{*, q}=A \otimes V_{*, q}$ for a certain free graded Λ-module $V_{*, q}$, $d d=0, \alpha d=0$, and each row is acyclic. In this case, the total complex $\left(R_{n}, d\right), R_{n}=\sum_{p+q=n} R_{p, q}$, of the bigraded complex $\left\{R_{p, q}, d\right\}$, together with α, is a free A-resolution of M. There is a large source of such resolutions, starting from minimal (which exists under some conditions on A) till, say, maximal in some sense, bar resolution $A \otimes \bar{B}(A) \otimes M$.

Now we assume that A and M are equipped with differentials d_{A} and d_{M}, respectively. The main result of our paper is the following theorem.

Theorem 1. There exists a perturbed differential $(d+h)$ on $R_{*, *}$ such that the perturbation $h: R_{*} \rightarrow R_{*-1}$ consists of components

$$
h_{p, q}^{k}: R_{p, q} \longrightarrow R_{p-k, q+k-1}, \quad p, q=0,1,2, \ldots ; \quad k=1,2, \ldots, p
$$

so that the same α forms a free resolution of $\left(M, d_{M}\right)$ over $\left(A, d_{A}\right)$, i.e.,

$$
\alpha:\left(R_{*}, d+h\right) \longrightarrow\left(M, d_{M}\right)
$$

is a weak equivalence of $D G-\left(A, d_{A}\right)$-modules.
Here we note that the perturbation h is not uniquely defined. We describe the freedom in the construction of h and prove the suitable comparison theorem.

In the case where the ground ring Λ is a field, the bigraded resolution (0.1) is not only acyclic, but also contractible: there exist Λ-homomorphisms

$$
\beta_{*}: M_{*} \longrightarrow R_{*, 0}, \quad s_{p, *}: R_{p, *} \longrightarrow R_{p, *+1}, \quad p=0,1, \ldots,
$$

such that

$$
\alpha \beta=\operatorname{id}_{M}, \quad \beta \alpha+d s=\operatorname{id}_{R_{*, 0}}, \quad s d+d s=\mathrm{id} .
$$

This actually means that we have a contraction

$$
\left(M, \beta, \alpha,\left(R_{*}, d\right), s\right)
$$

where d and α preserve the action of A, but β and s are just Λ-mappings. In this case, it is possible to present explicit formulas for h in terms of the above contraction.

As is seen from the theorem, the perturbation h consists of vertical $h_{p, q}^{1}$ down and right $h_{p, q}^{k>1}$ components. In the bar resolution the perturbation $h=d_{V}$ has only a vertical component h^{1}. The following simple example shows the necessity of these down and right components in the general case.

Example 1. Let $\Lambda=Z, A=Z$ (nongraded and nondifferential) and

$$
\left(M, d_{M}\right)=\left(Z_{2} \stackrel{d_{M}^{\prime}}{\longleftarrow} Z_{4} \stackrel{d_{M}^{\prime \prime}}{\longleftarrow} Z_{2} \stackrel{0}{\longleftarrow} 0 \longleftarrow \cdots\right)
$$

with nontrivial d_{M}^{\prime} and $d_{M}^{\prime \prime}$. Take the following bigraded resolution of M over $A=Z$:

$$
\begin{align*}
& M_{2}=Z_{2} \stackrel{\alpha_{2}}{\longleftarrow} R_{2,0}=Z \stackrel{d_{2}}{\longleftarrow} R_{2,1}=Z \longleftarrow 0 \longleftarrow \\
& M_{1}=Z_{4} \stackrel{\alpha_{1}}{\longleftarrow} R_{1,0}=Z \longleftarrow d_{1} \tag{0.2}\\
& M_{0}=Z_{2} \stackrel{\alpha_{0}}{\longleftarrow} R_{1,1}=Z \longleftarrow Z \longleftarrow d_{0,0}=Z \longleftarrow d_{0,1}=Z \longleftarrow 0 \\
& \cdots
\end{align*},
$$

where $d_{0}(x)=2 x, d_{1}(x)=4 x$, and $d_{2}(x)=2 x$. Taking into account the differential d_{M} we can construct (not canonically) vertical components of the perturbation h

$$
\begin{array}{ll}
h_{1,0}^{1}: R_{1,0}=Z \longrightarrow R_{0,0}=Z ; & h_{2,0}^{1}: R_{2,0}=Z \longrightarrow R_{1,0}=Z \\
h_{1,1}^{1}: R_{1,1}=Z \longrightarrow R_{0,1}=Z ; & h_{2,1}^{1}: R_{2,1}=Z \longrightarrow R_{1,1}=Z
\end{array}
$$

satisfying

$$
d_{M}^{\prime} \alpha_{1}=\alpha_{0} h_{1,0}^{1}, \quad d_{M}^{\prime \prime} \alpha_{2}=\alpha_{1} h_{2,0}^{1}, \quad h_{1,0}^{1} d_{1}=d_{0} h_{1,1}^{1}, \quad h_{2,0}^{1} d_{2}=d_{1} h_{2,1}^{1}
$$

For example, we can take

$$
h_{1,0}^{1}(x)=x ; \quad h_{2,0}^{1}(x)=2 x ; \quad h_{1,1}^{1}(x)=2 x ; \quad h_{2,1}^{1}(x)=x .
$$

But the compositions $h_{1,0}^{1} h_{2,0}^{1}$ and $h_{1,1}^{1} h_{2,1}^{1}$ cannot be trivial and, therefore, $(d+h): R_{*} \rightarrow R_{*}$ is not a differential. To correct this, we have to take one more component $h_{2,0}^{2}: R_{2,0}=Z \rightarrow R_{0,1}=Z$, $h_{2,0}^{2}(x)=x$. Then $(d+h)(d+h)=0$ is guaranteed and $(R, d+h) \rightarrow\left(M, d_{M}\right)$ is a chain mapping inducing an isomorphism in the homology.

The method of constructing of resolutions for differential modules described above differs from another method passing trough the homology used for the construction of free resolutions for $D G-\Lambda$-modules by Berikashvili in [1] and for constructing free models for commutative $D G$-algebras by Halperin and Stasheff in [5]. To obtain a free resolution (model) for a differential object (M, d), they first take a free bigraded resolution $\alpha:(R, d) \rightarrow H(M)$ of a nondifferential object $H(M)$ and, perturbing the differential d, obtain a free resolution $\alpha^{\prime}:(R, d+h) \rightarrow(M, d)$.

Unfortunately, this method - passing trough the homology - is not effective in the case of our interest (to construct a free resolution for the $D G$-module $\left(M, d_{M}\right)$ over a $D G$-algebra $\left(A, d_{A}\right)$): in general, the homology $H(M)$ is not an A-module.

Our approach is inspired by the approach of Huebschmann from [7], where a small resolution of a finite metacyclic group is constructed, and by blowing-up perturbation lemma from [8], where a small model for a $D G$-algebra is constructed. This lemma allows to transport perturbations from a smaller object to a bigger one (from M to (R, d) in our case), in contrast to the basic perturbation lemma.

In Sec. 1, bigraded resolutions in the nondifferential situation, for a graded module over a graded algebra, are presented. In Sec. 2, the perturbation h is constructed, which gives a resolution for a differential graded module over a differential graded algebra. The suitable comparison theorem is proved, and the freedom in the construction of h is studied. In the final section, we consider Koszul resolutions.

1. Free Resolution for a Graded Module over a Graded Algebra

In this section, we prepare the ground for the next: construct a bigraded resolution for a graded module over a graded algebra. This material is quite standard.

Let $A=\left\{A_{n \geq 0}\right\}$ be a graded algebra with unit and $M=\left\{M_{n \geq 0}\right\}$ be a graded A-module, i.e., the following structure mappings are given:

$$
\begin{gathered}
\mu: A_{p} \otimes A_{q} \longrightarrow A_{p+q}, \quad a \otimes a^{\prime} \longrightarrow a \cdot a^{\prime} \\
\nu: A_{p} \otimes M_{q} \longrightarrow M_{p+q}, \quad a \otimes m \longrightarrow a \cdot m,
\end{gathered}
$$

satisfying the standard conditions

$$
a \cdot\left(a^{\prime} \cdot a^{\prime \prime}\right)=\left(a \cdot a^{\prime}\right) \cdot a^{\prime \prime}, \quad a \cdot\left(a^{\prime} \cdot m\right)=\left(a \cdot a^{\prime}\right) \cdot m, \quad 1_{A} \cdot m=m
$$

A free graded A-module over a free graded Λ-module $V=\left\{V_{n}\right\}$ is just the tensor product $A \otimes V$, it has the standard universal property (see, e.g., [10, VI, 8.2]): for a graded A-module M and a morphism of graded Λ-modules $\psi: V \rightarrow M$ there exists a unique morphism of graded A-modules $f_{\psi}: A \otimes V \rightarrow M$ such that $f_{\psi}(1 \otimes v)=\psi(v)$. In fact, $f_{\psi}=\nu(\operatorname{id} \otimes \psi)$.

A differential graded A-module ($D G-A$-module) is a graded A-module M equipped with a differential $d_{M}: M_{*} \rightarrow M_{*-1}$, satisfying $d_{M} d_{M}=0$, which is, in addition, a derivation, i.e., $d_{M}(a \cdot m)=(-1)^{\text {dima }} a$. $d_{M}(m)$.

A free resolution (or resolution) of a graded A-module M (a free A-resolution of M) is defined as a $D G-A$-module (R, d), whose underlying graded A-module R is free, together with a weak equivalence of $D G-A$-modules $(R, d) \rightarrow\left(M, d_{M}=0\right)$.

Below we present such a free resolution of a special type, the so-called bigraded resolution.
Under the bigraded free resolution of a graded A-module M, we mean a bigraded complex

$$
\begin{aligned}
& M_{2}{ }^{\alpha} R_{2,0} \longleftarrow{ }^{d} R_{2,1} \longleftarrow \cdots \\
& M_{1} \stackrel{\alpha}{\longleftarrow} R_{1,0} \stackrel{d}{\longleftarrow} R_{1,1} \longleftarrow \cdots \\
& M_{0} \stackrel{\alpha}{\longleftarrow} R_{0,0} \stackrel{d}{\longleftarrow} R_{0,1} \longleftarrow \cdots,
\end{aligned}
$$

where each column $R_{*, q}$ is a free A-module, $d d=0, \alpha d=0$, and each row is acyclic. In this case, we have a weak equivalence of graded A-modules $(r, d) \rightarrow\left(M, d_{M}\right)=0$, where $(R, d), R_{n}=\sum_{p+q=n} R_{p, q}$ is the the total complex of the bigraded complex $\left\{R_{p, q}, d\right\}$.

The freeness of each column $R_{*, q}$ means that it is the tensor product of A_{*} and certain free graded vector space $V_{*, q}$, and, therefore, having a bigraded free resolution, we actually have a generating bigraded free Λ-module $\left\{V_{p, q}\right\}$ and $R_{p, q}=\sum_{i=0}^{p} A_{i} \otimes V_{p-i, q}$ (actually, we have trigraded $R_{i, j, k}=A_{i} \otimes V_{j, k}$ and $\left.R_{p, q}=\sum_{i+j=p} R_{i, j, q}\right)$.

Remark 1. We emphasize here that, in general, if R is the total complex of a certain bigraded A-module $R_{p, q}$, then an arbitrary differential on R can have many components

$$
d_{p, q}^{k}: R_{p, q} \longrightarrow R_{p-k-1, q+k}, \quad k=-q,-q+1, \ldots,-1,0,1, \ldots, p-1
$$

as well as the mapping $\alpha: R \rightarrow M$ can have components $\alpha_{p, q}: R_{p, q} \rightarrow M_{p+q}$, but here, in a bigraded resolution, we have only a horizontal differential, having just components $d_{p, q}^{-1}$, and α is also horizontal, i.e., it has only the components $\alpha_{p, 0}$.

The way to construct such a resolution is standard, based on the following lemma.

Lemma 1. For a graded A-module M there exist a free graded Λ-module V and a homomorphism of graded Λ-modules $\psi: V \rightarrow M$ such that the mapping of graded A-modules $\alpha: A \otimes V \rightarrow M$ given by $\alpha(a \otimes v)=a \psi(V)$ is surjective.

Using this lemma, it is easy to construct a free bigraded A-resolution $R_{*, *}=A \otimes V_{*, *} \rightarrow M$ of M : let $V_{*, 0}$ be V from the lemma, and let $R_{p, 0}=\sum_{i+j=p} A_{i} \otimes V_{j, 0}$, then $\operatorname{Ker}\left(\alpha: R_{*, 0} \rightarrow M\right)$ is an A-module as well and using the lemma for $\operatorname{Ker} \alpha$, we obtain the surjective $d: R_{*, 1}=A \otimes V_{*, 1} \rightarrow \operatorname{Ker} \alpha$, etc.

Proof. We present two constructions for V and ψ, one very simple but large and another more complex but smaller.

Large construction. Let V be a free graded Λ-module which covers M, i.e., there exists an "onto" mapping of graded Λ-modules $\psi: V \rightarrow M$. Then $A \otimes V$ is a free graded A-module, and the graded A-module mapping $\alpha: A \otimes V \rightarrow M$ is onto.

Small construction. Now we assume that A is connected, i.e., $A_{0}=\Lambda$.
Let $Q M=M /\left(A_{>0} \cdot M\right)$ be the graded module of indecomposables of M, so that $(Q M)_{n}=$ $M_{n} /\left(\sum_{k=0}^{n-1} A_{n-k} \cdot M_{k}\right)$.

Let us take any free graded Λ-module V which covers $Q M$, i.e., there exists a surjective mapping $\phi: V \rightarrow Q M$. Because of freeness of V, we can construct $\psi: V \rightarrow M$ such that $p \psi=\phi$, where $p: M \rightarrow Q M$ is the standard projection.

It remains to show that $\alpha: A \otimes V \rightarrow M$ given by $\alpha(a \otimes v)=a \cdot \psi(v)$ is onto.
Let us denote $R=A \otimes V$, i.e., $R_{n}=\sum_{k=0}^{n} A_{n-k} \otimes V_{k}$. We are going to prove the surjectivity of $\alpha_{n}: R_{n} \rightarrow M_{n}$ by induction on n.

For $n=0$, we have: $R_{0}=V_{0},(Q M)_{0}=M_{0}$ and $\alpha_{0}=\psi_{0}=\phi_{0}$ is surjective by definition.
Now we suppose that

$$
\alpha_{k}: R_{k}=\sum_{s=0}^{k} A_{k-s} \otimes V_{s} \longrightarrow M_{k}
$$

is surjective for $k<n$. Multiplying by A_{n-k}, we obtain that

$$
\sum_{s=0}^{k} A_{n-k} \cdot A_{k-s} \otimes V_{s} \longrightarrow A_{n-k} \cdot M_{k}
$$

is also surjective and, therefore,

$$
\begin{equation*}
\sum_{s=0}^{k} A_{n-s} \otimes V_{s} \longrightarrow A_{n-k} \cdot M_{k} \tag{1.1}
\end{equation*}
$$

is also surjective.
Now we take any $m \in M_{n}$. Since

$$
\phi_{n}: V_{n} \rightarrow(Q M)_{n}=M_{n} /\left(\sum_{k=0}^{n-1} A_{n-k} \cdot M_{k}\right)
$$

is surjective, there exists $v \in V_{n}$ such that $p \psi(v)=p(m)$ and, therefore, $m-\psi(v) \in \sum_{k=0}^{n-1} A_{n-k} \cdot M_{k}$. But each $A_{n-k} \cdot M_{k}$ is covered by the image of (1.1); therefore, there exists $x \in \sum_{k=0}^{n-1} A_{n-k} \cdot M_{k}$ such that $m=\psi(v)+\alpha(x)=\alpha(v+x)$.

Both constructions allow to produce free bigraded A-resolutions for M, a large one, using the first construction on each step and a small one, using the second.

Among various free A-resolutions of M, there are two remarkable - a minimal resolution and a bar resolution which we describe now.
1.1. Minimal resolution. Here we assume that Λ is a field and A is connected. If for a graded A module M we construct the above mentioned small resolution, taking as V in Lemma 1 the graded vector space of indecomposables $Q M$ itself (and the same on all next steps), we obtain even smaller, so-called minimal resolution.

Definition 1. A $D G-A$-module (R, d) is minimal if for any $r \in R$ the value of the differential $d(r)$ is decomposable, i.e., $d(r) \in A_{>0} \cdot R$.

This is the A-module version of Sullivan's notion of minimal commutative $D G$-algebra.
Let us consider what the minimality means for free R, i.e., for $R=A \otimes V$.
First, we examine the structure of a differential $d: A \otimes V \rightarrow A \otimes V$. Because of freeness, d is defined by the restriction $\gamma=d i: V \rightarrow A \otimes V \rightarrow A \otimes V$. Moreover, any Λ-homomorphism $\gamma: V \rightarrow A \otimes V$ of degree -1 defines a derivation $d_{\gamma}=\left(\mu_{A} \otimes \mathrm{id}\right)(\mathrm{id} \otimes \gamma)$ which is a differential, i.e., $d_{\gamma} d_{\gamma}=0$ if and only if $d_{\gamma} d_{\gamma} i=0$, or

$$
\begin{equation*}
\left(\mu_{A} \otimes \mathrm{id}\right)(\mathrm{id} \otimes \gamma) \gamma=0 \tag{1.2}
\end{equation*}
$$

Because of the connectedness of A, we have

$$
A \otimes V=V \oplus A_{>0} \otimes V,
$$

and, therefore, γ is the sum of two components $\gamma=\gamma_{1}+\gamma_{2}$,

$$
\gamma_{1}: V \longrightarrow V, \quad \gamma_{2}: V \longrightarrow A_{>0} \otimes V
$$

which are called linear and quadratic parts, respectively.
It follows from (1.2) that $\gamma_{1} \gamma_{1}=0$ and, therefore, $\left(V, \gamma_{1}\right)$ is a $D G$ vector space over Λ.
Now we turn back to minimality. It is easy to observe that in terms of components, the minimality of $\left(A \otimes V, d_{\gamma}\right)$ means nothing else than $\gamma_{1}=0$.

Now we similarly examine the structure of a mapping of free graded A-modules $f: A \otimes V \rightarrow A \otimes V^{\prime}$. Because of freeness, f is determined by $\beta=f i: V \rightarrow A \otimes V^{\prime}$. Moreover, any Λ-homomorphism β : $V \rightarrow A \otimes V^{\prime}$ of degree 0 defines a mapping of graded A-modules $f_{\beta}=\left(\mu_{A} \otimes \mathrm{id}\right)(\mathrm{id} \otimes \beta)$ which is a chain mapping, i.e., $d_{\gamma^{\prime}} f_{\beta}=f_{\beta} d_{\gamma}$ if and only if $d_{\gamma^{\prime}} f_{\beta} i=f_{\beta} d_{\gamma^{\prime}} i$, or

$$
\begin{equation*}
\left(\mu_{A} \otimes \mathrm{id}\right)\left(\mathrm{id} \otimes \gamma^{\prime}\right) \beta=\left(\mu_{A} \otimes \mathrm{id}\right)(\mathrm{id} \otimes \beta) \gamma \tag{1.3}
\end{equation*}
$$

Since $A \otimes V^{\prime}=V^{\prime} \oplus A_{>0} \otimes V^{\prime}, \beta$ is the sum of two components $\beta=\beta_{1}+\beta_{2}$,

$$
\beta_{1}: V \longrightarrow V^{\prime}, \quad \beta_{2}: V \longrightarrow A_{>0} \otimes V^{\prime}
$$

the linear and quadratic parts, respectively.
It follows from (1.3) that $\gamma_{1}^{\prime} \beta_{1}=\beta_{1} \gamma_{1}$, so $\beta_{1}:\left(V, \gamma_{1}\right) \rightarrow\left(V^{\prime}, \gamma_{1}^{\prime}\right)$ is a chain mapping.
We omit the proofs of the following two standard statements.

Proposition 1. A mapping of $D G-A$-modules

$$
f_{\beta}: A \otimes V \longrightarrow A \otimes V^{\prime}
$$

is a weak equivalence if and only if the linear component

$$
\beta_{1}:\left(V, \gamma_{1}\right) \longrightarrow\left(V^{\prime}, \gamma_{1}^{\prime}\right)
$$

is a weak equivalence.
Proposition 2. A mapping of graded A-modules

$$
f_{\beta}: A \otimes V \longrightarrow A \otimes V^{\prime}
$$

is an isomorphism if and only if the linear component

$$
\beta_{1}: V \longrightarrow: V^{\prime}
$$

is an isomorphism.
Corollary 1. Any weak equivalence of minimal free $D G-A$-modules is an isomorphism.

Proof. If $f_{\beta}: A \otimes V \rightarrow A \otimes V^{\prime}$ is a weak equivalence, then, by Proposition $1, \beta_{1}:\left(V, \gamma_{1}=0\right) \rightarrow:\left(V^{\prime}, \gamma_{1}^{\prime}=0\right)$ is a weak equivalence, but since $\gamma_{1}=\gamma_{1}^{\prime}=0, \beta_{1}$ is an isomorphism and, therefore, by Proposition $2, f_{\beta}$ is also an isomorphism.

Now we can construct a minimal resolution for a graded A-module M using the small construction from the proof of Lemma 1. If Λ is a field, there is no need to pass to free graded Λ-modules $V_{*, *}$. It is possible to take $V_{n, 0}=(Q M)_{n}$ and $\psi_{n}:(Q M)_{n} \rightarrow M_{n}$ to be a section of p_{n} in the exact sequence

$$
0 \longrightarrow \sum_{k=0}^{n-1} A_{n-k} \cdot M_{k} \longrightarrow M_{n} \xrightarrow{p_{k}}(M)_{n} \longrightarrow 0
$$

so that in this case $R_{0,0}=(Q M)_{0}=M_{0}$ and

$$
R_{n, 0}=\sum_{k=0}^{n} A_{n-k} \otimes(Q M)_{k},
$$

the mapping $\alpha_{n}: R_{n, 0} \rightarrow M_{n}$ is given by

$$
\alpha_{n}\left(a_{n-k} \otimes v_{k, 0}\right)=a_{n-k} \psi_{k}\left(v_{k, 0}\right),
$$

where $v_{k, 0} \in V_{k, 0}=(Q M)_{k}$.
Proposition 3. Ker $\alpha_{n} \subset \sum_{k=0}^{n-1} A_{n-k} \otimes(Q M)_{k}$, i.e., Ker α_{n} has no (indecomposable) components in $(Q M)_{n} \subset R_{n, 0}$.

Proof. Take any $r_{n, 0}=\sum_{k=0}^{n} x_{k} \in R_{n, 0}$ with $x_{k} \in A_{n-k} \otimes(Q M)_{k}$ and suppose that $r_{n, 0} \in \operatorname{Ker} \alpha_{n}$, i.e.,

$$
\begin{equation*}
\sum_{k=0}^{n} \alpha_{n}\left(x_{k}\right)=0 . \tag{1.4}
\end{equation*}
$$

By the definition of α_{n}, we have $\alpha_{n}\left(x_{k}\right) \in A_{n-k} \cdot M_{k}$; therefore, acting on (1.4) by p_{n}, we obtain (since $p_{n} \alpha_{n}\left(x_{k}\right)=0$ for $\left.k<n\right)$

$$
0=p_{n} \alpha_{n}\left(x_{n}\right)=p_{n} \psi_{n}\left(x_{n}\right)=x_{n} .
$$

This proposition allows to show that the obtained free A-resolution is minimal. Indeed, $\operatorname{Im}\left(d: R_{n, 1} \rightarrow\right.$ $\left.R_{n, 0}\right)=\operatorname{Ker}\left(\alpha_{n}: R_{n, 0} \rightarrow M_{n}\right)$, but according to the above proposition, $\operatorname{Ker} \alpha_{n}$ consists only of decomposable elements. Clearly, the same argument proves the decomposability of further differentials $d: R_{n, q} \rightarrow R_{n, q-1}$.

It follows from the standard comparison theorem and Theorem 4 that the minimal resolution for M is unique up to an isomorphism of $D G-A$-modules.

Remark 2. If A is a free commutative graded algebra, then the minimal resolution is the well-known Koszul resolution.
1.2. Bar resolution. In addition to the minimal resolution, there is one more remarkable resolution. This is the so-called two-sided bar construction

$$
A \otimes \bar{B}(A) \otimes M \longrightarrow M,
$$

where $\bar{B}(A)$ is the reduced bar construction of A. The bigraduation here is given by $a\left[a_{1}|\ldots| a_{q}\right] m \in R_{p, q}$, where $p=|a|+\sum_{k}\left|a_{k}\right|+|m|, a, a_{k} \in A, m \in M$.

This resolution appears when we use the large construction from the proof of Lemma 1 , taking M itself as V (and the same on next steps).

The remarkable property of this resolution is that it is functorial in M and A, which gives some advantages in the case where A and M are equipped with differentials, see the Introduction.

2. Free Resolution for a $D G$-Module Over a $D G$-Algebra

Now we assume that $\left(A, d_{A}: A_{*} \rightarrow A_{*-1}\right)$ is a connected differential graded algebra ($D G A$-algebra), i.e., $A_{n}=0$ for $n<0$ and $A_{0}=\Lambda$.

Let $\left(M, d_{M}\right)$ be a $D G$-module over $\left(A, d_{A}\right)$ (we say $D G-\left(A, d_{A}\right)$-module), i.e., the action $A \otimes M \rightarrow M$ is a chain mapping: $d_{M}(a \cdot m)=d_{A}(a) \cdot m+(-1)^{|a|} a \cdot d_{M}(m)$.

Let us forget for a moment about the differentials d_{A} and d_{M} and consider a free bigraded resolution of the underlying graded module M over the underlying graded algebra A

$$
\begin{aligned}
& M_{2} \stackrel{\alpha}{\longleftarrow} R_{2,0} \longleftarrow{ }^{d} R_{2,1} \longleftarrow \cdots \\
& M_{1} \longleftarrow{ }^{\alpha} \longleftarrow R_{1,0} \longleftarrow d^{d} R_{1,1} \longleftarrow \\
& M_{0} \longleftarrow{ }^{\alpha} \longleftarrow R_{0,0} \longleftarrow{ }^{d} \longleftarrow R_{0,1} \longleftarrow
\end{aligned}
$$

here each column $R_{*, q}$ is a free A-module, i.e., $R_{p, q}=\sum_{i=0}^{p} A_{i} \otimes V_{p-i, q}$ for a certain free bigraded Λ-module $\left\{V_{p, q}\right\}$. Since $A_{0}=\Lambda$, we have

$$
\begin{equation*}
R_{p, q}=V_{p, q} \oplus\left(A_{1} \otimes V_{p-1, q}\right) \oplus \cdots \oplus\left(A_{p} \otimes V_{0, q}\right) \tag{2.1}
\end{equation*}
$$

and, therefore, $R_{p, q}$ is a direct sum of the indecomposable part $V_{p, q}$ and decomposable part $U_{p, q}=\sum_{i=1}^{p} A_{i} \otimes$ $V_{p-i, q}$.

Since the resolution differential $d: R_{p, *} \rightarrow R_{p, *-1}$ is an A-mapping, i.e., $d(a \cdot v)=(-1)^{|a|} a \cdot d(v)$, we have

$$
d\left(A_{i} \otimes V_{p-i, q}\right) \subset \sum_{j=i}^{p} A_{j} \otimes V_{p-j, q-1},
$$

and, therefore, the decomposable part $\left(U_{p, *}, d\right)$ is a subcomplex in $\left(R_{p, *}, d\right)$.
Now we assume that both A and M are equipped with differentials d_{A} and d_{M}, respectively. Our aim is to construct on $R_{*, *}$ a perturbed differential $(d+h): R_{*} \rightarrow R_{*-1}$ such that $\left(R_{*}, d+h\right)$ becomes a $D G-\left(A, d_{A}\right)$-module and the same α remains a weak equivalence

$$
\alpha:\left(R_{*}, d+h\right) \longrightarrow\left(M, d_{M}\right) .
$$

Our perturbation $h: R_{*} \rightarrow R_{*-1}$ will consist of components $\left\{h_{p, q}^{k}\right\}$, where

$$
\begin{equation*}
h_{p, q}^{k}: R_{p, q} \longrightarrow R_{p-k, q+k-1}, \quad p, q=0,1,2, \ldots ; \quad k=1,2, \ldots, p, \tag{2.2}
\end{equation*}
$$

i.e., $d+h$ in $R_{*, *}$ will have only horizontal (the differential d), vertical (the components $h_{p, q}^{1}$), and down and right (the components $h_{p, q}^{k>1}$) components.

Theorem 2. On $R_{*, *}$, there exists a perturbed differential $(d+h)$ such that the perturbation h consists of components $h_{p, q}^{k}$, see (2.2), so that the same α forms a free resolution of $\left(M, d_{M}\right)$ over $\left(A, d_{A}\right)$, i.e.,

$$
\alpha:\left(R_{*}, d+h\right) \longrightarrow\left(M, d_{M}\right)
$$

is a weak equivalence of $\left(A, d_{a}\right)$-modules.

The construction of the perturbation h will be based on the relative form of the standard comparison theorem of the homological algebra.

Relative comparison theorem. Suppose that

$$
(\bar{U}, d)=U_{-1} \stackrel{d_{-1}}{\leftrightarrows} V_{0} \oplus U_{0} \stackrel{d_{0}}{\longleftarrow} V_{1} \oplus U_{1} \longleftarrow \cdots
$$

is a $D G-\Lambda$-module, where $\left(U_{*}, d\right) \subset(\bar{U}, d)$ is a sub- $D G-\Lambda$-module with $\bar{U}_{-1}=U_{-1}$, and the direct complement V_{*} is a free graded Λ-module. Also, assume that an acyclic $D G-\Lambda$-module

$$
(R, d)=R_{-1} \stackrel{d_{-1}}{\leftrightarrows} R_{0} \stackrel{d_{0}}{\leftrightarrows} R_{1} \longleftarrow \cdots
$$

is given and that $F: U_{-1} \rightarrow R_{-1}$ is a Λ-homomorphism, already lifted to a mapping of $D G-\Lambda$-modules $f_{*}:\left(U_{*}, d\right) \rightarrow\left(R_{*}, d\right)$, i.e., $f_{-1}=F$.
(1) Then there exists a lifting of F on the whole \bar{U}

$$
F_{*}:(\bar{U}, d) \longrightarrow(R, d)
$$

extending f_{*}.
(2) Suppose that

$$
F_{*}^{\prime}:(\bar{U}, d) \longrightarrow(R, d)
$$

is another lifting of F and that $H: U_{*}: \rightarrow R_{*+1}$ is a homotopy between the restrictions $F_{*} \mid U_{*}$ and $F_{*}^{\prime} \mid U_{*}$, then there exists an extension of H on the whole $\overline{U_{*}}$, which realizes the homotopy between F and F^{\prime}.

Proof. In order that $d+h$ be a correct differential satisfying the needed conditions, a perturbation h should have certain properties, which we now consider.

1. To agree with the action of $\left(A, d_{A}\right)$ on R_{*}, the differential $d+h$ should satisfy

$$
\begin{equation*}
(d+h)(a \cdot r)=d_{A}(a) \cdot r+(-1)^{|a|} a \cdot(d+h)(r) . \tag{2.3}
\end{equation*}
$$

Having in mind (2.1), we construct $h_{*, *}^{*}$ on the indecomposable part $V_{*, *}$ of $R_{*, *}$ and extend it on the decomposable part $U_{*, *}$ by the rules

$$
\begin{align*}
h_{p, q}^{1}\left(a_{i} \otimes v_{p-i, q}\right) & =d_{A}\left(a_{i}\right) \otimes v_{p-i, q}+(-1)^{\left|a_{i}\right|} a_{i} \cdot h_{p-i, q}^{1}\left(v_{p-i, q}\right), \tag{2.4}\\
h_{p, q}^{k>1}\left(a_{i} \otimes v_{p-i, q}\right) & =(-1)^{\left|a_{i}\right|} a_{i} \cdot h_{p-i, q}^{k}\left(v_{p-i, q}\right) . \tag{2.5}
\end{align*}
$$

Then condition (2.3) is automatically satisfied.
2. For $(d+h)$ to be a differential, i.e., for $(d+h)(d+h)=0$, a perturbation $\left\{h_{p, q}^{k}\right\}$ should satisfy the Brown's condition [2] $d h+h d+h h=0$ (i.e., h must be a twisting element). This condition, in terms of components, looks as follows:

$$
\begin{equation*}
d h_{p, q}^{k}+h_{p, q-1}^{k} d=-\sum_{i=1}^{k-1} h_{p-i, q+i-1}^{k-i} h_{p, q}^{i} . \tag{2.6}
\end{equation*}
$$

Let us denote by $\Phi_{p, q}^{k}$ the right-hand side of Eq. (2.6):

$$
\Phi_{p, q}^{k}=-\sum_{i=1}^{k-1} h_{p-i, q+i-1}^{k-i} h_{p, q}^{i}: R_{p, q} \longrightarrow R_{p-m, q+m-2}
$$

Then the condition $d h+h d=h h$ can be rewritten as

$$
\begin{equation*}
d h_{p, q}^{k}+h_{p, q-1}^{k} d=\Phi_{p, q}^{k} \tag{2.7}
\end{equation*}
$$

3. Finally, we note that in order that α be a chain mapping, a perturbation should satisfy the condition

$$
\begin{equation*}
\alpha h_{p, 0}^{1}=d_{M} \alpha . \tag{2.8}
\end{equation*}
$$

We will construct the collection $\left\{h_{p, q}^{k}\right\}$ by induction on k satisfying the conditions (2.2), (2.4), (2.5), (2.8), and (2.7).

For $k=1$, let us first consider the 1 st and 0 th rows of the bigraded resolution

$$
\begin{aligned}
& M_{1} \stackrel{\alpha_{1}}{\longleftarrow} R_{1,0}=V_{1,0} \oplus U_{1,0} \longleftarrow d \\
& M_{0} \stackrel{\alpha_{0}}{\longleftarrow} \quad R_{1,1}=V_{1,1} \oplus U_{1,1} \longleftarrow \cdots \\
& R_{0,0}=V_{0,0} \quad \longleftarrow \quad, \\
& R_{0,1}=V 0,0 \quad \longleftarrow
\end{aligned}
$$

where $U_{1, q}=A_{1} \otimes V_{1, q}$.
We write

$$
d_{M} \alpha_{1}\left(a_{1} \otimes v_{0,0}\right)=d_{M}\left(a_{1} \cdot \alpha_{0}\left(v_{0,0}\right)\right)=d_{M}\left(a_{1}\right) \cdot \alpha_{0}\left(v_{0,0}\right) \pm a_{1} \cdot d_{M}\left(v_{0,0}\right)=0
$$

i.e., the zero mapping $0: U_{1, *} \rightarrow R_{0, *}$ lifts $d_{M}: M_{1} \rightarrow M_{0}$; therefore, we are in the situation of the part one of the relative comparison theorem. Thus, there exists an extension of $0: U_{1, *} \rightarrow R_{0, *}$, a chain mapping $h_{1, *}^{1}: R_{1, *} \rightarrow R_{0, *}$, i.e., $h_{1, *}^{1}$ satisfies the conditions

$$
h_{1, *}^{1}\left(a_{1} \otimes v_{0, *}\right)=0, \quad \alpha_{0} h_{1,0}^{1}=d_{M} \alpha_{1}, \quad d h_{1, q>0}^{1}=h_{1, q-1}^{1} d ;
$$

these are exactly conditions (2.4), (2.8), and (2.7) for $k=1$ and $p=1$, respectively.
Now we suppose that $h_{k, *}^{1}$ are constructed for $k<p$.
We consider the p th and $(p-1)$ th rows of the bigraded resolution

$$
\begin{aligned}
& M_{p} \stackrel{\alpha_{p}}{\longleftarrow} R_{p, 0}=V_{p, 0} \oplus U_{p, 0} \stackrel{d}{\longleftarrow} R_{p, 1}=V_{p, 1} \oplus U_{p, 1} \longleftarrow \cdots \\
& M_{p-1} \stackrel{\alpha_{p-1}}{\longleftarrow} \quad R_{p-1,0} \quad \longleftarrow \quad R_{p-1,1} \quad \longleftarrow \cdots
\end{aligned}
$$

where $U_{p, q}=\sum_{i=1}^{p} A_{i} \otimes V_{p-i, q}$.
Already defined $h_{k<p, *}^{1}$ determine $h_{p, *}^{1} \mid U_{p, *}: U_{p, *} \rightarrow R_{p, *}$ by the condition (2.4):

$$
h_{p, q}^{1}\left(a_{i} \otimes v_{p-i, q}\right)=d_{A}\left(a_{i}\right) \otimes v_{p-i, q}+(-1)^{\left|a_{i}\right|} h_{p-i, q}^{1}\left(v_{p-i, q}\right) .
$$

The routine verification shows that, actually, $h_{p, *}^{1}: U_{p, *} \rightarrow R_{p, *}$ is a chain mapping lifting $d_{M}: M_{p} \rightarrow$ M_{p-1}.

Thus, we are in the situation of the part one of the relative comparison theorem. Thus, there exists a chain mapping

$$
h_{p, *}^{1}: R_{p, *} \longrightarrow R_{p, *}
$$

lifting d_{M} and extending $h_{p, *}^{1} \mid U_{p, *}$, and, therefore, it satisfies

$$
\begin{gathered}
h_{p, q}^{1}\left(a_{i} \otimes v_{p-i, q}\right)=d_{A}\left(a_{i}\right) \otimes v_{p-1, q}+a_{i} \cdot h_{p-i, q)}^{1}, \\
\alpha_{p-1} h_{p, 0}^{1}=d_{M} \alpha_{p}, \quad d h_{p, q>0}^{1}=h_{p, q-1}^{1} d ;
\end{gathered}
$$

these are exactly conditions $(2.4),(2.8)$, and (2.7) for $k=1$, respectively. This completes the construction of components $h_{p, q}^{1}$.

Until we go to the next step of the induction, we note that the constructed vertical components $h_{*, *}^{1}$ are well connected with the horizontal differential d, but $h_{*, *}^{1} h_{*, *}^{1}=0$ is not guaranteed and, therefore, $d+h_{*, *}^{1}$ is not a differential. The meaning of the next component $h_{*, *}^{2}$ is that $h_{*, *}^{1} h_{*, *}^{1}$ is homotopic to zero and $h_{*, *}^{2}$ is the suitable homotopy.

Now we suppose that $h_{p, q}^{k}$ are constructed for $k<n$ satisfying (2.4), (2.5), (2.8), and (2.7) for $k=1$. Note that, in this case, $\Phi_{p, q}^{n}$ are also defined.

A standard routine calculation, using just (2.7), shows that

$$
d \Phi_{p, 0}^{n}=0, \quad d \Phi_{p, q}^{n}=\Phi_{p, q-1}^{n} d .
$$

This means that

$$
\Phi_{p, *}^{n}: R_{p, *} \longrightarrow R_{p-n, *+n-2}
$$

is a chain mapping (of degree $n-2$) lifting the zero mapping $0: M_{p} \rightarrow R_{p-n, n-3}$.
As above, we are going to construct $h_{p, *}^{n}$ by induction on p starting, of course, from $p=n$.
Take the nth row and the part of the 0th row of the bigraded resolution

$$
\begin{aligned}
& M_{n} \quad \alpha_{n} R_{n, 0}=V_{n, 0} \oplus U_{n, 0} \longleftarrow R_{n, 1}=V_{n, 1} \oplus U_{n, 1} \longleftarrow \cdots \\
& R_{0, n-3} \stackrel{d}{\longleftarrow} \quad R_{0, n-2} \quad d_{0, n-1} \quad R_{0} \cdots
\end{aligned}
$$

where $U_{n, q}=\sum_{i=1}^{n} A_{i} \otimes V_{n-i, q}$.
As is mentioned above,

$$
\Phi_{n, *}^{n}: R_{n, *} \longrightarrow R_{0, *+n-2}
$$

is a chain mapping (of degree $n-2$) lifting the zero mapping $0: M_{n} \rightarrow R_{0, n-3}$. Moreover, it is not difficult to calculate just by dimensional reasoning that the restriction of $\Phi_{n, *}^{n}$ on decomposable $U_{n, *}$ is zero. Thus, by the second part of the relative comparison theorem, $\Phi_{n, *}^{n}$ is homotopic to the zero, and the suitable homotopy $h_{n, *}^{n}: R_{n, *} \rightarrow R_{0, *+n-1}$ can be chosen so that the restriction of $h_{n, *}^{n}$ on decomposable $U_{n, *}$ is zero. Thus, we have $h_{n, *}^{n}$ satisfying

$$
h_{n, q}^{n}\left(a_{i} \otimes v_{n-i, q}\right)=0, \quad d h_{n, q>0}^{n}+h_{n, q-1}^{n} d=\Phi_{n, q}^{n},
$$

which are exactly conditions (2.5) and (2.7) for $k=n$ and $p=n$, respectively.
Now we suppose that $h_{k, *}^{n}$ are constructed for $k<p$. Note that these components determine $h_{p, q}^{n}$ on the decomposable $U_{p, q}$ by (2.5):

$$
h_{p, q}^{n}\left(a_{i} \otimes v_{p-i, q}\right)=(-1)^{\left|a_{i}\right|} a_{i} \cdot h_{p-i, q}^{n}\left(v_{p-i, q}\right) ;
$$

therefore, what remains to do is to define $h_{p, q}^{n}$ on $V_{p, q}$.

Take the p th row and the part of $(p-n)$ th row of the bigraded resolution

$$
\begin{gathered}
M_{p} \stackrel{\alpha_{p}}{\longleftarrow} R_{p, 0}=V_{p, 0} \oplus U_{p, 0} \longleftarrow{ }^{d} R_{p, 1}=V_{p, 1} \oplus U_{p, 1} \longleftarrow \cdots \\
R_{p-n, n-3} \stackrel{d}{\longleftarrow} \quad R_{p-n, n-2} \quad \stackrel{d}{\longleftarrow} \quad R_{p-n, n-1}
\end{gathered}
$$

where $U_{p, q}=\sum_{i=1}^{n} A_{i} \otimes V_{p-i, q}$.
As is mentioned above,

$$
\Phi_{p, *}^{n}: R_{p, *} \longrightarrow R_{p-n, *+n-2}
$$

is a chain mapping (of degree $n-2$) lifting the zero mapping $0: M_{p} \rightarrow R_{p-n, n-3}$. Of course, the restriction on decomposable

$$
\Phi_{p, *}^{n}: U_{p, *} \longrightarrow R_{p-n, *+n-2}
$$

is as well a chain mapping lifting the zero mapping. Moreover, the conditions (2.5) and (2.7) which are satisfied by the components $h_{p, q}^{k<n}$ allow to verify that

$$
\left(d h_{p, q}^{n}+h_{p, q-1}^{n} d\right)\left(a_{i} \otimes v_{p-i, q}\right)=\Phi_{p, q}^{n}\left(a_{i} \otimes v_{p-i, q}\right), \quad i=1,2, \ldots, p
$$

i.e., already existing $h_{p, *}^{n} \mid U_{p, *}$ realizes the homotopy of $\Phi_{p, *}^{n} \mid U_{p, *}$ to zero. Then by the part two of the relative comparison theorem, this homotopy can be extended to the whole $R_{p, *}$, and we obtain $h_{p, *}^{n}$: $R_{p, *} \rightarrow R_{p-n, *+n-1}$ satisfying the conditions

$$
h_{p, q}^{n}\left(a_{i} \otimes v_{p-i, q}\right)=(-1)^{\left|a_{i}\right|} a_{i} \cdot h_{p-i, q}^{n}\left(v_{p-i, q}\right)
$$

and

$$
d h_{p, q}^{n}+h_{p, q-1}^{n} d=\Phi_{p, q}^{n}
$$

which are exactly conditions (2.5) and (2.7) for $k=n$. This completes the construction of the perturbation h.

Thus, we have obtained the collection $h_{p, q}^{k}$ satisfying the Brown's condition $d h=h h$. Thus, $(d+h)(d+$ $h)=0$.

The differential $(d+h)$ preserves the action of (A, d) on R, i.e., satisfies $(d+h)(a \cdot v)=d_{A}(a) \cdot v+$ $(-1)^{|a|} a \cdot(d+h)(v)$. Indeed,

$$
\begin{gathered}
(d+h)(a \cdot v)=d(a \cdot v)+\left(h^{1}+h^{>1}\right)(a \cdot v)= \\
=(-1)^{|a|} a \cdot d(v)+d_{A}(a) \cdot v+(-1)^{|a|} a \cdot h^{1}(v)+(-1)^{|a|} a \cdot h^{>1}(v)= \\
=d_{A}(a) \cdot v+a \cdot(d+h)(v)
\end{gathered}
$$

Moreover, $\alpha:\left(R_{*}, d+h\right) \longrightarrow M_{*}$ is a chain mapping. Indeed,

$$
\alpha(d+h)=\alpha\left(d+h^{1}+h^{>1}\right)=\alpha h^{1}=d_{M} \alpha
$$

Finally, we mention that since d is horizontal and h goes down and right, the perturbed differential $(d+h)$ preserves the filtration $F_{p}\left(R_{*, *}\right)=\left\{R_{\leq p, *}\right\}$, and the standard spectral sequence argument shows that α is a weak equivalence. This completes the proof of theorem.

Remark 3. For the bar resolution

$$
\alpha:\left(A \otimes \bar{B}(A) \otimes M, d_{H} \longrightarrow M\right.
$$

of the underlying graded module M over the underlying graded algebra A, the resolution (horizontal) differential is given by

$$
\begin{gathered}
d_{H}\left(a\left[a_{1}|\cdots| a_{n}\right] m\right)=a \cdot a_{1}\left[a_{2}|\cdots| a_{n}\right]+ \\
+\sum_{k} \pm a\left[a_{1}|\cdots| a_{k} \cdot a_{k+1}|\cdots| a_{n}\right] m \pm a\left[a_{1}|\cdots| a_{n-1}\right] a_{n} \cdot m
\end{gathered}
$$

and as the perturbation h, we can take the vertical differential

$$
\begin{gathered}
d_{V}\left(a\left[a_{1}|\cdots| a_{n}\right] m\right)= \\
=d_{A} a_{1}\left[a_{1}|\cdots| a_{n}\right]+\sum_{k} a\left[a_{1}|\cdots| d_{A} a_{k}|\cdots| a_{n}\right] m+a\left[a_{1}|\cdots| a_{n}\right] d_{M} m
\end{gathered}
$$

actually, $h=h^{1}$ and all higher components $h^{k>1}$ are trivial.
2.1. Comparison theorem. Suppose that $\alpha:(R, d) \rightarrow M$ and $\alpha^{\prime}:\left(R^{\prime}, d^{\prime}\right) \rightarrow M$ are two bigraded A-resolutions of M.

Using the standard arguments of comparison of free resolutions, based on the above-mentioned relative comparison theorem, it is possible to construct a morphism of bigraded modules

$$
\left\{f_{p, q}^{0}: R_{p, q} \longrightarrow R_{p, q}^{\prime}\right\}
$$

which defines a mapping of $D G-A$-modules $f^{0}:(R, d) \rightarrow\left(R^{\prime}, d^{\prime}\right)$ and $\alpha^{\prime} f^{0}=\alpha$.
Having the differentials d_{A} and d_{M} in A and M, respectively, we can construct perturbations in each of these two bigraded resolutions and obtain filtered resolutions $\alpha:(R, d+h) \rightarrow\left(M, d_{M}\right)$ and α^{\prime} : $\left(R^{\prime}, d^{\prime}+h^{\prime}\right) \rightarrow\left(M, d_{M}\right)$.

Theorem 3. There exists a collection of homomorphisms

$$
\begin{equation*}
\left\{f_{p, q}^{k}: R_{p, q} \longrightarrow R_{p-k, q+k}^{\prime}, p, q=0,1,2, \ldots ; k=1,2, \ldots, p\right\}, \tag{2.9}
\end{equation*}
$$

such that, together with $\left\{f_{p, q}^{0}\right\}$, it defines a mapping of $D G-A$-modules $f=\sum_{k=0}^{\infty} f_{p, q}^{k}:\left(R_{*}, d+h\right) \rightarrow$ $\left(R_{*}^{\prime}, d^{\prime}+h^{\prime}\right)$.

Proof. In order that f be a mapping of $D G-A$-modules, a collection $f_{*, *}^{*}$ should satisfy certain conditions, which we now consider.

1. First of all, f should be a mapping of graded A-modules, i.e.

$$
\begin{equation*}
f(a \cdot r)=a \cdot f(r) . \tag{2.10}
\end{equation*}
$$

Having in mind (2.1), we construct $f_{*, *}^{*}$ first on $V_{*, *}$, and then extend it on $R_{*, *}$ by the rule

$$
\begin{equation*}
f_{p, q}^{k}\left(a_{i} \otimes v_{p-i, q}\right)=a_{i} \cdot f_{p-i, q}^{k}\left(v_{p-i, q}\right) \tag{2.11}
\end{equation*}
$$

Then condition (2.10) will be automatically satisfied.
2. To be a chain mapping, i.e., for

$$
\begin{equation*}
\left(d^{\prime}+h^{\prime}\right) f=f(d+h), \tag{2.12}
\end{equation*}
$$

a collection $f_{*, *}^{*}$ should satisfy

$$
\begin{equation*}
d^{\prime} f_{p, q}^{k}+\sum_{i=0}^{k-1} h_{p-i, q+i}^{\prime k-i} f_{p, q}^{i}=f_{p, q-1}^{k} d+\sum_{i=1}^{k} f_{p-i, q+i}^{k-i} h_{p, q}^{\prime i} \tag{2.13}
\end{equation*}
$$

or, denoting

$$
\Psi_{p, q}^{k}=f_{p, q-1}^{k} d+\sum_{i=1}^{k} f_{p-i, q+i}^{k-i} h_{p, q}^{i}-\sum_{i=0}^{k-1} h_{p-i, q+i}^{\prime k-i} f_{p, q}^{i},
$$

this condition can be rewritten as

$$
\begin{equation*}
d^{\prime} f_{p, q}^{k}=\Psi_{p, q}^{k} . \tag{2.14}
\end{equation*}
$$

3. Finally, the condition $\alpha^{\prime} f=\alpha$ in terms of components has the form

$$
\begin{equation*}
\alpha^{\prime} f_{p, q}^{0}=\alpha, \tag{2.15}
\end{equation*}
$$

and, therefore, it is actually a property of given $f_{p, q}^{0}$.
A collection $\left\{f_{p, q}^{k}\right\}$ satisfying the conditions (2.9), (2.11), and (2.14) can be constructed exactly by the same induction as in the proof of Theorem 2 , which we omit here.
2.2. Equivalence of perturbations. As is seen from the above inductive process of construction of h, there is a freedom in choosing the components $h_{p, q}^{k}$ on each step, so that the perturbation h is not uniquely defined. Here we describe this freedom, introducing, following to [1], the set $D(M)$ - the set of equivalence classes of perturbations.

Thus, as above, let M be a graded A-module and $\alpha:(R, d) \rightarrow M$ be its free bigraded A-resolution, i.e., $\alpha: R_{k, 0} \rightarrow M_{k}$ and $d: R_{p, q} \rightarrow R_{p, q-1}$.

Now we introduce the following class of A-endomorphisms:

$$
G=\left\{(\mathrm{id}+f): R_{*} \longrightarrow R_{*}\right\}
$$

of totalization R_{*} of the bigraded A-module $R_{*, *}$, where f consists (is the sum) only of the following components:

$$
\left\{f_{p, q}^{k}: R_{p, q} \longrightarrow R_{p-k, q+k}, p, q=0,1,2, \ldots ; k=1,2, \ldots, p\right\},
$$

i.e., there are only identity and down and right components in f.

It is not difficult to verify that
(i) each $(\mathrm{id}+f) \in G$ is an isomorphism;
(ii) for $(\mathrm{id}+f),(\mathrm{id}+g) \in G$, the composition $(\mathrm{id}+f)(\mathrm{id}+g)=(\mathrm{id}+f+g+f g)$ also belongs to G.

Therefore, G is a group with respect to the composition operation.
Now let P be the set of all perturbations $h=\left\{h_{p, q}^{k}\right\}$ on ($R_{*, *}, d$), satisfying (2.2), (2.4), (2.5), and (2.6). The group G acts on P as follows:

$$
\begin{equation*}
(\mathrm{id}+f) * h=(\mathrm{id}+f) h(\mathrm{id}+f)^{-1}+(d f-f d)(\mathrm{id}+f)^{-1} . \tag{2.16}
\end{equation*}
$$

We have to show that $h^{\prime}=(\mathrm{id}+f) * h$ belongs to P. It is clear that h^{\prime} satisfies (2.2), since f acts down and right. To show that h^{\prime} satisfies (2.6), let us rewrite (2.16) as

$$
\begin{equation*}
h-h^{\prime}=h^{\prime} f+f h+d f-f d \tag{2.17}
\end{equation*}
$$

or

$$
\begin{equation*}
\left(d+h^{\prime}\right)(\mathrm{id}+f)=(\mathrm{id}+f)(d+h) \tag{2.18}
\end{equation*}
$$

so that the isomorphism (id $+f$) is a chain mapping and, therefore, it is easy to conclude that $\left(d+h^{\prime}\right)(d+$ $\left.h^{\prime}\right)=0$, what is equivalent to (2.6). It is also clear that $d+h^{\prime}$ is an A-derivation (i.e., it satisfies (2.4) and (2.5)), since $d+h$ has this property and id $+f$ is an isomorphism of $D G-A$-modules. Thus, $h^{\prime} \in P$.

Denote by $D_{R}(M)$ the set of orbits of P with respect to the action of G. We will call perturbations from the same orbit equivalent.

Now we are able to describe the freedom in the construction of h corresponding to a given differential d_{M}.

Proposition 4. Let $h_{p, q}^{k}$ and $h_{p, q}^{\prime k}$ be two perturbations satisfying conditions (2.2), (2.4), (2.5), (2.6), and (2.8). Then these perturbations are equivalent.

Remark 4. Actually, the equivalence of h and h^{\prime} means that there exists an isomorphism of $\left(A, d_{A}\right)$ resolutions $(\mathrm{id}+f):\left(R_{*}, d+h\right) \rightarrow\left(R_{*}, d+h^{\prime}\right)$, for which $\alpha^{\prime}(\mathrm{id}+f)=\alpha$. Therefore, different perturbations define isomorphic free resolutions.

Proof. This proposition is an immediate consequence of Proposition 3, taking $R=R^{\prime}$ and $f^{0}=\mathrm{id}$.

According to this proposition, we have a correct mapping from the set of all A-differentials on M :

$$
\operatorname{Diff}_{A}(M)=\left\{d_{M}: M_{*} \longrightarrow M_{*-1}, d_{M} d_{M}=0, d_{M}(a \cdot m)=(-1)^{\operatorname{dim} a} a \cdot m\right\}
$$

to the set of equivalence classes of perturbations $D_{R}(M)$.
Proposition 5. There exists a bijection between $\operatorname{Diff}_{A}(M)$ and $D_{R}(M)$.
Proof. Let us construct a converse mapping $D_{R}(M) \rightarrow \operatorname{Diff}_{A}(M)$. For a given perturbation $\left\{h_{p, q}^{k}\right\}$ satisfying (2.2), (2.4), (2.5), and (2.6), the first component $h_{p, 0}^{1}: R_{p, 0} \rightarrow R_{p-1,0}$ induces the correct homomorphism

$$
d_{M}: M_{p}=R_{p, 0} / \operatorname{Ker} \alpha_{p} \longrightarrow M_{p-1}=R_{p-1,0} / \operatorname{Ker} \alpha_{p-1} ;
$$

the condition $d_{M} d_{M}=0$ follows from $h_{p-1,0}^{1} h_{p, 0}^{1}=d h_{p, 0}^{2}$ (see condition (2.6)) and $d_{M}(a \cdot m)=a \cdot m$ follows from (2.4). Moreover, if h is equivalent to h^{\prime}, then, in particular, $h_{p, 0}^{1}-h_{p, 0}^{\prime}=d f_{p, 0}^{1}$, and, therefore, they define the same d_{M}.

This proposition implies that, actually, $D_{R}(M)$ does not depend on the bigraded resolution $\left(R_{*, *}, d\right)$ and, therefore, we can denote it as $D(M)$.

3. Application: Koszul Resolution

In this section, we apply our main theorem to the Koszul resolution of Λ over a free commutative graded algebra. We start from some notation and facts from [5].

Assume that Λ is a field of characteristic $0, X$ is a connected graded vector space over Λ, and ΛX is a free commutative graded Λ-algebra generated by X, i.e., it is the tensor product of the polynomial algebra $P\left(X_{\text {even }}\right)$ and exterior algebra $E\left(X_{\text {odd }}\right)$.

The Koszul resolution of Λ the over commutative graded algebra ΛX is given by

$$
\begin{equation*}
\Lambda \stackrel{\alpha}{\longleftarrow} \Lambda X \stackrel{d_{K}}{\longleftarrow} \Lambda X \otimes \Lambda^{1} \bar{X} \stackrel{d_{K}}{\leftrightarrows} \Lambda X \otimes \Lambda^{2} \bar{X} \longleftarrow \cdots, \tag{3.1}
\end{equation*}
$$

where \bar{X} is the suspension of X, i.e., $\bar{X}_{p}=X_{p-1}$, and, therefore, there exists an isomorphism $x \leftrightarrow \bar{x}$; $\Lambda^{n} \bar{X}$ denotes the subspace of $\Lambda \bar{X}$ spanned by $\overline{x_{1}} \cdots \overline{x_{n}}$ and $\overline{x_{i}} \in \bar{X}, \alpha$ is the clear projection, and the Koszul differential d_{K} is given by

$$
d_{K}\left(a \otimes \bar{x}_{1} \cdots \bar{x}_{n}\right)=\sum_{i} \pm a \cdot x_{i} \otimes \bar{x}_{1} \cdots \bar{x}_{i-1} \cdot \bar{x}_{i+1} \cdots \bar{x}_{n}
$$

$a \in \Lambda X, \bar{x} \in \bar{X}$.
We consider the Koszul resolution as a bigraded resolution: $a \otimes \overline{x_{1}} \cdots \overline{x_{q}} \in R_{p, q}$, where $p=|a|+\sum_{k=1}^{q}\left|x_{k}\right|$ and the Koszul differential d_{K} is horizontal, it maps $R_{p, q}$ to $R_{p, q-1}$.

Of course, the Koszul resolution is contractible as a $D G-\Lambda$-module, there exist Λ-homomorphisms

$$
\eta: \Lambda \longrightarrow \Lambda X, \quad s: \Lambda X \otimes \Lambda \bar{X}
$$

such that

$$
\alpha \eta=\mathrm{id}, \quad \eta \alpha+d_{K} s=\mathrm{id}, \quad s d_{K}+d_{K} s=\mathrm{id} .
$$

Assuming that X has a well-ordered basis $\left\{x_{i}\right\}_{i \in I}$, it is possible to give explicit formulas for s : for an element $x_{k_{1}}^{p_{1}} \cdots x_{k_{m}}^{p_{m}} \otimes \bar{x}_{t_{1}}^{q_{1}} \cdots \bar{x}_{t_{n}}^{q_{n}} \in \Lambda X \otimes \Lambda \bar{X}$ with $x_{k_{1}}<\cdots<x_{k_{m}}$ and $x_{t_{1}}<\cdots<x_{t_{n}}$, we define

$$
s\left(x_{k_{1}}^{p_{1}} \cdots x_{k_{m}}^{p_{m}} \otimes \bar{x}_{t_{1}}^{q_{1}} \cdots \bar{x}_{t_{n}}^{q_{n}}\right)=0
$$

if $x_{k_{m}}<x_{t_{n}}$,

$$
s\left(x_{k_{1}}^{p_{1}} \cdots x_{k_{m}}^{p_{m}} \otimes \bar{x}_{t_{1}}^{q_{1}} \cdots \bar{x}_{t_{n}}^{q_{n}}\right)=\frac{1}{q_{n}+1} x_{k_{1}}^{p_{1}} \cdots x_{k_{m}}^{p_{m}-1} \otimes \bar{x}_{t_{1}}^{q_{1}} \cdots \bar{x}_{t_{n}}^{q_{n}+1}
$$

if $x_{k_{m}}=x_{t_{n}}$, and

$$
s\left(x_{k_{1}}^{p_{1}} \cdots x_{k_{m}}^{p_{m}} \otimes \bar{x}_{t_{1}}^{q_{1}} \cdots \bar{x}_{t_{n}}^{q_{n}}\right)=x_{k_{1}}^{p_{1}} \cdots x_{k_{m}}^{p_{m}-1} \otimes \bar{x}_{t_{1}}^{q_{1}} \cdots \bar{x}_{t_{n}}^{q_{n}} \cdot \bar{x}_{k_{m}}
$$

if $x_{k_{m}}>x_{t_{n}}$. Note that a similar contraction is written in [6] and [9].
Now we suppose that ΛX is equipped with a differential $D: \Lambda X \rightarrow \Lambda X$ turning ($\Lambda X, D$) into a commutative $D G$-algebra. According to the main theorem, there exists a perturbation h of the Koszul differential d_{K} such that

$$
\alpha:\left(\Lambda X \otimes \Lambda \bar{X}, d_{K}+h\right) \longrightarrow \Lambda
$$

is a resolution of Λ over $(\Lambda X, D)$.
Using the contraction s it is possible to give an algorithm for computing the perturbation h.
First, let us mention that $\Lambda X \otimes \Lambda \bar{X}$ is a free commutative graded algebra with generators $x_{i} \otimes 1$ and $1 \otimes \overline{x_{i}}, x_{i} \in\left\{x_{i}\right\}_{i \in I}$, and, therefore, it suffices to define h on $x_{i} \otimes 1$ and $1 \otimes \overline{x_{i}}$ and then extend as a derivation.

First, we define $h^{1}\left(x_{i} \otimes 1\right)=D\left(x_{i}\right) \otimes 1$ and

$$
h^{1}\left(1 \otimes \bar{x}_{i}\right)=s(D \otimes \mathrm{id}) d_{K}\left(1 \otimes \overline{x_{i}}\right)=s\left(D x_{i} \otimes 1\right)
$$

Extending it as a derivation, we obtain

$$
h^{1}: \Lambda X \otimes \Lambda \bar{X} \longrightarrow \Lambda X \otimes \Lambda \bar{X}
$$

We define the next component h^{2} on generators as $h^{2}\left(x_{i} \otimes 1\right)=0$ and

$$
h^{2}\left(1 \otimes \bar{x}_{i}\right)=s\left(h^{1} h^{1}\left(1 \otimes \overline{x_{i}}\right)\right),
$$

and again extend as a derivation.

By induction, assuming that $h^{k<m}$ are already constructed, we define $h^{m}\left(x_{i} \otimes 1\right)=0$ and

$$
h^{m}\left(1 \otimes \bar{x}_{i}\right)=s\left(\sum_{k=1}^{m-1} h^{m-k} h^{k}\left(1 \otimes \bar{x}_{i}\right)\right)
$$

and extend as a derivation.

Example. Let us take $\Lambda X=\Lambda(a, b, u, z)$ with $|a|=|b|=1,|u|=3,|z|=5$. Assuming the order $a<b<u<z$, we can construct the contraction s. In particular, $s(x \otimes 1)=1 \otimes \bar{x}$ for $x=a, b, c, u, z$; $s(a \cdot b \otimes 1)=a \otimes \bar{b} ; s(b \cdot u \otimes 1)=b \otimes \bar{u} ; s(a \cdot b \otimes b)=\frac{1}{2} a \otimes \bar{b}^{2}$, etc.

Now we suppose that ΛX is equipped with a differential given by

$$
D(a)=0, \quad D(b)=0, \quad D(u)=a \cdot b, \quad D(z)=b \cdot u
$$

Then, using the procedure described above, we obtain for h^{1}

$$
\begin{gathered}
h^{1}(1 \otimes \bar{a})=0, \quad h^{1}(1 \otimes \bar{b})=0, \\
h^{1}(1 \otimes \bar{u})=s(D \otimes \mathrm{id}) d_{k}(1 \otimes \bar{u})=s(D \otimes \mathrm{id})(u \otimes 1)= \\
=s(a \cdot b \otimes 1)=a \otimes \bar{b}, \\
h^{1}(1 \otimes \bar{z})=s(D \otimes \mathrm{id}) d_{k}(1 \otimes \bar{z})=s(D \otimes \mathrm{id})(z \otimes 1)= \\
=s(b \cdot u \otimes 1)=b \otimes \bar{u} .
\end{gathered}
$$

Extending it as a derivation, we obtain

$$
\begin{gathered}
h^{1}\left(1 \otimes \bar{a}^{m} \cdot \bar{b}^{n} \cdot \bar{u}^{p} \cdot \bar{z}^{q}\right)= \\
=p \cdot a \otimes \bar{a}^{m} \cdot \bar{b}^{n+1} \cdot \bar{u}^{p-1} \cdot \bar{z}^{q}+q \cdot b \otimes \bar{a}^{m} \cdot \bar{b}^{n} \cdot \bar{u}^{p+1} \cdot \bar{z}^{q-1} .
\end{gathered}
$$

For h^{2}, we obtain

$$
\begin{gathered}
h^{2}(1 \otimes \bar{a})=0, \quad h^{2}(1 \otimes \bar{b})=0, \quad h^{2}(1 \otimes \bar{u})=0, \\
h^{2}(1 \otimes \bar{z})=s h^{1} h^{1}(1 \otimes \bar{z})=s h^{1}(b \otimes \bar{u})=s(a \cdot b \otimes \bar{b})=\frac{1}{2} a \otimes \bar{b}^{2},
\end{gathered}
$$

and, extending it as a derivation,

$$
h^{2}\left(1 \otimes \bar{a}^{m} \cdot \bar{b}^{n} \cdot \bar{u}^{p} \cdot \bar{z}^{q}\right)=\frac{1}{2} q \cdot a \otimes \bar{a}^{m} \cdot \bar{b}^{n+2} \cdot \bar{u}^{p} \cdot \bar{z}^{q-1} .
$$

A straightforward verification shows that $h^{1} h^{2}+h^{2} h^{1}=0$ and $h^{2} h^{2}=0$, which yields $h^{3}=h^{4}=\ldots=0$.

REFERENCES

1. N. A. Berikashvili, "Differentials of a spectral sequence," Soobshch. Akad. Nauk Gruz. SSR, 51, 5-106 (1976).
2. E. H. Brown (Jr.), "Twisted tensor products. I," Ann. of Math. (2), 69, 223-246 (1959).
3. V. K. A. M. Gugenheim and J. P. May, "On the theory and applications of differential torsion products," Mem. Amer. Math. Soc., No. 142 (1974).
4. V. K. A. M. Gugenheim and R. J. Milgram, "On successive approximations in homological algebra," Trans. Amer. Math. Soc., 150, 157-182 (1970).
5. S. Halperin and J. Stasheff, "Obstructions to homotopy equivalences," Adv. Math., 32, No. 3, 233-279 (1979).
6. P. J. Hilton and U. Stammbach, A Course in Homological Algebra, Graduate Texts in Mathematics, Vol. 4. Springer-Verlag, New York-Berlin (1971).
7. J. Huebschmann, "The mod-p cohomology rings of metacyclic groups," J. Pure Appl. Algebra, 60, No. 1, 53-103 (1989).
8. J. Huebschmann and T. Kadeishvili, "Small models for chain algebras," Math. Z., 207, No. 2, 245-280 (1991).
9. L. A. Lambe, "Resolutions which split off of the bar construction," J. Pure Appl. Algebra, 84, No. 3, 311-329 (1993).
10. S. Mac Lane, Homology, Reprint of the 1975 edition. Classics in Mathematics. Springer-Verlag, Berlin (1995).
T. Kadeishvili
A. Razmadze Mathematical Institute, Georgian Academy of Sciences

E-mail: kade@rmi.acnet.ge
P. Real

University of Sevilla
E-mail: real@us.es

