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Abstract. We consider a particular finite dimensional example of an L∞ algebra in which
a 2-dimensional Lie algebra acts on a 1-dimensional vector space in a non-trivial non-Lie
manner. In order to understand the nature of this action, we show that this algebra is in
fact an example of an open-closed homotopy algebra.

1. Introduction

In [1], a non-trivial L∞ algebra structure on a finite dimensional 2-graded vector space
which was discovered by M. Daily was discussed in detail. The structure of that algebra
entailed a 2-dimensional Lie algebra V0 acting on a 1-dimensional vector space V1. The
nature of this action is the topic of this article. A possible structure for this action is that
of V1 being an L∞ module over the Lie algebra V0. Such an action requires a collection of

operations ηk : V
⊗(k−1)
0 ⊗ V1 → V1 subject to compatibility relations; see [4] for details.

Two other candidates for understanding the action of V0 on V1 are that of an A∞ algebra
over an L∞ algebra and that of an open-closed homotopy algebra as developed by Kajiura
and Stasheff [3]. These structures are given by operations ηp,q : V ⊗p

0 ⊗ V ⊗q
1 → V1 subject

to compatibility relations, where p ≥ 0, q ≥ 1 for an A∞ algebra over an L∞ algebra, and
p ≥ 0, q ≥ 0 for an open-closed homotopy algebra. These actions may also be described by
a coderivation D on the coalgebra Sc(↓ V0) ⊗ T c(↓ V1) with D2 = 0 [3],[2]. Here, Sc(V0)
is the cocommutative coalgebra on V0 , T c(V1) is the tensor coalgebra on V1, and ↓ is the
desuspension isomorphism of graded vector spaces.

Our main result will show that the L∞ algebra mentioned above is in fact an example of
an open-closed homotopy algebra. The other two types of action are not possible because of
the presence of a non zero operation η1,0.

We will review the definition of L∞ algebras in Section 2 and provide explicit details of
the example. In Section 3, we will recall the definition of an open-closed homotopy algebra
and verify that the example satisfies the relations.

2. An L∞ algebra

We begin by recalling the definition of an L∞ algebra [4].

Definition 1. An L∞ algebra structure on a graded vector space V is a collection of skew
symmetric linear maps ln : V ⊗n → V of degree 2− n that satisfy the relations∑

i+j=n+1

∑
σ

(−1)σ(−1)e(σ)(−1)i(j−1)lj(li(vσ(1), . . . , vσ(i)), vσ(i+1), . . . , vσ(n)) = 0

where (−1)σis the sign of the permutation, e(σ) is the product of the degrees of the permuted
elements, and σ is taken over all (i, n− i) unshuffles.
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This is the cochain complex point of view; for chain complexes, require the maps ln to
have degree n− 2.

Now consider the graded vector space V = V0 ⊕ V1 where V0 has basis < v1, v2 > and V1

has basis < w >. Then V may be given an L∞ algebra structure by defining [1]

l1(v1) = l1(v2) = w

l2(v1 ⊗ v2) = v1, l2(v1 ⊗ w) = w

ln(v2 ⊗ w⊗n−1) = Cnw = (−1)
(n−2)(n−3)

2 (n− 3)!w, n ≥ 3.

In other words, (V, l1) is a cochain complex and the maps ln have degree 2−n, are extended
to all of V ⊗n by graded skew symmetry, and are defined to be equal to 0 on any elements
not mentioned above. Also note that (V0, l2) is a two dimensional Lie algebra.

There is an equivalent description of L∞ algebras given by a degree 1 coderivation D on
the on the coalgebra Sc(↓ V ) with D2 = 0 [4], [5] . We will translate the L∞ algebra data
above into this context in order to be compatible with the OCHA data in the next section.

We may apply the desuspension operator, ↓, to the data above to obtain a collection

of degree one graded symmetric linear maps l̂n : W⊗n → W given by l̂n = (−1)
n(n−1)

2 ↓
◦ln◦ ↑⊗n[4]. Here, W = W−1⊕W0 with W−1 isomorphic to V0 and W0 isomorphic to V1. Let
xi correspond to vi and y correspond to w under these isomorphisms. We may then describe
the l̂n’s explicitly by

l̂1(x1) = l̂1(x2) = y

l̂2(x1 ⊗ x2) = x1, l̂2(x1 ⊗ y) = y

l̂n(x2 ⊗ yn−1) = C ′
ny = (−1)n(n− 3)!y

The signs in the above equation result from the definition of l̂n in terms of ln, the definition
of ln in this particular example, and from applying the map ↑⊗n to the element x2 ⊗ yn−1

using the fact that the degree of x2 is −1 and the degree of y is 0.

For example,

l̂n(x2, y, . . . , y) = (−1)
n(n−1)

2 ↓ ◦ln◦ ↑⊗n (x2, y, . . . , y)

which, after applying the map ↑⊗n and noting that the degree of y is 0 and the degree of x2

is −1, and that ↑ x2 = v2 and ↑ y = w,

= (−1)
n(n−1)

2 (−1)n−1 ↓ ◦ln(v2, w, . . . , w)

= (−1)
n(n−1)

2 (−1)n−1(−1)
(n−2)(n−3)

2 (n− 3)! ↓ w = (−1)n(n− 3)!y.

The last equality results from the fact that n(n−1)
2

+ (n− 1) + (n−2)(n−3)
2

has the same parity
as n.

These maps l̂n have degree +1 and may be extended to coderivations on Sc(W ) and added
together to give the differential D on the cocommutative coalgebra Sc(W ).
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3. An open-closed homotopy algebra

We next recall the definition of an open-closed homotopy algebra (OCHA) as introduced
by Kajiura and Stasheff [3].

Definition 2. An open-closed homotopy algebra (H = Hc ⊕ Ho, l, η) consists of an L∞
algebra (Hc, l) and a family of degree +1 maps {ηp,q : H⊗p

c ⊗H⊗q
o → Ho} for p, q ≥ 0 such

that
0 =

∑
σ

(−1)ε(σ)η1+r,m(lp(cσ(1), . . . , cσ(p)), cσ(p+1), . . . , cσ(n); o1, . . . , om)

+
∑

σ

(−1)µp,i(σ)ηp,i+1+j(cσ(1), ..cσ(p); o1, .., oi, ηr,s(cσ(p+1), .., cσ(n); oi+1, .., oi+s), oi+s+1, .., om)

where the second sum is taken over i + s + j = m , σ ranges over all (p, n − r) unshuffles,
and n,m ≥ 0.

The sign exponent is given by

µp,i(σ) = ε(σ) + (cσ(1) + .. + cσ(p)) + (o1 + .. + oi) + (o1 + .. + oi)(cσ(p+1) + .. + cσ(n))

where we indicate the degree of an element by its name, and ε(σ) is the product of the
degrees of the permuted elements.

We will show that the following example of a “small” L∞ algebra has the structure of an
OCHA.

Theorem 3. The graded vector space W = W−1 ⊕W0 together with the maps {l̂n} has the
structure of an open-closed homotopy algebra.

Proof. We let Hc = W−1 and Ho = W0 and define ηp,q = 1
q!
l̂p+q. Recall that W−1 together

with l̂2 restricted to W−1 ⊗ W−1 is a Lie algebra, so the requirement that Hc be an L∞
algebra is satisfied. We next show that the maps ηp,q satisfy the relations in the definition by
evaluating those terms on all possible inputs from W . We first observe that by the definition
of l̂n, all η0,q = 0. From this, it is immediate that any element of H⊗n with only a single
element from Hc will trivially satisfy the requisite relations.

The next case to consider is an element of the form x1⊗x1⊗ ym. Because l̂2(x1⊗x1) = 0,
we need only consider the second sum in the relation. The only possible non-zero term occurs
in the expression η1,1(η1,0(x1), x1) = l̂2(l̂1(x1), x1)) = l̂2(y, x1) = y. However, this term occurs
again with opposite sign because there are two (1,1) unshuffles of x1 ⊗ x1 and the Koszul
sign is −1 for the second one. Consequently, the relation is satisfied in this case.

A similar situation occurs with the case of elements of the form x2 ⊗ x2 ⊗ ym. However,
we have here non-trivial terms of the form (each yi = y)

η1,m−s+1(x2; y1, .., yi, η1,s(x2; yi+1, .., yi+s), yi+s+1, ..ym)

= η1,m−s+1(x2; y1, ..yi,
1

s!
C ′

s+1y, yi+s+1, ..ym)

=
1

s!

1

(m− s + 1)!
C ′

s+1C
′
m−sy.

As in the previous case, the second unshuffle of x2 ⊗ x2 yields the same term with opposite
sign.

Next consider the elements of the form x1 ⊗ x2 ⊗ y⊗m.
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When m = 1 the OCHA relation has the form

η1,1(l̂2(x1, x2); y)− η1,1(x1; η1,1(x2; y)) + η1,1(x2; η1,1(x1; y))

−η1,2(x1; η1,0(x2), y)− η1,2(x1; y, η1,0(x2)) + η1,2(x2; η1,0(x1), y) + η1,2(x2; y, η1,0(x1))

= l̂2(l̂2(x1, x2), y)− l̂2(x1, l̂2(x2, y)) + l̂2(x2, l̂2(x1, y))

−1
2
l̂3(x1, l̂1(x2), y)− 1

2
l̂3(x1, y, l̂1(x2)) + 1

2
l̂3(x2, l̂1(x1), y) + 1

2
l̂3(x2, y, l̂1(x1))

= l̂2(x1), y)− l̂2(x1, 0) + l̂2(x2, y)− 1

2
l̂3(x1, y, y)− 1

2
l̂3(x1, y, y) +

1

2
l̂3(x2, y, y) +

1

2
l̂3(x2, y, y)

= y − 0 + 0− 0− 0− 1

2
y − 1

2
y = 0

For m > 1, the first sum in the OCHA relation has the form (with each yi = y)

η1,m(l̂2(x1, x2); y1, . . . , ym) = η1,m(x1; y1, . . . , ym) =
1

m!
l̂m+1(x1, y1, . . . , ym) = 0

so we consider only the second sum and evaluate the terms separately.

η2,m(x1, x2; η0,m(y1, . . . , ym)) =
1

m!
l̂m+2(x1, x2,

1

m!
l̂m(y1, . . . , ym))

=
1

m!
l̂m+2(x1, x2, 0) = 0

and

−η1,m+1(x1; y1, . . . , yi, η1,0(x2), yi+1, . . . , ym) = − 1

(m + 1)!
l̂m+2(x1; y1, . . . , yi, l̂1(x2), yi+1, . . . , ym)

= − 1

(m + 1)!
l̂m+2(x1; y1, . . . , yi, y, yi+1, . . . , ym) = 0,∀i.

Next we have

−η1,m(x1; y1, . . . , yi, η1,1(x2; yi+1), . . . , ym) =
1

m!
l̂m+1(x1, y1, . . . , l̂2(x2, yi+1), . . . , ym) = 0,∀i.

In general, we have

−η1,m+1(x1; y1, . . . , yi, η1,s(x2; yi+1, . . . , yi+s), yi+s+1, . . . , ym)

= − 1
(m+1)!

l̂m+2(x1, y1, . . . ,
1
s!
l̂1+s(x2, yi+1, . . . , yi+s), yi+s+1, . . . , ym) = 0

unless i = 0 and s = m in which case we have

(1) −l̂2(x1,
1

m!
l̂1+m(x2, y1, . . . , ym)) = −l̂2(x1,

1

m!
C ′

m+1y) = − 1

m!
C ′

m+1y.
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We next compute the analogous terms for the other (1,1) unshuffle with the order of x1

and x2 interchanged:

m∑
i=0

η1,m+1(x2; y1, . . . , yi, η1,0(x1), . . . , ym) =
1

(m + 1)!

m∑
i=0

l̂m+2(x2, y1, . . . , l̂1(x1), . . . , ym)

(2) =
1

(m + 1)!

m∑
i=0

l̂m+2(x2, y, . . . , yi, . . . , y) =
m + 1

(m + 1)!
C ′

m+2y =
1

m!
C ′

m+2y.

The final possibly non-zero terms occur in the sum

m−1∑
i=0

η1,m(x2; y1, . . . , yi, η1,1(x1; yi+1), yi+2, . . . , ym) =
1

m!

m−1∑
i=0

l̂m+1(x2, y1, . . . , yi, l̂2(x1, yi+1), . . . , ym)

(3) =
1

m!

m−1∑
i=o

l̂m+1(x2, y1, . . . , yi, y, . . . , ym) =
m

m!
C ′

m+1y.

We collect the coefficients 1
m!

(−C ′
m+1 + C ′

m+2 + mC ′
m+1) from equations (1), (2), and (3)

and evaluate:

1

m!
(−C ′

m+1 + C ′
m+2 + mC ′

m+1) =
1

m!
(C ′

m+2 + (m− 1)C ′
m+1)

=
1

m!
((−1)m+2(m− 1)! + (−1)m+1(m− 1)(m− 2)!)

=
1

m!
((−1)m+2(m− 1)! + (−1)m+1(m− 1)!) = 0.

A final non-trivial case is that in which we consider the element of the form x1 ⊗ x2 ⊗ x2.
The only non-zero summand is

η2,0(l̂2(x1, x2), x2)

which occurs twice with opposite signs that result from the unshuffle permutations.
�

We say that this example is “small”in two senses. First of all, the underlying vector
space is 3-dimensional. Secondly, the only non-trivial operations are the Lie bracket l̂2 :
W−1 ⊗W−1 → W−1 and the maps η1,q : W−1 ⊗W⊗q

0 → W0 for q ≥ 0. Even though we may
impose a trivial A∞ algebra structure on W0, the presence of the non-trivial operation η1,0

gives rise to an open-closed homotopy algebra structure rather than that of an A∞ algebra
over an L∞ algebra. In string field theory the operation η1,0 corresponds to the opening of
a closed string into an open string.
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