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07 Twisting Elements in Homotopy G-algebras

T. Kadeishvili

Abstract

We study the notion of twisting elements da = a ⌣1 a with respect
to ⌣1 product when it is a part of homotopy Gerstenhaber algebra
structure. This allows to bring to one context the two classical con-
cepts, the theory of deformation of algebras of M. Gerstenhaber, and
A(∞)-algebras of J. Stasheff.

1 Introduction

A twisting element in a differential graded algebra (dga) (A = {Ai}, d : An →
An+1, am · bn ∈ Am+n) is defined as an element t ∈ A1 satisfying the Brown’s
condition

dt = t · t. (1)

Denote the set of all twisting elements by Tw(A). An useful consequences of
the Brown’ condition is the following: let M be a dg module over A, then a
twisting element t ∈ Tw(A) defines on M a new differential dt : M → M by
dt(x) = dx+ t · x, and the condition (1) guarantees that dtdt = 0.

Twisting elements show up in various problems of algebraic topology
and homological algebra. The first appearance was in homology theory of
fibre bundles [5]: For a fibre bundle F → E → B with structure group
G there exists a twisting element t ∈ A = C∗(B,C∗(G)) such that (M =
C∗(B) ⊗ C∗(F ), dt) (the twisted tensor product) gives homology of the total
space E.

Later N. Berikashvili [4] has introduced in Tw(A) an equivalence relation
induced by the following group action. Let G be the group of invertible
elements in A0, then for g ∈ G and t ∈ Tw(A) let

g ∗ t = g · t · g−1 + dg · g−1, (2)
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easy to see that g ∗ t ∈ Tw(A). The factor set D(A) = Tw(A)/G, called
Berikashvili’s functor D, has nice properties and useful applications. In par-
ticular if t ∼ t′ then (M, dt) and (M, dt′) are isomorphic.

The notion of homotopy G-algebra (hGa in short) was introduced by
Gerstenhaber and Voronov in [8] as an additional structure on a dg algebra
(A, d, ·) that induces a Gerstenhaber algebra structure on homology. The
main example is Hochschild cochain complex of an algebra.

Another point of view is that hGa is a particular case of B(∞)-algebra
[10]: this is an additional structure on a dg algebra (A, d, ·) that induces a
dg bialgebra structure on the bar construction BA.

There is the third aspect of hGa [16]: this is a structure which measures
the noncommutativity of A. The Steenrod’s⌣1 product which is the classical
tool which measures the noncommutativity of a dg algebra (A, d, ·) satisfies
the condition

d(a ⌣1 b) = da ⌣1 b+ a ⌣1 db+ a · b+ b · a. (3)

The existence of such ⌣1 guarantees the commutativity of H(A), but a ⌣1

product satisfying just the condition (3) is too poor for some applications.
In many constructions some deeper properties of ⌣1 are needed, for example
the compatibility with the dot product of A (the Hirsch formula)

(a · b) ⌣1 c+ a · (b ⌣1 c) + (a ⌣1 c) · b = 0. (4)

A hGa (A, d, ·, {E1,k}) is a dga (A, d, ·) equipped additionally with a sequence
of operations (some authors call them braces)

{E1,k : A⊗A⊗k → A, k = 1, 2, ...}

satisfying some coherence conditions (see bellow). The starting operation
E1,1 is a kind of ⌣1 product: it satisfies the conditions (3) and (4). As for
the symmetric expression

a ⌣1 (b · c) + b · (a ⌣1 c) + (a ⌣1 b) · c,

it is just homotopical to zero and the appropriate chain homotopy is the
operation E1,2. So we can say that a hGa is a dga with a ”good”⌣1 product.

There is one more aspect of hGa: the operation E1,1 =⌣1 is not associa-
tive but the commutator [a, b] = a ⌣1 b−b ⌣1 a satisfies the Jacobi identity,
so it forms on the desuspension s−1A a structure of dg Lie algebra.
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Let us present three remarkable examples of homotopy G-algebras.
The first one is the cochain complex of 1-reduced simplicial set C∗(X).

The operations E1,k here are dual to cooperations defined by Baues in [2],
and the starting operation E1,1 is the classical Steenrod’s ⌣1 product.

The second example is the Hochschild cochain complex C∗(U,U) of an
associative algebra U . The operations E1,k here were defined in [14] with the
purpose to describe A(∞)-algebras in terms of Hochschild cochains although
the properties of those operations which where used as defining ones for the
notion of homotopy G-algebra in [8] did not appear there. These operations
where defined also in [10]. Again the starting operation E1,1 is the classical
Gerstenhaber’s circle product which is sort of ⌣1-product.

The third example is the the cobar construction ΩC of a dg bialgebra C.
The operations E1,k are constructed in [17]. And again the starting operation
E1,1 is classical: it is Adams’s ⌣1-product defined for ΩC in [1] using the
multiplication of C.

The main task of this paper is to introduce the notion of a twisting
element and their transformation in a hGa. Shortly a twisting element in a
hGa (A, d, ·, {E1,k}) is an element a ∈ A such that da = a ⌣1 a and two
twisting elements a, a ∈ A we call equivalent if there exists g ∈ A such that

a = a + dg + g · g + g ⌣1 a+ a ⌣1 g + E1,2(a; g, g) + E1,3(a; g, g, g) + ... .

As we see in the definition of a twisting element participates just the opera-
tion E1,1 =⌣1 but in the definition of equivalence participates the whole hGa
structure. We remark that such a twisting element a ∈ A is a Lie twisting
element in the dg Lie algebra (s−1A, d, [ , ]), i.e. satisfies da = 1

2
[a, a]. But

it is unclear wether the equivalence can be formulated in terms the bracket
[ , ].

In this paper we present the following application of the notion of twisting
element in a hGa: it allows to unify two classical concepts, namely the the-
ory of deformation of algebras of M. Gerstenhaber, and J. Stasheff’s A(∞)-
algebras.

Namely, a Gerstenhaber’s deformation of an associative algebra U (see
[7], and bellow)

a ⋆ b = a · b+B1(a⊗ b)t+B2(a⊗ b)t2 +B3(a⊗ b)t3 + ... ∈ U [[t]],

can be considered as a twisting element B = B1 + B2 + ... ∈ C2(U,U) in
the Hochschild cochain complex of U with coefficients in itself: the defining
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condition of deformation means exactly dB = B ⌣1 B. Furthermore, two
deformations are equivalent if and only if the corresponding twisting elements
are equivalent in the above sense.

On the other side, the same concept of twisting elements in hGa works
in the following problem. Suppose (H, µ : H ⊗ H → H) is a graded alge-
bra. Let us define it’s Stasheff’s deformation as an A(∞) algebra structure
(H, {mi}) with m1 = 0 and m2 = µ, i.e. which extends the given algebra
structure. Then each deformation can be considered as a twisting element
m = m3 +m4 + ..., mi ∈ Ci(H,H) in the Hochschild cochain complex of H
with coefficients in itself: the Stasheffs defining condition of A(∞)-algebra
means exactly dm = m ⌣1 m. Furthermore, to isomorphic (as A(∞)-
algebras) deformations correspond equivalent twisting elements in the above
sense.

In both cases we present the obstruction theory for the existence of suit-
able deformations. The obstructions live in suitable Hochschild cohomologies:
in H2(U,U) in Gerstenhaber’s deformation case and in H i(H,H), i = 3, 4, ...
in Stasheff’s deformation case.

The structure of the paper is following. In the section 2 necessary def-
initions are given. In the section 3 the definition Homotopy G-algebra is
presented. In the section 4 the notion of twisted element in a homotopy
G-algebra is studied. In the last two sections 5 and 6 the above mentioned
applications of this notion are given.
Acknowledgements. Dedicated to Murray Gerstenhaber’s 80th and Jim
Stasheff’s 70th birthdays.

2 Notation and Preliminaries

We work over R = Z2. For a graded module M we denote by sM the
suspension of M , i.e. (sM)i = M i−1 . Respectively (s−1M)i = M i+1.

2.1 Differential Graded Algebras and Coalgebras

A differential graded algebra (dg algebra, or dga) is a graded R-module
C = {Ci, i ∈ Z} with an associative multiplication µ : Ci ⊗ Cj → Ci+j and
a differential d : Ci → Ci+1 satisfying dd = 0 and the derivation condition

4



d(x·y) = dx·y+x·dy, where x·y = µ(x⊗y). A dga C is connected if C<0 = 0
and C0 = R. A connected dga C is n-reduced if Ci = 0 for 1 ≤ i ≤ n.

A differential graded coalgebra (dg coalgebra, or dgc) is a graded R-
module C = {Ci, i ∈ Z} with a coassociative comultiplication ∆ : C → C⊗C
and a differential d : Ci → Ci+1 satisfying dd = 0 and the coderivation
condition∆d = (d ⊗ id + id ⊗ d)∆. A dgc C is connected if C<0 = 0 and
C0 = R. A connected dgc C is n-reduced if Ci = 0 for 1 ≤ i ≤ n.

A differential graded bialgebra (dg bialgebra) (C, d, µ,∆) is a dg coalgebra
(C, d,∆) with a morphism of dg coalgebras µ : C ⊗C → C turning (C, d, µ)
into a dg algebra.

2.2 Cobar and Bar Constructions

Let M be a graded R-module with M i≤0 = 0 and let T (M) be the tensor
algebra of M , i.e. T (M) = ⊕∞

i=0M
⊗i. Tensor algebra T (M) is a free graded

algebra generated by M : for a graded algebra A and a homomorphism α :
M → A of degree zero there exists a unique morphism of graded algebras
fα : T (M) → A (called multiplicative extension of α)such that fα(a) = α(a).
The map fα is given by fα(a1 ⊗ ...⊗ an) = α(a1) · ... · α(an).

Dually, let T c(M) be the tensor coalgebra of M , i.e. T c(M) = ⊕∞
i=0M

⊗i,
and the comultiplication ∇ : T c(M) → T c(M) ⊗ T c(M) is given by

∇(a1 ⊗ ...⊗ an) =
n∑

k=0

(a1 ⊗ ...⊗ ak) ⊗ (ak+1 ⊗ ...⊗ an).

The tensor coalgebra (T c(M),∇) is a cofree graded coalgebra: for a graded
coalgebra C and a homomorphism β : C → M of degree zero there exists a
unique morphism of graded coalgebras gβ : C → T c(M) (called comultiplica-
tive coextension of β) such that p1gβ = β, here p1 : T c(M) →M is the clear
projection. The map gβ is given by

gβ =
∞∑

n=0

(β ⊗ ...⊗ β)∆n,

where ∆n : C → C⊗n is n-th iteration of the diagonal ∆ : C → C ⊗ C, i.e.
∆1 = id, ∆2 = ∆, ∆n = (∆n−1 ⊗ id)∆.

Let (C, dC,∆) be a connected dg coalgebra and ∆(c) = c ⊗ 1R + 1R ⊗
c+ ∆′(c). The (reduced) cobar construction ΩC on C is a dg algebra whose
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underlying graded algebra is T (sC>0). An element (sc1⊗...⊗scn) ∈ (sC)⊗n ⊂
T (sC>0) is denoted by [c1, ..., cn] ∈ ΩC. The differential dΩ of ΩC for a
generator [c] ∈ ΩC is defined by dΩ[c] = [dC(c)] +

∑
[c′, c′′] where ∆′(c) =∑

c′ ⊗ c′′, and is extended as a derivation.
Let (A, dA, µ) be a 1-reduced dg algebra. The (reduced) bar construction

BA on A is a dg coalgebra whose underlying graded coalgebra is T c(s−1A>0).
Again an element (s−1a1 ⊗ ...⊗ s−1an) ∈ (s−1A)⊗n ⊂ T c(s−1A>0) we denote
as [a1, ..., an] ∈ BA. The differential dB of BA is defined by

dB[a1, ..., an] =
∑n

i=1[a1, ..., dAai, ..., an] +
∑n−1

i=1 [a1, ..., ai · ai+1, ..., an].

2.3 Twisting Cochains

Let (C, d,∆) be a dgc and (A, d, µ) be a dga. A twisting cochain [5] is a
homomorphism τ : C → A of degree +1 satisfying the Brown’s condition

dτ + τd = τ ⌣ τ, (5)

where τ ⌣ τ ′ = µA(τ ⊗ τ ′)∆. We denote by Tw(C,A) the set of all twisting
cochains τ : C → A.

There are universal twisting cochains τC : C → ΩC and τA : BA → A
being clear inclusion and projection respectively.

Here are essential consequences of the condition (5):
(i) The multiplicative extension fτ : ΩC → A is a map of dg algebras, so
there is a bijection Tw(C,A) ↔ Homdg−Alg(ΩC,A);
(ii) The comultiplicative coextension gτ : C → BA is a map of dg coalgebras,
so there is a bijection Tw(C,A) ↔ Homdg−Coalg(C,BA).

3 Homotopy G-algebras

A homotopy G-algebra (hGa in short) is a dg algebra with ”good” ⌣1 prod-
uct. The general notion was introduced in [8], see also [24].

Definition 1 A homotopy G-algebra is defined as a dg algebra (A, d, ·) with
a given sequence of operations

E1,k : A⊗ (A⊗k) → A, k = 0, 1, 2, 3, ...
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(the value of the operation E1,k on a ⊗ b1 ⊗ ... ⊗ bk ∈ A ⊗ (A ⊗ ... ⊗ A) we
write as E1,k(a; b1, ..., bk)) which satisfies the conditions

E1,0 = id, (6)

dE1,k(a; b1, ..., bk) + E1,k(da; b1, ..., bk) +
∑

iE1,k(a; b1, ..., dbi, ..., bk)
= b1 · E1,k−1(a; b2, ..., bk) + E1,k−1(a; b1, ..., bk−1) · bk+∑

iE1,k−1(a; b1, ..., bi · bi+1, ..., bk),
(7)

E1,k(a1 · a2; b1, .., bk)
= a1 · E1,k(a2; b1, ..., bk) + E1,k(a1; b1, ..., bk) · a2+∑k−1

p=1 E1,p(a1; b1, ..., bp) · E1,m−p(a2; bp+1, ..., bk),
(8)

E1,n(E1,m(a; b1, ..., bm); c1, ..., cn)
=

∑
0≤i1≤j1≤...≤im≤jm≤n

E1,n−(j1+...+jm)+(i1+...+im)+m(a; c1, ..., ci1 , E1,j1−i1(b1; ci1+1, ..., cj1),
cj1+1, ..., ci2, E1,j2−i2(b2; ci2+1, ..., cj2), cj2+1, ..., cim ,
E1,jm−im(bm; cim+1, ..., cjm

), cjm+1, ..., cn).

(9)

Let us present these conditions in low dimensions.
The condition (7) for k = 1 looks as

dE1,1(a; b) + E1,1(da; b) + E1,1(a; db) = a · b+ b · a. (10)

So the operation E1,1 is a sort of ⌣1 product: it is the chain homotopy which
which measures the noncommutativity of A, c.f. the condition (3). Below
we denote a ⌣1 b = E1,1(a; b).

The condition (8) for k = 1 looks as

(a · b) ⌣1 c+ a · (b ⌣1 c) + (a ⌣1 c) · b = 0, (11)

this means, that the operation E1,1 =⌣1 satisfies the left Hirsch formula (4).
The condition (7) for k = 2 looks as

dE1,2(a; b, c) + E1,2(da; b, c) + E1,2(a; db, c) + E1,2(a; b, dc)
= a ⌣1 (b · c) + (a ⌣1 b) · c+ b · (a ⌣1 c),

(12)

this means, that this ⌣1 satisfies the right Hirsch formula just up to homo-
topy and the appropriate homotopy is the operation E1,2.
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The condition (9) for n = m = 2 looks as

(a ⌣1 b) ⌣1 c + a ⌣1 (b ⌣1 c) = E1,2(a; b, c) + E1,2(a; c, b), (13)

this means that the same operation E1,2 measures also the deviation from
the associativity of the operation E1,1 =⌣1.

3.1 hGa as a B(∞)-algebra

The notion of B∞−algebra was introduced in [10] as an additional structure
on a dg module (A, d) which turns the tensor coalgebra T c(s−1A) into a dg
bialgebra. So it requires a differential

d̃ : T c(s−1A) → T c(s−1A)

which is a coderivation (that is an A(∞)-algebra structure on A, see bellow)
and a an associative multiplication

µ̃ : T c(s−1A) ⊗ T c(s−1A) → T c(s−1A)

which is a map of dg coalgebras.
Here we show that a hGa structure on A is a particular B(∞)-algebra

structure: it induces on B(A) = (T c(s−1A), dB) a multiplication but does
not change the differential dB (see [10], [16], [17], [18] for more details).

Let us extend our sequence {E1,k, k = 0, 1, 2, ...}} to the sequence {Ep,q :
(A⊗p) ⊗ (A⊗q) → A, p, q = 0, 1, ...} adding

E0,1 = id, E0,q>1 = 0, E1,0 = id, Ep>1,0 = 0, (14)

and Ep>1,q = 0.
This sequence defines a map E : B(A) ⊗ B(A) → A by E([a1, ..., am] ⊗

[b1, ..., bn]) = Ep,q(a1, ..., am; b1, ..., bn). The conditions (7) and (8) mean ex-
actly dE+E(dB ⊗ id+ id⊗dB) = E ⌣ E, i.e. E is a twisting cochain. Thus
according to the section 2.3 it’s coextesionis a dg coalgebra map

µE : B(A) ⊗ B(A) → B(A).

The condition (9) can be rewritten as E(µE ⊗ id − id ⊗ µE) = 0, so this
condition means that the multiplication µE is associative. And the condition
(14) means that [ ] ∈ B(A) is the unit for this multiplication.
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Finally we obtained that (B(A), dB,∆, µE) is a dg bialgebra thus a hGa
is a B(∞)-algebra.

Let us mention, that a twisting cochain E satisfying just the starting
condition (14) was constructed in [19] using acyclic models for A = C∗(X),
the singular cochain complex of a topological space. The condition (14)
determines this twisting cochain E uniquely up to equivalence of twisting
cochains (2).

3.2 Homology of a hGa is a Gerstenhaber algebra

A structure of a hGa on A induces on the homology H(A) a structure of
Gerstenhaber algebra (G-algebra).

Gerstenhaber algebra (see [6], [8], [24]) is defined as a commutative graded
algebra (H, ·) together with a Lie bracket of degree -1

[ , ] : Hp ⊗Hq → Hp+q−1

(i.e. a graded Lie algebra structure on the desuspension s−1H) which is a
biderivation: [a, b · c] = [a, b] · c + b · [a, c]. Main example of Gerstenhaber
algebra is Hochschild cohomology of an associative algebra.

The following argument shows the existence of this structure on the ho-
mology H(A) of a hGa.

First, there appears on the desuspension s−1A a structure of dg Lie al-
gebra: although the ⌣1= E1,1 is not associative, the condition (13) implies
the pre-Jacobi identity

a ⌣1 (b ⌣1 c) + (a ⌣1 b) ⌣1 c = a ⌣1 (c ⌣1 b) + (a ⌣1 c) ⌣1 b,

this condition guarantees that the commutator [a, b] = a ⌣1 b + b ⌣1 a
satisfies the Jacobi identity, besides the condition (10) implies that [ , ] :
s−1A⊗s−1A→ s−1A is a chain map. Consequently there appears on s−1H(A)
a structure of graded Lie algebra. The Hirsch formulae (11) and (12) imply
that the induced Lie bracket is a biderivation.

3.3 Operadic Description

The operations E1,k forming hGa have nice description in terms of the sur-
jection operad, see [20], [21], [3] for definition. Namely, to the dot product
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corresponds the element (1, 2) ∈ χ0(2); to E1,1 =⌣1 product corresponds
(1, 2, 1) ∈ χ1(2), and generally to the operation E1,k corresponds the element

E1,k = (1, 2, 1, 3, ..., 1, k, 1, k+ 1, 1) ∈ χk(k + 1). (15)

We remark here that the defining conditions of a hGa (6), (7), (8), (9) can be
expressed in terms of operadic structure (differential, symmetric group ac-
tion and composition product) and the elements (15) satisfy these conditions
already in the operad χ.

Note that the elements (15) together with the element (1, 2) generate the
suboperad F2χ which is equivalent to the little square operad ([20], [21], [3]).
This in particular implies that a cochain complex (A, d) is a hGa if and only
if it is an algebra over the operad F2χ.

This fact and the hGa structure on the Hochschild cochain complex
C∗(U,U) of an algebra U [14] were used by some authors to prove the Deligne
conjecture about the action of the little square operad on on the Hochschild
cochain complex C∗(U,U).

3.4 Hochschild Cochain Complex as a hGa

Let A be an algebra and M be a two sided module on A. The Hochschild
cochain complex C∗(A;M) is defined as Cn(A;M) = Hom(A⊗n

,M) with
differential δ : Cn−1(A;M) → Cn(A;M) given by

δf(a1 ⊗ ...⊗ an) = a1 · f(a2 ⊗ ...⊗ an)
+

∑n−1
k=1 f(a1 ⊗ ...⊗ ak−1 ⊗ ak · ak+1 ⊗ ..⊗ an)

+f(a1 ⊗ ...⊗ an−1) · an.

We focus on the case M = A.
In this case the Hochschild complex becomes a dg algebra with respect

to the ⌣ product defined in [6] by

f ⌣ g(a1 ⊗ ...⊗ an+m) = f(a1 ⊗ ...⊗ an) · g(an+1 ⊗ ...⊗ an+m).

In [14] (see also [10], [8]) there are defined the operations

E1,i : Cn(A;A) ⊗ Cn1(A;A) ⊗ ...⊗ Cni(A;A) → Cn+n1+...+ni−i(A;A)
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given by E1,i(f ; g1, ..., gi) = 0 for i > n and

E1,i(f ; g1, ..., gi)(a1 ⊗ ...⊗ an+n1+...+ni−i)
=

∑
k1,...,ki

f(a1 ⊗ ...⊗ ak1
⊗ g1(ak1+1 ⊗ ...⊗ ak1+n1

) ⊗ ak1+n1+1 ⊗ ...
⊗ak2

⊗ g2(ak2+1 ⊗ ...⊗ ak2+n2
) ⊗ ak2+n2+1 ⊗ ...

⊗aki
⊗ gi(aki+1 ⊗ ...⊗ aki+ni

) ⊗ aki+ni+1 ⊗ ...⊗ an+n1+...+ni−i).
(16)

The straightforward verification shows that the collection {E1,k} satisfies the
conditions (6), (7), (8) and (9), thus it forms on the Hochschild complex
C∗(A;A) a structure of homotopy G-algebra.

We note that the operation E1,1 coincides with the circle product defined
by Gerstenhaber in [6], note also that the operation E1,2 satisfying (12) and
(13) also is defined there.

4 Twisting Elements

In this section we present an analog of the notion of twisting element (see
the introduction) in a homotopy G-algebra replacing in the defining equation
da = a · a the dot product by the ⌣1 product. The appropriate notion of
equivalence also will be introduced.

Let (C∗,∗, d, ·, {E1,k}) be a bigraded homotopy G-algebra. That is (C∗,∗, ·)
is a bigraded algebra Cm,n ·Cp,q ⊂ Cm+p,n+q, and we require the existence of
a differential (derivation) d(Cm,n) ⊂ Cm+1,n and of a sequence of operations

E1,k : Cm,n ⊗ Cp1,q1 ⊗ ...⊗ Cpk,qk → Cm+p1+...+pk−k,n+q1+...+qk

so that the total complex (the total degree of Cp,q is p+ q) is a hGa.
Bellow we introduce two versions of the notion of twisting elements in

a bigraded homotopy G-algebra. Although it is possible to reduce them to
each other by changing gradings, we prefer to consider them separately in
order to emphasize different areas of their applications. The first one con-
trols Stasheff’s A∞-deformation of graded algebras and the second controls
Gerstenhaber’s deformation of associative algebras, see the next two sections.
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4.1 Twisting Elements in a Bigraded Homotopy G-
algebra (version 1)

A twisting element in C∗,∗ we define as

m = m3 +m4 + ... +mp + ... , mp ∈ Cp,2−p

satisfying the condition dm = E1,1(m;m) or changing the notation dm =
m ⌣1 m. This condition can be rewritten in terms of components as

dmp =
p−1∑

i=3

mi ⌣1 m
p−i+2. (17)

Particularly dm3 = 0, dm4 = m3 ⌣1 m
3, dm5 = m3 ⌣1 m

4+m4 ⌣1 m
3, ... .

The set of all twisting elements we denote by Tw(C∗,∗).
Consider the set G = {g = g2 + g3 + ... + gp + ...; gp ∈ Cp,1−p}, and let

us introduce on G the following operation

g ∗ g = g + g +
∞∑

k=1

E1,k(g; g, ..., g), (18)

particularly

(g ∗ g)2 = g + g2;
(g ∗ g)3 = g3 + g3 + g2 ⌣1 g

3;
(g ∗ g)4 = g4 + g3 + g2 ⌣1 g

3 + g3 ⌣1 g
2 + E1,2(g

2; g2, g2).

It is possible to check, using the defining conditions of a hGa (6), (7), (8),
(9) that this operation is associative, has the unit e = 0 + 0 + ... and the
opposite g−1 can be solved inductively from the equation g ∗ g−1 = e. Thus
G is a group.

The group G acts on the set Tw(C∗,∗) by the rule g ∗m = m where

m = m+ dg + g · g + E1,1(g;m) +
∞∑

k=1

E1,k(m; g, ..., g), (19)

particularly

m3 = m3 + dg2;
m4 = m4 + dg3 + g2 · g2 + g2 ⌣1 m

3 +m3 ⌣1 g
2;

m5 = m5 + dg4 + g2 · g3 + g3 · g2 + g2 ⌣1 m
4 + g3 ⌣1 m

3+
m3 ⌣1 g

3 +m4 ⌣1 g
2 + E1,2(m

3; g2, g2).

12



Note that although in the right hand side of the formula (19) participates m
but it has less dimension then the left hand side m, thus this action is well
defined: the components of m can be solved from this equation inductively.
It is possible to check that the resulting m is a twisting element. By D(C∗,∗)
we denote the set of orbits Tw(C∗,∗)/G.

This group action allows us to perturb twisting elements in the following
sense. Let gn ∈ Cn,1−n be an arbitrary element, then for g = 0 + ... + 0 +
gn + 0 + ... the twisting element m = g ∗m looks as

m = m3 + ...+mn + (mn+1 + dgn) +mn+2 +mn+3 + ... , (20)

so the components m3, ..., mn remain unchanged and mn+1 = mn+1 + dgn.
The perturbations allow to consider the following two problems.

Quantization. Let us first mention that for a twisting element m =
∑
mk

the first component m3 ∈ C3,−1 is a cycle and any perturbation does not
change it’s homology class [m3] ∈ H3,−1(C∗,∗). Thus we have the correct
map φ : D(C∗,∗) → H3,−1(C∗,∗).

A quantization of a homology class α ∈ H3,−1(C∗,∗) we define as a twisting
element m = m3 + m4 + ... such that [m3] = α. Thus α is quantizable if it
belongs to the image of φ.

The obstructions for quatizability lay in homologies Hn,3−n(C∗,∗), n ≥ 5.
Indeed, let m3 ∈ C3,−1 be a cycle from α. The first step to quantize α is
to construct m4 such that dm4 = m3 ⌣1 m

3. The necessary and sufficient
condition for this is [m3 ⌣1 m

3] = 0 ∈ H5,−2(C∗,∗), so this homology class is
the first obstruction O(m3). Suppose it vanishes; so there exists m4. Then it
is easy to see that m3 ⌣1 m

4+m4 ⌣1 m
3 is a cycle and its class O(m3, m4) ∈

H6,−3(C∗,∗) is the second obstruction. If O(m3, m4) = 0 then there exists m5

such that dm5 = m3 ⌣1 m
4 + m4 ⌣1 m

3. If not then we take another m4

and try new second obstruction (we remark that changing of m3 makes no
sense). Generally the obstruction is

O(m3, m4, ..., mn−2) = [
n−2∑

k=3

mk ⌣1 m
n−k+1] ∈ Hn,3−n(C∗,∗).

Rigidity. A twisting element m = m3 + m4 + ... +mp + ... is called trivial
if it is equivalent to 0. A bigraded hGa C∗,∗ is rigid if each twisting element
is trivial, i.e. if D(C∗,∗) = {0}. The obstructions to triviality of a twisting
element lay in homologiesHn,2−n(C∗,∗), n ≥ 3. Indeed, for a twisting element
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m = m3 +m4 + ... +mp + ... the first component m3 is a cycle and by (19)
each perturbation of m leaves the class [m3] ∈ H3,−1(C∗,∗) unchanged and
this class is the first obstruction for triviality. If this class is zero, then we
choose g2 ∈ C2,−1 such that dg2 = m3. Perturbing m by g = g2 + 0 + 0 + ...
we kill the first component m3, i.e. we get the twisting element m ∼ m,
which looks as m = 0 + m4 + m5 + ... . Now, since of (17), the component
m4 becomes a cycle and it’s homology class is the second obstruction. If
this class is zero then we can kill m4. If it is not then we take another g2

and try new second obstruction. Generally after killing first components, for
m = 0 + 0 + ... + 0 +mn +mn+1 + ... the obstruction is the homology class
[mn] ∈ Hn,2−n(C∗,∗).

This in particular implies that if for a bigraded homotopy G-algebra C∗,∗

all homology modules Hn,2−n(C∗,∗) are trivial for n ≥ 3, then D(C∗,∗) = 0,
thus C∗,∗ is rigid.

4.2 Twisting Elements in a Bigraded Homotopy G-
algebra (version 2)

This version can be obtained from the previous one by changing grading:
take new bigraded module C

p,q
= Cp+q,−q. The same operations turn C

∗,∗

into a bigraded hGa.
A twisting element m ∈ C∗,2−∗ in this case looks as b = b1 + b2 + ... +

bn + ... , bn ∈ C
2,n

where bk = mk−2 and satisfies the condition db = b ⌣1 b,
or equivalently dbn =

∑n−1
i=2 bi ⌣1 bn−i.

Here we have the group G′ = {g = g1 + g2 + ... + gp + ... ; gp ∈ B1,p}
with operation g′ ∗ g = g′ + g +

∑∞
k=1E1,k(g

′; g, .., g). This group acts on the
set Tw′(C

∗,∗
) by the rule g ∗ b = b′ where

b′ = b+ dg + g · g + E1,1(g; b) +
∞∑

k=1

E1,k(b
′; g, ..., g). (21)

By D′(C
∗,∗

) we denote the set of orbits Tw′(C
∗,∗

)/G′.
We consider the following two problems.

Quantization. The first component b1 ∈ C
2,1

of a twisting element b =
∑
bi

is a cycle and any perturbation does not change it’s homology class α = [b1] ∈
H2,1(C

∗,∗
). Thus we have a correct map ψ : D′(C

∗,∗
) → H2,1(C

∗,∗
).

14



A quantization of a homology class α ∈ H2,1(C
∗,∗

) we define as a twisting
element b = b1+b2+... such that [b1] = α. Thus α is quantizable if α ∈ Im ψ.

The argument similar to above shows that the obstructions to quatizabil-
ity lay in homologies H3,n(C

∗,∗
), n ≥ 2.

Rigidity. A twisting element b = b1+b2+... is called trivial if it is equivalent
to 0. A bigraded hGa C

∗,∗
is rigid if each twisting element is trivial, i.e. if

D′(C
∗,∗

) = {0}. The obstructions to triviality of a twisting element lay in
homologies H2,n(C

∗,∗
), n ≥ 1.

This in particular implies that if for a bigraded hGa C
∗,∗

we haveH2,n(C
∗,∗

) =
0, n ≥ 1 then D′(C

∗,∗
) = 0 thus C

∗,∗
is rigid.

4.3 Twisting Elements in a dg Lie Algebra correspond-

ing to a hGa

As it is described above for a homotopy G-algebra (C, ·, d, {E1k}) the desus-
pension s−1A is a dg Lie algebra with the bracket [a, b] = a ⌣1 b − b ⌣1 a.
Note that if C∗,∗ is a bigraded homotopy G-algebra, then L∗,∗ = s−1C∗,∗C∗−1,∗

is a bigraded dg Lie algebra.
Suppose m ∈ C∗,2−∗ is a twisting element in C∗,∗. The defining equation

dm = m ⌣1 m can be rewritten in terms of bracket as dm = 1
2
[m,m], so

the same m can be regarded as a Lie twisting element in the bigraded dg Lie
algebra L∗,∗.

So the notion of the twisting element in a hGa, which involves just the
operation E1,1 =⌣1 in fact can be expressed in terms of Lie bracket [ , ].

But it is unclear whether the group action formulas (19) and (21), which
involve all the operations {E1,k, k = 1, 2, ...} can be expressed just in terms
of bracket.

5 Deformation of Algebras

This is just illustrative application. Using the homotopy G-algebra structure,
the notions of twisting element and their transformation one can obtain the
well known results of Gerstenhaber from [7].

Let (A, ·) be an algebra over a field k, k[[t]] be the algebra of formal power
series in variable t and A[[t]] = A⊗k[[t]] be the algebra of formal power series
with coefficients from A.
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Gerstenhaber’s deformation of an algebra (A, ·) is defined as a sequence
of homomorphisms

Bi : A⊗A→ A, i = 0, 1, 2, ...; B0(a⊗ b) = a · b

satisfying the associativity condition

∑

i+j=n

Bi(a⊗ Bj(b⊗ c)) =
∑

i+j=n

Bi(Bj(a⊗ b) ⊗ c). (22)

Such a sequence determines the star product

a ⋆ b = a · b+B1(a⊗ b)t+B2(a⊗ b)t2 +B3(a⊗ b)t3 + ... ∈ A[[t]],

which can be naturally extended to a k[[t]]−bilinear product ⋆ : A[[t]] ⊗
A[[t]] → A[[t]] and the condition (22) guarantees it’s associativity.

Two deformations {Bi} and {B′
i} are called equivalent if there exists a

sequence of homomorphisms {Gi : A → A; i = 0, 1, 2, ...; G0 = id} such
that ∑

r+s=n

Gr(Bs(a⊗ b)) =
∑

i+j+k=n

B′
i(Gj(a) ⊗Gk(b)). (23)

The sequence {Gi} determines homomorphism G =
∑
Git

i : A → A[[t]]. On
it’s turn this G naturally extends to a k[[t]]−linear bijection (A[[t]], ⋆) →
(A[[t]], ⋆′) and the condition (23) guarantees that this extension is multi-
plicative.

A deformation {Bi} is called trivial, if {Bi} is equivalent to {B0, 0, 0, ...}.
An algebra A is called rigid, if each it’s deformation is trivial.

Now we present the interpretation of deformations and their equivalence
in terms of twisting elements of version 2 type and their equivalence in hGa
of Hochschild cochains.

As it is mentioned in 3.4 the Hochschild complex C∗(A,A) for an algebra
A is a homotopy G-algebra. Then the tensor product C∗,∗ = C∗(A,A)⊗k[[t]]
is a bigraded Hirsch algebra with the following structure

Cp,q = Cp(A,A) · tq, δ(f · tq) = δf · tq, f · tp ⌣ g · tq = (f ⌣ g) · tp+q,
E1,k(f · tp; g1 · t

q1, ..., gk · t
qk) = E1,k(f ; g1, ..., gk) · t

p+q1+...+qk,

here we use the notation f ⊗ tp = f · tp.
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Then each deformation {Bi : A⊗2

→ A, i = 1, 2, 3, ...} can be interpreted
as a version 2 type twisting element b = b1+b2+...+bk+..., bk = Bk·t

k ∈ C2,k:
the associativity condition (22) can be rewritten as

δBn · tn =
∑

i+j=n

Bi · t
i ⌣1 Bj · t

j .

Suppose now two deformations {Bi} and {B′
i} are equivalent, i.e. there

exists {Gi} such that the condition (23) satisfied. In terms of Hochschild
cochsins this condition looks as

b′ = b+ δg + g ⌣ g + g ⌣1 b+ E1,1(b
′; g) + E1,2(b

′; g, g),

where g = g1 + ... + gk + ..., gk = Gk · tk ∈ C1,k. This equality slightly
differs from (21), but since g ∈ C1(A,A) and b′ ∈ C2(A,A)), we have
E1,k(b

′; g, ..., g) = 0 for k ≥ 3 (see 3.4), thus they in fact coincide.
So we obtain that deformations are equivalent if and only if the corre-

sponding Hochschild twisting elements b and b′ are equivalent. Consequently
the set of equivalence classes of deformations is bijective to D′(C∗,∗).

It is clear that Hp,q(C∗,∗) = HHp(A,A) · tq. Then from the section 4.2
follow the classical results of Gerstenhaber: obstructions for quantization of
a homomorphism b1 : A⊗ A → A lay in HH3(A,A), and if HH3(A,A) = 0
then each b1 is quantizable (or integrable as it is called in [7]). Furthermore,
the obstructions for triviality of a deformation lay in HH2(A,A), and if
HH2(A,A) = 0 then A is rigid.

Remark 1 As we see in the definition of equivalence of deformations par-
ticipate just the operations E1,1 and E1,2, the higher operations E1,k, k > 2
disappear since of (16). So observing just deformation problem it is impossi-
ble to establish general formula (21) for transformation of twisting elements.

6 A(∞)-deformation of Graded Algebras

In this section we give the similar description of A(∞)-deformation of graded
algebras in terms of twisting elements in the hGa of Hochschild cochains. So
this two types of deformation will be unified by the notion of twisting element
in hGa. Partially these results are given in [14], [15].
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6.1 A(∞)-algebras

The notion of A(∞)-algebra was introduced by J.D. Stasheff in [23]. This
notion generalizes the notion of dg algebra.

An A(∞)-algebra is a graded module M with a given sequence of opera-
tions

{mi : M⊗i → M, i = 1, 2, ..., degmi = 2 − i}

which satisfies the following conditions

∑

i+j=n+1

n−j∑

k=0

mi(a1 ⊗ ...⊗ ak ⊗mj(ak+1 ⊗ ...⊗ ak+j) ⊗ ...⊗ an) = 0. (24)

Particularly, for the operation m1 : M → M we have degm1 = 1 and
m1m1 = 0, this m1 can be regarded as a differential on M . The operation
m2 : M ⊗M →M is of degree 0 and satisfies

m1m2(a1 ⊗ a2) +m2(m1a1 ⊗ a2) +m2(a1 ⊗m1a2) = 0,

i.e. m2 can be regarded as a multiplication on M and m1 is a derivation.
Thus (M,m1, m2) is a sort of (maybe nonassociative) dg algebra. For the
operation m3 we have degm3 = −1 and

m1m3(a1 ⊗ a2 ⊗ a3) +m3(m1a1 ⊗ a2 ⊗ a3) +m3(a1 ⊗m1a2 ⊗ a3)
+m3(a1 ⊗ a2 ⊗m1a3) +m2(m2(a1 ⊗ a2) ⊗ a3) +m2(a1 ⊗m2(a2 ⊗ a3)) = 0,

thus the multiplication m2 is homotopy associative and the appropriate chain
homotopy is m3.

The sequence of operations {mi} determines on the tensor coalgebra

T c(s−1M) = R + s−1M + s−1M ⊗ s−1M + s−1M ⊗ s−1M ⊗ s−1M + ...

a coderivation

dm(a1 ⊗ ...⊗ an) =
∑

k,j

a1 ⊗ ...⊗ ak ⊗mj(ak+1 ⊗ ...⊗ ak+j) ⊗ ...⊗ an,

and the condition (24) is equivalent to dmdm = 0. The obtained dg coalgebra
(T c(s−1M), dm) is called bar construction and is denoted as B(M, {mi}).
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A morphism of A(∞)-algebras (M, {mi}) → (M ′, {m′
i}) is defined as a

sequence of homomorphisms

{fi : M⊗i

→ M ′, i = 1, 2, ..., deg fi = 1 − i},

which satisfy the following condition

∑
i+j=n+1

∑n−j
k=0 fi(a1 ⊗ ...⊗ ak ⊗mj(ak+1 ⊗ ...⊗ ak+j) ⊗ ...⊗ an)

=
∑

k1+...+kt=nm
′
t(fk1

(a1 ⊗ ...⊗ ak1
) ⊗ fk2

(ak1+1 ⊗ ...⊗ ak1+k2
)

⊗...⊗ fkt
(ak1+...+kt−1+1 ⊗ ...⊗ an)).

(25)

In particular for n = 1 this condition gives f1m1(a) = m′
1f1(a), i.e. f1 :

(M,m1) → (M ′, m′
1) is a chain map; for n = 2 it gives

f1m2(a1 ⊗ a2) +m′
2(f1(a1) ⊗ f1(a2))

= m′
1f2(a1 ⊗ a2) + f2(m1a1 ⊗ a2) + f2(a1 ⊗m1a2),

thus f1 : (M,m1, m2) → (M ′, m′
1, m

′
2) is multiplicative up to homotopy f2.

A collection {fi} defines a homomorphism f : B(M, {m1}) → M ′. It’s
comultiplicative coextension, see 2.2, is a graded coalgebra map of the bar
constructions

B(f) : B(M, {mi}) → B(M ′, {m′
i}),

and the condition (25) guarantees that B(f) is a cahin map, i.e. B(f) is a
morphism of dg coalgebras. So B is a functor from the category of A(∞)-
algebras to the category of dg coalgebras.

A weak equivalence of A(∞)-algebras is defined as a morphism f = {fi}
for which B(f) is a weak equivalence of dg coalgebras. It is possible to show
(see for example [15]) that
(i) f is a weak equivalence of A(∞)-algebras if and only if f1 is a weak
equivalence of dg modules;
(ii) f is an isomorphism of A(∞)-algebras if and only if f1 is an isomorphism
of dg modules.

An A(∞)-algebra (M, {mi}) we call minimal if m1 = 0. In this case
(M,m2) is strictly associative graded algebra.

The following proposition is the imediate consequence of (i) and (ii):

Proposition 1 Each weak equivalence of minimal A(∞)-algebras is an iso-
morphism.

19



6.2 A(∞) Deformation of Graded Algebras as Twisting
Element

Let (H, µ : H ⊗ H → H) be a graded algebra. It’s Stasheff’s (or A(∞))
deformation we define as a minimal A(∞)-algebra (H, {mi}) with m2 = µ.
Two deformations (H, {mi}) and (H, {m′

i}) we call equivalent if there exists
an isomorphism of A(∞)-algebras {fi} : (H, {mi}) → (H, {m′

i}) with f1 =
id.

A deformation (H, {mi}) we call trivial if it is equivalent to (H, {m1 =
0, m2 = µ,m≥3 = 0}). An algebra (H, µ) we call rigid (or intrinsically
formal, this term is borrowed from the rational homotopy theory), if each
it’s deformation is trivial.

Now we present the interpretation of deformations and their equivalence
in terms of twisting elements and their equivalence in hGa of Hochschild
cochains.

The Hochschild cochain complex of a graded algebra H with coefficients
in itself is bigraded: Cm,n(H,H) = Homn(H⊗m, H), here Homn denotes
degree n homomorphisms. The coboundary operator δ maps Cm,n(H,H) to
Cm+1,n(H,H). Besides, for f ∈ Cm,n(H,H) and gi ∈ Cpi,qi(H,H) one has
f ⌣ g ∈ Cm+p,n+q(H,H), f ⌣1 g ∈ Cm+p−1,n+q(H,H) and

E1,k(f ; g1, ..., gk) ∈ Cm+p1+...+pk−k,n+q1+...+qk(H,H),

thus the Hochschild complex C∗,∗(H,H) is a bigraded homotopy G-algebra
in this case. Let us denote the n-the homology module of the complex
(C∗,k(H,H), δ) by HHn,k(H,H).

Suppose now that (H, {mi}) is an A(∞) deformation of H . Each op-
eration mi : H⊗i

→ H can be regarded as a Hochschild cochain from
Ci,2−i(H,H). The condition (24) can be rewritten as

δmk =
k−1∑

i=3

mi ⌣1 mk−i+2,

thus m = m3 +m4 + ... is a twisting element (version 1) in C∗,∗(H,H).
Now let (H, {mi}) and (H, {m′

i}) be two A(∞) deformations of H . Then
it follows from (19) that the corresponding twisting elements m and m′ are
equivalent if and only if these two A(∞) deformations are equivalent: if m′ =
p ∗m, then {pi} : (H, {mi}) → (H, {m′

i}) with p1 = id is an isomorphism of
A(∞)-algebras. So we obtain the
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Theorem 1 The set of isomorphism classes of all A(∞) deformations of a
graded algebra (H, µ) is bijective to the set of equivalence classes of twisting
elements D(C∗,∗(H, µ)).

Moreover, from 4.1 we get the following

Theorem 2 If for a graded algebra (H, µ) it’s Hochschild cohomology mod-
ules HHn,2−n(H,H) are trivial for n ≥ 3, then (H, µ) is intrinsically formal.

6.2.1 A(∞)-algebra Structure in Homology of a dg algebra

Let (A, d, µ) be a dg algebra and (H(A), µ∗) be it’s homology algebra. Al-
though the product in H(A) is associative, there appears a structure of a
(generally nondegenerate) minimal A(∞)-algebra, which is an A(∞) defor-
mation of (H(A), µ∗). Namely, in [12], [13] the following result was proved
(see also [22], [11]):

Theorem 3 If for a dg algebra all homology R-modules Hi(A) are free, then
there exist: a structure of minimal A(∞)-algebra (H(A), {mi}) on H(A) and
a weak equivalence of A(∞)-algebras

{fi} : (H(A), {mi}) → (A, {d, µ, 0, 0, ...})

such, that m1 = 0, m2 = µ∗, f ∗
1 = idH(A), such a structure is unique up to

isomorphism in the category of A(∞)-algebras.

Particularly an A(∞)-algebra structure appears in cohomology H∗(X) of
a topological space X or in homology H∗(G) of a topological group or H-
space G. (Co)homology algebra equipped with this additional structure car-
ries more information then just the (co)homology algebra. Some applications
of this structure are given in [13] , [15]. For example the cohomology A(∞)-
algebra (H∗(X), {mi}) determines cohomology of the loop space H∗(ΩX)
when just the algebra (H∗(X), m2) does not. Similarly, the homology A(∞)-
algebra (H∗(G), {mi}) determines homology of the classifying space H∗(BG)
when just the Pontriagin algebra (H∗(G), m2) does not. Furthermore, the ra-
tional cohomology A(∞)-algebra (H∗(X,Q), {mi}) (which actually is C(∞)
in this case) determines the rational homotopy type of 1-connected X when
just the cohomology algebra (H∗(X,Q), m2) does not.
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Therefore it is of particular interest the cases, when this additional struc-
ture is vanishes, that is when A(∞)-algebra (H(A), {mi}) is degenerate (in
this case a dg algebra A is called formal). The above theorem 2 gives the
sufficient condition of formality of A in terms of Hochschild cohomology of
H(A).
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