A SMALL OPEN-CLOSED HOMOTOPY ALGEBRA (OCHA)

TORNIKE KADEISHVILI AND TOM LADA

Abstract

We consider a particular finite dimensional example of an L_{∞} algebra in which a 2-dimensional Lie algebra acts on a 1-dimensional vector space in a non-trivial non-Lie manner. In order to understand the nature of this action, we show that this algebra is in fact an example of an open-closed homotopy algebra.

1. Introduction

In [1], a non-trivial L_{∞} algebra structure on a finite dimensional 2-graded vector space which was discovered by M. Daily was discussed in detail. The structure of that algebra entailed a 2-dimensional Lie algebra V_{0} acting on a 1-dimensional vector space V_{1}. The nature of this action is the topic of this article. A possible structure for this action is that of V_{1} being an L_{∞} module over the Lie algebra V_{0}. Such an action requires a collection of operations $\eta_{k}: V_{0}^{\otimes(k-1)} \otimes V_{1} \rightarrow V_{1}$ subject to compatibility relations; see [4] for details.

Two other candidates for understanding the action of V_{0} on V_{1} are that of an A_{∞} algebra over an L_{∞} algebra and that of an open-closed homotopy algebra as developed by Kajiura and Stasheff [3]. These structures are given by operations $\eta_{p, q}: V_{0}^{\otimes p} \otimes V_{1}^{\otimes q} \rightarrow V_{1}$ subject to compatibility relations, where $p \geq 0, q \geq 1$ for an A_{∞} algebra over an L_{∞} algebra, and $p \geq 0, q \geq 0$ for an open-closed homotopy algebra. These actions may also be described by a coderivation D on the coalgebra $S^{c}\left(\downarrow V_{0}\right) \otimes T^{c}\left(\downarrow V_{1}\right)$ with $D^{2}=0[3],[2]$. Here, $S^{c}\left(V_{0}\right)$ is the cocommutative coalgebra on $V_{0}, T^{c}\left(V_{1}\right)$ is the tensor coalgebra on V_{1}, and \downarrow is the desuspension isomorphism of graded vector spaces.

Our main result will show that the L_{∞} algebra mentioned above is in fact an example of an open-closed homotopy algebra. The other two types of action are not possible because of the presence of a non zero operation $\eta_{1,0}$.

We will review the definition of L_{∞} algebras in Section 2 and provide explicit details of the example. In Section 3, we will recall the definition of an open-closed homotopy algebra and verify that the example satisfies the relations.

2. An L_{∞} ALGEBRA

We begin by recalling the definition of an L_{∞} algebra [4].
Definition 1. An L_{∞} algebra structure on a graded vector space V is a collection of skew symmetric linear maps $l_{n}: V^{\otimes n} \rightarrow V$ of degree $2-n$ that satisfy the relations

$$
\sum_{i+j=n+1} \sum_{\sigma}(-1)^{\sigma}(-1)^{e(\sigma)}(-1)^{i(j-1)} l_{j}\left(l_{i}\left(v_{\sigma(1)}, \ldots, v_{\sigma(i)}\right), v_{\sigma(i+1)}, \ldots, v_{\sigma(n)}\right)=0
$$

where $(-1)^{\sigma}$ is the sign of the permutation, $e(\sigma)$ is the product of the degrees of the permuted elements, and σ is taken over all ($i, n-i$) unshuffles.

This is the cochain complex point of view; for chain complexes, require the maps l_{n} to have degree $n-2$.

Now consider the graded vector space $V=V_{0} \oplus V_{1}$ where V_{0} has basis $<v_{1}, v_{2}>$ and V_{1} has basis $\langle w\rangle$. Then V may be given an L_{∞} algebra structure by defining [1]

$$
\begin{gathered}
l_{1}\left(v_{1}\right)=l_{1}\left(v_{2}\right)=w \\
l_{2}\left(v_{1} \otimes v_{2}\right)=v_{1}, l_{2}\left(v_{1} \otimes w\right)=w \\
l_{n}\left(v_{2} \otimes w^{\otimes n-1}\right)=C_{n} w=(-1)^{\frac{(n-2)(n-3)}{2}}(n-3)!w, n \geq 3 .
\end{gathered}
$$

In other words, $\left(V, l_{1}\right)$ is a cochain complex and the maps l_{n} have degree $2-n$, are extended to all of $V^{\otimes n}$ by graded skew symmetry, and are defined to be equal to 0 on any elements not mentioned above. Also note that $\left(V_{0}, l_{2}\right)$ is a two dimensional Lie algebra.

There is an equivalent description of L_{∞} algebras given by a degree 1 coderivation D on the on the coalgebra $S^{c}(\downarrow V)$ with $D^{2}=0[4],[5]$. We will translate the L_{∞} algebra data above into this context in order to be compatible with the OCHA data in the next section.

We may apply the desuspension operator, \downarrow, to the data above to obtain a collection of degree one graded symmetric linear maps $\hat{l_{n}}: W^{\otimes n} \rightarrow W$ given by $\hat{l}_{n}=(-1)^{\frac{n(n-1)}{2}} \downarrow$ $\circ l_{n} \circ \uparrow^{\otimes n}[4]$. Here, $W=W_{-1} \oplus W_{0}$ with W_{-1} isomorphic to V_{0} and W_{0} isomorphic to V_{1}. Let x_{i} correspond to v_{i} and y correspond to w under these isomorphisms. We may then describe the \hat{l}_{n} 's explicitly by

$$
\begin{gathered}
\hat{l}_{1}\left(x_{1}\right)=\hat{l}_{1}\left(x_{2}\right)=y \\
\hat{l}_{2}\left(x_{1} \otimes x_{2}\right)=x_{1}, \hat{l}_{2}\left(x_{1} \otimes y\right)=y \\
\hat{l}_{n}\left(x_{2} \otimes y^{n-1}\right)=C_{n}^{\prime} y=(-1)^{n}(n-3)!y
\end{gathered}
$$

The signs in the above equation result from the definition of \hat{l}_{n} in terms of l_{n}, the definition of l_{n} in this particular example, and from applying the map $\uparrow^{\otimes n}$ to the element $x_{2} \otimes y^{n-1}$ using the fact that the degree of x_{2} is -1 and the degree of y is 0 .

For example,

$$
\hat{l}_{n}\left(x_{2}, y, \ldots, y\right)=(-1)^{\frac{n(n-1)}{2}} \downarrow \circ l_{n} \circ \uparrow^{\otimes n}\left(x_{2}, y, \ldots, y\right)
$$

which, after applying the map $\uparrow^{\otimes n}$ and noting that the degree of y is 0 and the degree of x_{2} is -1 , and that $\uparrow x_{2}=v_{2}$ and $\uparrow y=w$,

$$
\begin{gathered}
=(-1)^{\frac{n(n-1)}{2}}(-1)^{n-1} \downarrow \circ l_{n}\left(v_{2}, w, \ldots, w\right) \\
=(-1)^{\frac{n(n-1)}{2}}(-1)^{n-1}(-1)^{\frac{(n-2)(n-3)}{2}}(n-3)!\downarrow w=(-1)^{n}(n-3)!y .
\end{gathered}
$$

The last equality results from the fact that $\frac{n(n-1)}{2}+(n-1)+\frac{(n-2)(n-3)}{2}$ has the same parity as n.

These maps \hat{l}_{n} have degree +1 and may be extended to coderivations on $S^{c}(W)$ and added together to give the differential D on the cocommutative coalgebra $S^{c}(W)$.

3. An open-CLOSED HOMOTOPY ALGEBRA

We next recall the definition of an open-closed homotopy algebra (OCHA) as introduced by Kajiura and Stasheff [3].

Definition 2. An open-closed homotopy algebra ($\mathcal{H}=\mathcal{H}_{c} \oplus \mathcal{H}_{o}, l, \eta$) consists of an L_{∞} algebra $\left(\mathcal{H}_{c}, l\right)$ and a family of degree +1 maps $\left\{\eta_{p, q}: \mathcal{H}_{c}^{\otimes p} \otimes \mathcal{H}_{o}^{\otimes q} \rightarrow \mathcal{H}_{o}\right\}$ for $p, q \geq 0$ such that

$$
\begin{gathered}
0=\sum_{\sigma}(-1)^{\epsilon(\sigma)} \eta_{1+r, m}\left(l_{p}\left(c_{\sigma(1)}, \ldots, c_{\sigma(p)}\right), c_{\sigma(p+1)}, \ldots, c_{\sigma(n)} ; o_{1}, \ldots, o_{m}\right) \\
+\sum_{\sigma}(-1)^{\mu_{p, i}(\sigma)} \eta_{p, i+1+j}\left(c_{\sigma(1)}, . . c_{\sigma(p)} ; o_{1}, . ., o_{i}, \eta_{r, s}\left(c_{\sigma(p+1)}, . ., c_{\sigma(n)} ; o_{i+1}, . ., o_{i+s}\right), o_{i+s+1}, . ., o_{m}\right)
\end{gathered}
$$

where the second sum is taken over $i+s+j=m, \sigma$ ranges over all ($p, n-r$) unshuffles, and $n, m \geq 0$.

The sign exponent is given by

$$
\mu_{p, i}(\sigma)=\epsilon(\sigma)+\left(c_{\sigma(1)}+. .+c_{\sigma(p)}\right)+\left(o_{1}+. .+o_{i}\right)+\left(o_{1}+. .+o_{i}\right)\left(c_{\sigma(p+1)}+. .+c_{\sigma(n)}\right)
$$

where we indicate the degree of an element by its name, and $\epsilon(\sigma)$ is the product of the degrees of the permuted elements.

We will show that the following example of a "small" L_{∞} algebra has the structure of an OCHA.

Theorem 3. The graded vector space $W=W_{-1} \oplus W_{0}$ together with the maps $\left\{\hat{l}_{n}\right\}$ has the structure of an open-closed homotopy algebra.
Proof. We let $\mathcal{H}_{c}=W_{-1}$ and $\mathcal{H}_{o}=W_{0}$ and define $\eta_{p, q}=\frac{1}{q!} \hat{l}_{p+q}$. Recall that W_{-1} together with \hat{l}_{2} restricted to $W_{-1} \otimes W_{-1}$ is a Lie algebra, so the requirement that \mathcal{H}_{c} be an L_{∞} algebra is satisfied. We next show that the maps $\eta_{p, q}$ satisfy the relations in the definition by evaluating those terms on all possible inputs from W. We first observe that by the definition of \hat{l}_{n}, all $\eta_{0, q}=0$. From this, it is immediate that any element of $\mathcal{H}^{\otimes n}$ with only a single element from \mathcal{H}_{c} will trivially satisfy the requisite relations.

The next case to consider is an element of the form $x_{1} \otimes x_{1} \otimes y^{m}$. Because $\hat{l}_{2}\left(x_{1} \otimes x_{1}\right)=0$, we need only consider the second sum in the relation. The only possible non-zero term occurs in the expression $\left.\eta_{1,1}\left(\eta_{1,0}\left(x_{1}\right), x_{1}\right)=\hat{l}_{2}\left(\hat{l}_{1}\left(x_{1}\right), x_{1}\right)\right)=\hat{l}_{2}\left(y, x_{1}\right)=y$. However, this term occurs again with opposite sign because there are two $(1,1)$ unshuffles of $x_{1} \otimes x_{1}$ and the Koszul sign is -1 for the second one. Consequently, the relation is satisfied in this case.

A similar situation occurs with the case of elements of the form $x_{2} \otimes x_{2} \otimes y^{m}$. However, we have here non-trivial terms of the form (each $y_{i}=y$)

$$
\begin{gathered}
\eta_{1, m-s+1}\left(x_{2} ; y_{1}, . ., y_{i}, \eta_{1, s}\left(x_{2} ; y_{i+1}, . ., y_{i+s}\right), y_{i+s+1}, . . y_{m}\right) \\
=\eta_{1, m-s+1}\left(x_{2} ; y_{1}, . . y_{i}, \frac{1}{s!} C_{s+1}^{\prime} y, y_{i+s+1}, . . y_{m}\right) \\
=\frac{1}{s!} \frac{1}{(m-s+1)!} C_{s+1}^{\prime} C_{m-s}^{\prime} y .
\end{gathered}
$$

As in the previous case, the second unshuffle of $x_{2} \otimes x_{2}$ yields the same term with opposite sign.

Next consider the elements of the form $x_{1} \otimes x_{2} \otimes y^{\otimes m}$.

When $m=1$ the OCHA relation has the form

$$
\begin{gathered}
\eta_{1,1}\left(\hat{l_{2}}\left(x_{1}, x_{2}\right) ; y\right)-\eta_{1,1}\left(x_{1} ; \eta_{1,1}\left(x_{2} ; y\right)\right)+\eta_{1,1}\left(x_{2} ; \eta_{1,1}\left(x_{1} ; y\right)\right) \\
-\eta_{1,2}\left(x_{1} ; \eta_{1,0}\left(x_{2}\right), y\right)-\eta_{1,2}\left(x_{1} ; y, \eta_{1,0}\left(x_{2}\right)\right)+\eta_{1,2}\left(x_{2} ; \eta_{1,0}\left(x_{1}\right), y\right)+\eta_{1,2}\left(x_{2} ; y, \eta_{1,0}\left(x_{1}\right)\right) \\
=\hat{l_{2}}\left(\hat{l}_{2}\left(x_{1}, x_{2}\right), y\right)-\hat{l_{2}}\left(x_{1}, \hat{l_{2}}\left(x_{2}, y\right)\right)+\hat{l_{2}}\left(x_{2}, \hat{l_{2}}\left(x_{1}, y\right)\right) \\
-\frac{1}{2} \hat{l_{3}}\left(x_{1}, \hat{l_{1}}\left(x_{2}\right), y\right)-\frac{1}{2} \hat{l_{3}}\left(x_{1}, y, \hat{l_{1}}\left(x_{2}\right)\right)+\frac{1}{2} \hat{l_{3}}\left(x_{2}, \hat{l_{1}}\left(x_{1}\right), y\right)+\frac{1}{2} \hat{l_{3}}\left(x_{2}, y, \hat{l_{1}}\left(x_{1}\right)\right) \\
\left.=\hat{l_{2}}\left(x_{1}\right), y\right)-\hat{l_{2}}\left(x_{1}, 0\right)+\hat{l_{2}}\left(x_{2}, y\right)-\frac{1}{2} \hat{l_{3}}\left(x_{1}, y, y\right)-\frac{1}{2} \hat{l_{3}}\left(x_{1}, y, y\right)+\frac{1}{2} \hat{l_{3}}\left(x_{2}, y, y\right)+\frac{1}{2} \hat{l_{3}}\left(x_{2}, y, y\right) \\
=y-0+0-0-0-\frac{1}{2} y-\frac{1}{2} y=0
\end{gathered}
$$

For $m>1$, the first sum in the OCHA relation has the form (with each $y_{i}=y$)

$$
\eta_{1, m}\left(\hat{l}_{2}\left(x_{1}, x_{2}\right) ; y_{1}, \ldots, y_{m}\right)=\eta_{1, m}\left(x_{1} ; y_{1}, \ldots, y_{m}\right)=\frac{1}{m!} \hat{l}_{m+1}\left(x_{1}, y_{1}, \ldots, y_{m}\right)=0
$$

so we consider only the second sum and evaluate the terms separately.

$$
\begin{gathered}
\eta_{2, m}\left(x_{1}, x_{2} ; \eta_{0, m}\left(y_{1}, \ldots, y_{m}\right)\right)=\frac{1}{m!} \hat{l}_{m+2}\left(x_{1}, x_{2}, \frac{1}{m!} \hat{l}_{m}\left(y_{1}, \ldots, y_{m}\right)\right) \\
=\frac{1}{m!} \hat{l}_{m+2}\left(x_{1}, x_{2}, 0\right)=0
\end{gathered}
$$

and

$$
\begin{gathered}
-\eta_{1, m+1}\left(x_{1} ; y_{1}, \ldots, y_{i}, \eta_{1,0}\left(x_{2}\right), y_{i+1}, \ldots, y_{m}\right)=-\frac{1}{(m+1)!} \hat{l}_{m+2}\left(x_{1} ; y_{1}, \ldots, y_{i}, \hat{l}_{1}\left(x_{2}\right), y_{i+1}, \ldots, y_{m}\right) \\
=-\frac{1}{(m+1)!} \hat{l}_{m+2}\left(x_{1} ; y_{1}, \ldots, y_{i}, y, y_{i+1}, \ldots, y_{m}\right)=0, \forall i
\end{gathered}
$$

Next we have

$$
-\eta_{1, m}\left(x_{1} ; y_{1}, \ldots, y_{i}, \eta_{1,1}\left(x_{2} ; y_{i+1}\right), \ldots, y_{m}\right)=\frac{1}{m!} \hat{l}_{m+1}\left(x_{1}, y_{1}, \ldots, \hat{l}_{2}\left(x_{2}, y_{i+1}\right), \ldots, y_{m}\right)=0, \forall i
$$

In general, we have

$$
\begin{gathered}
-\eta_{1, m+1}\left(x_{1} ; y_{1}, \ldots, y_{i}, \eta_{1, s}\left(x_{2} ; y_{i+1}, \ldots, y_{i+s}\right), y_{i+s+1}, \ldots, y_{m}\right) \\
=-\frac{1}{(m+1)!} \hat{l}_{m+2}\left(x_{1}, y_{1}, \ldots, \frac{1}{s!} \hat{l}_{1+s}\left(x_{2}, y_{i+1}, \ldots, y_{i+s}\right), y_{i+s+1}, \ldots, y_{m}\right)=0
\end{gathered}
$$

unless $i=0$ and $s=m$ in which case we have

$$
\begin{equation*}
-\hat{l}_{2}\left(x_{1}, \frac{1}{m!} \hat{l}_{1+m}\left(x_{2}, y_{1}, \ldots, y_{m}\right)\right)=-\hat{l}_{2}\left(x_{1}, \frac{1}{m!} C_{m+1}^{\prime} y\right)=-\frac{1}{m!} C_{m+1}^{\prime} y \tag{1}
\end{equation*}
$$

We next compute the analogous terms for the other $(1,1)$ unshuffle with the order of x_{1} and x_{2} interchanged:

$$
\begin{gather*}
\sum_{i=0}^{m} \eta_{1, m+1}\left(x_{2} ; y_{1}, \ldots, y_{i}, \eta_{1,0}\left(x_{1}\right), \ldots, y_{m}\right)=\frac{1}{(m+1)!} \sum_{i=0}^{m} \hat{l}_{m+2}\left(x_{2}, y_{1}, \ldots, \hat{l}_{1}\left(x_{1}\right), \ldots, y_{m}\right) \\
2) \quad=\frac{1}{(m+1)!} \sum_{i=0}^{m} \hat{l}_{m+2}\left(x_{2}, y, \ldots, y_{i}, \ldots, y\right)=\frac{m+1}{(m+1)!} C_{m+2}^{\prime} y=\frac{1}{m!} C_{m+2}^{\prime} y \tag{2}
\end{gather*}
$$

The final possibly non-zero terms occur in the sum

$$
\begin{align*}
& \sum_{i=0}^{m-1} \eta_{1, m}\left(x_{2} ; y_{1}, \ldots, y_{i}, \eta_{1,1}\left(x_{1} ; y_{i+1}\right), y_{i+2}, \ldots, y_{m}\right)=\frac{1}{m!} \sum_{i=0}^{m-1} \hat{l}_{m+1}\left(x_{2}, y_{1}, \ldots, y_{i}, \hat{l}_{2}\left(x_{1}, y_{i+1}\right), \ldots, y_{m}\right) \\
& (3) \quad=\frac{1}{m!} \sum_{i=o}^{m-1} \hat{l}_{m+1}\left(x_{2}, y_{1}, \ldots, y_{i}, y, \ldots, y_{m}\right)=\frac{m}{m!} C_{m+1}^{\prime} y \tag{3}
\end{align*}
$$

We collect the coefficients $\frac{1}{m!}\left(-C_{m+1}^{\prime}+C_{m+2}^{\prime}+m C_{m+1}^{\prime}\right)$ from equations (1), (2), and (3) and evaluate:

$$
\begin{gathered}
\frac{1}{m!}\left(-C_{m+1}^{\prime}+C_{m+2}^{\prime}+m C_{m+1}^{\prime}\right)=\frac{1}{m!}\left(C_{m+2}^{\prime}+(m-1) C_{m+1}^{\prime}\right) \\
\quad=\frac{1}{m!}\left((-1)^{m+2}(m-1)!+(-1)^{m+1}(m-1)(m-2)!\right) \\
\quad=\frac{1}{m!}\left((-1)^{m+2}(m-1)!+(-1)^{m+1}(m-1)!\right)=0
\end{gathered}
$$

A final non-trivial case is that in which we consider the element of the form $x_{1} \otimes x_{2} \otimes x_{2}$. The only non-zero summand is

$$
\eta_{2,0}\left(\hat{l}_{2}\left(x_{1}, x_{2}\right), x_{2}\right)
$$

which occurs twice with opposite signs that result from the unshuffle permutations.

We say that this example is "small" in two senses. First of all, the underlying vector space is 3-dimensional. Secondly, the only non-trivial operations are the Lie bracket \hat{l}_{2} : $W_{-1} \otimes W_{-1} \rightarrow W_{-1}$ and the maps $\eta_{1, q}: W_{-1} \otimes W_{0}^{\otimes q} \rightarrow W_{0}$ for $q \geq 0$. Even though we may impose a trivial A_{∞} algebra structure on W_{0}, the presence of the non-trivial operation $\eta_{1,0}$ gives rise to an open-closed homotopy algebra structure rather than that of an A_{∞} algebra over an L_{∞} algebra. In string field theory the operation $\eta_{1,0}$ corresponds to the opening of a closed string into an open string.

Acknowledgements: The authors would like to thank Hiro Kajiura and Jim Stasheff for many useful comments and suggestions regarding the preparation of this note.

References

[1] M. Daily and T. Lada, A finite dimensional L_{∞} algebra example in Gauge theory, Homotopy, Homology and Applications Vol. 7(2), (2005), 87-93.
[2] E. Hoefel, On the coalgebra description of OCHA, math.QA/0607435.
[3] H. Kajiura and J. Stasheff, Homotopy algebras inspired by classical open-closed string field theory, Comm. Math Phys. 263, no. 3 (2006), 553-581.
[4] T. Lada and M. Markl, Strongly homotopy Lie algebras, Communications in Algebra 23(6), (1995), 21472161.
[5] T. Lada and J. Stasheff, Introduction to sh Lie algebras for physicists, Internat. J. Theoret. Phys. 32 (1993), 1087-1103.
A. Razmadze Mathematical Institute, M. Aleksidze Str. 1, Tbilisi, 0193, Georgia

E-mail address: kade@rmi.acnet.ge
Department of Mathematics, Box 8205, North Carolina State University, Raleigh, NC 27695 USA

E-mail address: lada@math.ncsu.edu

