On the Differentials of the Spectral Sequence of a Fibre Bundle

T. Kadeishvili

English translation of the paper from Bulletin of the Academy of Sciences of the Georgian SSR, 82 N 2, 1976

The theorem of W. Shi, [1], which in its turn generalizes the theorem of Faddell-Hurewicz [2], states the following: if the structure group G of a fibre bundle $F \rightarrow E \rightarrow B$ is $(n-1)$-connected, then in the spectral sequence of this bundle the differentials $d^{r}=0$ for $r<n$ and for $n \leq r \leq 2 n-2$ are determined by certain characteristic classes of the associated principal bundle. The above mentioned Faddell-Hurewicz theorem calculates only the first nontrivial differential d^{n}.

For simplicity, to avoid difficulties with signees, all homologies bellow we consider over Z_{2} although it is enough to assume them free.

In this paper we generalize the Shis result for higher dimensions: we construct some cochains from $C^{*}\left(B, H_{*}(G)\right)$ and certain polylinear operations which define all differentials d^{r}. In dimensions $n \leq r \leq 2 n-2$ these cochains are cocycles form the classes from Shis theorem and the above mentioned polylinear operations is just \smile product.

In papers [3], [4] N.A. Berikashvili has constructed cochain $h=h^{2}+$ $h^{3}+\ldots, h^{r} \in C^{r}\left(B, \operatorname{Hom}\left(H_{*}(F), H_{*}(F)\right)\right.$ (representative of the predifferential of the fibration) which determines all differentials of the spectral sequence. From this point of view the Shis theorem states that for $(n-1)$-connected structure group one has $h^{r}=0$ for $r<n$ and for $n \leq r \leq 2 n-2$ the components h^{r} can be expressed in terms of some cocycles from $C^{r}\left(B, H_{r-1}(G)\right)$.

Let $\xi=(X, p, B, G)$ be a principal G-bundle, F be a G space and $\eta=$ (E, p, B, F) be the associated bundle with the fiber F.

Let $C^{*}=C^{*}\left(H_{*}(G), H_{*}(G)\right)$ be the Hochschil cochain complex of the ring $H_{*}(G)$ with coefficients in itself: cochains in C^{i} are homomorphisms $f^{i}: H_{*}(G) \otimes \ldots(i-$ times $) \ldots \otimes H_{*}(G) \rightarrow H_{*}(G)$ and the coboundary operator is given by $\delta f^{i}\left(a_{1}, \ldots, a_{i+1}\right)=a_{1} \cdot f^{i}\left(a_{2}, \ldots, a_{i+1}\right)+\sum_{k} f^{i}\left(a_{1}, \ldots, a_{k} \cdot a_{k+1}, \ldots, a_{i+1}\right)+$ $f^{i}\left(a_{1}, \ldots, a_{i}\right) \cdot a_{i+1}$.

There are \smile and \smile_{1} products in the Hochschild complex C^{*} defined as follows: for $f \in C^{i}$ and $g \in C^{j}$ let

$$
\begin{gathered}
f \smile g\left(a_{1}, \ldots, a_{i+j}\right)=f\left(a_{1}, \ldots, a_{i}\right) \cdot g\left(a_{i+1}, \ldots, a_{i+j}\right) ; \\
f \smile_{1} g\left(a_{1}, \ldots, a_{i+j-1}\right)=\sum_{k} f\left(a_{1}, \ldots, a_{k}, g\left(a_{k+1}, \ldots, a_{k+j}\right), a_{k+j+1}, \ldots, a_{i+j-1}\right) .
\end{gathered}
$$

The standard formulas $\delta(f \smile g)=\delta f \smile g+f \smile \delta g, \quad \delta\left(f \smile_{1} g\right)=$ $\delta f \smile_{1} g+f \smile_{1} \delta g+f \smile g+g \smile f$ are valid for so defined \smile and \smile_{1}.

Now let $\bar{C}^{*}=C^{*}\left(C^{*}\left(B, H_{*}(G)\right), C^{*}\left(B, H_{*}(G)\right)\right.$ be the Hochschild complex of the $\operatorname{ring} C^{*}\left(B, H_{*}(G)\right)$. There exists a map $\mu: C^{*} \rightarrow \bar{C}^{*}$ which assignees to $f^{i} \in C^{i}$ the following homomorphism: for $b^{k} \in C^{*}\left(B, H_{*}(G)\right)$ let $(\mu f)\left(b_{1}, \ldots, b_{i}\right)$ be the i fold \smile product of elements b_{1}, \ldots, b_{i} when the coefficients are multiplied by f^{i}.

Let us define a Hochschild twisting cochain as an element $f=f^{3}+f^{4}+$ $\ldots, f^{k} \in C^{k}$ satisfying the condition $\delta f=f \smile_{1} f$. The set of all such twisting cochains we denote by N.

Let us define the subset $L \subset N \times C^{*}\left(B, H_{*}(G)\right)$ as $L=\left\{\left(f, h_{0}\right), f \in\right.$ $N, h_{0} \in C^{*}\left(B, H_{*}(G)\right)$, s.t. $\left.\delta h_{0}=h_{0} \cdot h_{0}+\sum_{k}\left(\mu f^{k}\right)\left(h_{0}, \ldots, h_{0}\right)\right\}$.

Definition of the map $\alpha: L \rightarrow D^{*}\left(B, H_{*}(G)\right)$. First recall [3], [4] that $D^{*}\left(B, H_{*}(G)\right)$ is defined as the factorset of the set of twisting cochains $M\left(B, H_{*}(G)\right)=\left\{h=h^{2}+h^{3}+\ldots, h^{k} \in C^{k}\left(B, \operatorname{Hom}\left(H_{*}(G), H_{*}(G)\right), \delta h=\right.\right.$ $h \smile h\}$. Note that since the modules $H_{i}(G)$ are assumed free, an element h is determined by a collection $\left\{h(a) \in C^{*}\left(B, H_{*}(G)\right), a \in I\right\}$ where I is the set of free generators of $H_{*}(G)$. Now for an element $\left(f, h_{0}\right) \in L$ we define $h \in M\left(B, H_{*}(G)\right)$ as $h=\left\{h(a), a \in I, h(a)=h_{0} \cdot a+\sum_{i}\left(\mu f^{i}\right)\left(h_{0}, \ldots, h_{0}, a\right)\right.$. Inspection shows that $\delta h=h \smile h$. Finally we define $\alpha\left(f, h_{0}\right)$ as the class of h in $D\left(B, H_{*}(G)\right)$.

Now let us consider the set of triples $\bar{L}=\left\{\left(f, h_{0}, \bar{f}\right)\right\}$, where $\left(f, h_{0}\right) \in L$ and $\bar{f}=\bar{f}^{3}+\bar{f}^{4}+\ldots, \bar{f}^{i}: H_{*}(G) \otimes \ldots((i-1)-$ times $) \ldots \otimes H_{*}(G) \otimes H_{*}(F) \rightarrow$
$H(F)$ such that the following condition is satisfied

$$
\begin{align*}
& \sum_{s+t=i+1} \bar{f}^{s}\left(a_{1}, \ldots, a_{k}, f^{t}\left(a_{k+1}, \ldots, a_{k+t}\right), \ldots, a_{i-1}, x\right)+ \\
& \sum_{s+t=i+1} \bar{f}^{s}\left(a_{1}, \ldots, a_{i-t}, \bar{f}^{t}\left(a_{i-t+1}, \ldots, a_{i-1}, x\right)\right)=\delta \bar{f}^{i}\left(a, \ldots, a_{i-1}, x\right) . \tag{1}
\end{align*}
$$

As above each polylinear map $\overline{f^{i}}$ induces the map

$$
\left(\bar{\mu} \bar{f}^{i}\right): C^{*}\left(B, H_{*}(G)\right) \otimes \ldots \otimes C^{*}\left(B, H_{*}(G)\right) \otimes C^{*}\left(B, H_{*}(F)\right) \rightarrow C^{*}\left(B, H_{*}(F)\right) .
$$

Definition of the map $\beta: \bar{L} \rightarrow D^{*}\left(B, H_{*}(F)\right)$. We define $\beta\left(f, f_{0}, \bar{f}\right)$ as the class of the twisting cochain $\bar{h} \in M\left(B, H_{*}(F)\right)=\left\{\bar{h}=\bar{h}^{2}+\bar{h}^{3}+\right.$ $\ldots, \bar{h}^{k} \in C^{k}\left(B, \operatorname{Hom}\left(H_{*}(F), H_{*}(F)\right), \delta h=h \smile h\right\}$, defined as follows: $\bar{h}=\{\bar{h}(x) ; x \in J\}$ (here J is the set of free generators of $H_{*}(F)$), where $\bar{h}(x)=h_{0} \cdot x+\sum_{i}\left(\bar{\mu} \bar{f}^{i}\right)\left(h_{0}, \ldots, h_{0}, x\right)$. The condition (1) allows to check that $\delta \bar{h}=\bar{h} \smile \bar{h}$.

The group G and, respectively, the action $G \times F \rightarrow F$, define (non uniquely) certain Hochschild twisting cochain f, and respectively the element \bar{f}, for which the condition (1) is satisfied. This can be done as follows.

Since the groups $H_{i}(G)$ are assumed free, it is possible to fix a cycle choosing homomorphism $g: H_{*}(G) \rightarrow Z_{*}(G)$. Besides let us fix also a homomorphism $\delta^{-1}: B_{*}(G) \rightarrow C_{*}(G)$ which satisfies $\delta \delta^{-1}=i d$. Let us define also a homomorphism $\phi: Z_{*}(G) \rightarrow C_{*}(G)$ by $\phi(z)=\delta^{-1}(z-g(c l(z)))$, where $\operatorname{cl}(z)$ is the homology class of z..

We construct by induction a sequences of multioperations $f^{i}=f^{3}+f^{4}+\ldots$ and homomorphisms $A_{i}: H_{*}(G) \otimes \ldots \otimes H_{*}(G) \rightarrow C_{*}(G)$ using the following conditions:

1) $A_{2}\left(a_{1}, a_{2}\right)=g\left(a_{1}\right) \cdot g\left(a_{2}\right)$;
2) $A_{i}\left(a_{1}, \ldots, a_{i}\right) \in Z_{*}(G)$;
3) $f^{i}\left(a_{1}, \ldots, a_{i}\right)=c l\left(A_{i}\left(a_{1}, \ldots, a_{i}\right)\right) \in H_{*}(G)$;
4) $A_{i+1}\left(a_{1}, \ldots, a_{i+1}\right)=g\left(a_{1}\right) \cdot \phi A_{i}\left(a_{2}, \ldots, a_{i+1}\right)+\phi A_{i}\left(a_{1}, \ldots, a_{i}\right) \cdot g\left(a_{i+1}\right)+$
$\sum_{s, t, k} \phi A_{s}\left(a_{1}, \ldots, a_{k}, f^{t}\left(a_{k+1}, \ldots, a_{i+t}\right), \ldots, a_{i+1}\right)+$
$\sum_{s, t} \phi A_{s}\left(a_{1}, \ldots, a_{s}\right) \cdot \phi A_{t}\left(a_{s+1}, \ldots, a_{i+1}\right)$.
Now we construct \bar{f}. Let $\bar{g}: H_{*}(F) \rightarrow Z_{*}(F)$ be a cycle choosing homomorphism; $\delta^{-1}: B_{*}(F) \rightarrow C_{*}(F), \delta \delta^{-1}=i d ;$ and $\psi: Z_{*}(F) \rightarrow C_{*}(F)$
is given by $\psi(z)=\delta^{-1}(z-\bar{g}(\operatorname{cl}(z)))$. As above we construct by induction a sequences of multioperations $\bar{f}^{i}=\bar{f}^{3}+\bar{f}^{4}+\ldots$ and homomorphisms $\bar{A}_{i}: H_{*}(G) \otimes \ldots \otimes H_{*}(G) \otimes H_{*}(F) \rightarrow C_{*}(F)$ using the following conditions:
5) $\bar{A}_{2}(a, x)=g(a) \cdot \bar{g}(x)$;
6) $\bar{A}_{i}\left(a_{1}, \ldots, a_{i-1}, x\right) \in Z_{*}(F)$;
7) $\bar{f}^{i}\left(a_{1}, \ldots, a_{i-1}, x\right)=\operatorname{class}\left(\bar{A}^{i}\left(a_{1}, \ldots, a_{i-1}, x\right)\right) \in H_{*}(F)$;
8) $\bar{A}_{i+1}\left(a_{1}, \ldots, a_{i}, x\right)=g\left(a_{1}\right) \cdot \psi \bar{A}^{i}\left(a_{2}, \ldots, a_{i-1}, x\right)+\phi A_{i}\left(a_{1}, \ldots, a_{i}\right) \cdot \bar{g}(x)+$
$\sum_{s, t, k} \psi \bar{A}_{s}\left(a_{1}, \ldots, a_{k}, f^{t}\left(a_{k+1}, \ldots, a_{i+t}\right), \ldots, a_{i}, x\right)+$
$\sum_{s, t} \psi \bar{A}_{s}\left(a_{1}, \ldots, a_{i-t}, \bar{f}^{t}\left(a_{i-t+1}, \ldots, a_{i}, x\right)\right)+$
$\sum_{s, t} \phi A_{s}\left(a_{1}, \ldots, a_{s}\right) \cdot \psi \bar{A}_{t}\left(a_{s+1}, \ldots, a_{i}, x\right)$.
Theorem. For the above constructed f and \bar{f} there exists a cochain $h_{0}=$ $h_{0}^{2}+h_{0}^{3}+\ldots, h_{0}^{i} \in C^{i}\left(B, H_{i-1}(G)\right)$ such that $\left(f, h_{0}, \bar{f}\right) \in \bar{L}, \alpha\left(f, h_{0}\right)$ is the predifferential of of the principal bundle ξ, and $\beta\left(f, h_{0}, \bar{f}\right)$ is the predifferential of of the associated bundle η.

In particular if the group G is $(n-1)$-connected, we obtain the result of Shih: $h_{0}^{r}=0$ for $r<n$, and consequently $h^{r}=0$; as for $n \leq r \leq 2 n-2$ we have $h^{r}(a)=h_{0}^{r} \cdot a$, and h_{0}^{r} are cocycles.

References

[1] W. Shih, Inst. Hautes et Sci., Publ. Math. Fr., 13, 1962.
[2] E. Fadel, W. Hurewicz, Ann. of Math., 68,2, 1958, 314-347.
[3] N. Berikashvili, Bull. Georgian Acad. Sci., 51, 1, 1968.
[4] N. Berikashvili, On differentials of spectrel sequences, Tbilisi, 1971.
A. Razmadze Mathematical Institute of the Georgian Academy of Sciences
kade@rmi.acnet.ge

