On the Differentials of the Spectral Sequence of a Fibre Bundle

T. Kadeishvili

English translation of the paper from Bulletin of the Academy of Sciences of the Georgian SSR, 82 N 2, 1976

The theorem of W. Shi, [1], which in its turn generalizes the theorem of Faddell-Hurewicz [2], states the following: if the structure group G of a fibre bundle $F \to E \to B$ is (n-1)-connected, then in the spectral sequence of this bundle the differentials $d^r = 0$ for r < n and for $n \leq r \leq 2n - 2$ are determined by certain characteristic classes of the associated principal bundle. The above mentioned Faddell-Hurewicz theorem calculates only the first nontrivial differential d^n .

For simplicity, to avoid difficulties with signees, all homologies below we consider over Z_2 although it is enough to assume them free.

In this paper we generalize the Shis result for higher dimensions: we construct some cochains from $C^*(B, H_*(G))$ and certain *polylinear operations* which define all differentials d^r . In dimensions $n \leq r \leq 2n-2$ these cochains are cocycles form the classes from Shis theorem and the above mentioned polylinear operations is just \smile product.

In papers [3], [4] N.A. Berikashvili has constructed cochain $h = h^2 + h^3 + ..., h^r \in C^r(B, Hom(H_*(F), H_*(F)))$ (representative of the *predifferential* of the fibration) which determines all differentials of the spectral sequence. From this point of view the Shis theorem states that for (n-1)-connected structure group one has $h^r = 0$ for r < n and for $n \le r \le 2n - 2$ the components h^r can be expressed in terms of some cocycles from $C^r(B, H_{r-1}(G))$.

Let $\xi = (X, p, B, G)$ be a principal *G*-bundle, *F* be a *G* space and $\eta = (E, p, B, F)$ be the associated bundle with the fiber *F*.

Let $C^* = C^*(H_*(G), H_*(G))$ be the Hochschil cochain complex of the ring $H_*(G)$ with coefficients in itself: cochains in C^i are homomorphisms $f^i : H_*(G) \otimes ...(i-times) ... \otimes H_*(G) \to H_*(G)$ and the coboundary operator is given by $\delta f^i(a_1, ..., a_{i+1}) = a_1 \cdot f^i(a_2, ..., a_{i+1}) + \sum_k f^i(a_1, ..., a_k \cdot a_{k+1}, ..., a_{i+1}) + f^i(a_1, ..., a_i) \cdot a_{i+1}.$

There are \smile and \smile_1 products in the Hochschild complex C^* defined as follows: for $f \in C^i$ and $g \in C^j$ let

$$f \smile g(a_1, \dots, a_{i+j}) = f(a_1, \dots, a_i) \cdot g(a_{i+1}, \dots, a_{i+j});$$

$$f \smile_1 g(a_1, \dots, a_{i+j-1}) = \sum_k f(a_1, \dots, a_k, g(a_{k+1}, \dots, a_{k+j}), a_{k+j+1}, \dots, a_{i+j-1}).$$

The standard formulas $\delta(f \smile g) = \delta f \smile g + f \smile \delta g$, $\delta(f \smile_1 g) = \delta f \smile_1 g + f \smile_1 \delta g + f \smile g + g \smile f$ are valid for so defined \smile and \smile_1 .

Now let $\overline{C}^* = C^*(C^*(B, H_*(G)), C^*(B, H_*(G)))$ be the Hochschild complex of the ring $C^*(B, H_*(G))$. There exists a map $\mu : C^* \to \overline{C}^*$ which assignees to $f^i \in C^i$ the following homomorphism: for $b^k \in C^*(B, H_*(G))$ let $(\mu f)(b_1, ..., b_i)$ be the *i* fold \smile product of elements $b_1, ..., b_i$ when the coefficients are multiplied by f^i .

Let us define a Hochschild twisting cochain as an element $f = f^3 + f^4 + \dots, f^k \in C^k$ satisfying the condition $\delta f = f \smile_1 f$. The set of all such twisting cochains we denote by N.

Let us define the subset $L \subset N \times C^*(B, H_*(G))$ as $L = \{(f, h_0), f \in N, h_0 \in C^*(B, H_*(G)), s.t. \, \delta h_0 = h_0 \cdot h_0 + \sum_k (\mu f^k)(h_0, ..., h_0)\}.$

Definition of the map $\alpha : L \to D^*(B, H_*(G))$. First recall [3], [4] that $D^*(B, H_*(G))$ is defined as the factorset of the set of twisting cochains $M(B, H_*(G)) = \{h = h^2 + h^3 + ..., h^k \in C^k(B, Hom(H_*(G), H_*(G)), \delta h = h \smile h\}$. Note that since the modules $H_i(G)$ are assumed free, an element his determined by a collection $\{h(a) \in C^*(B, H_*(G)), a \in I\}$ where I is the set of free generators of $H_*(G)$. Now for an element $(f, h_0) \in L$ we define $h \in M(B, H_*(G))$ as $h = \{h(a), a \in I, h(a) = h_0 \cdot a + \sum_i (\mu f^i)(h_0, ..., h_0, a)$. Inspection shows that $\delta h = h \smile h$. Finally we define $\alpha(f, h_0)$ as the class of h in $D(B, H_*(G))$.

Now let us consider the set of triples $\overline{L} = \{(f, h_0, \overline{f})\}$, where $(f, h_0) \in L$ and $\overline{f} = \overline{f}^3 + \overline{f}^4 + \dots, \ \overline{f}^i : H_*(G) \otimes \dots ((i-1) - times) \dots \otimes H_*(G) \otimes H_*(F) \to \mathbb{C}$ H(F) such that the following condition is satisfied

$$\sum_{s+t=i+1} \bar{f}^s(a_1, \dots, a_k, f^t(a_{k+1}, \dots, a_{k+t}), \dots, a_{i-1}, x) + \sum_{s+t=i+1} \bar{f}^s(a_1, \dots, a_{i-t}, \bar{f}^t(a_{i-t+1}, \dots, a_{i-1}, x)) = \delta \bar{f}^i(a_1, \dots, a_{i-1}, x).$$
(1)

As above each polylinear map \bar{f}^i induces the map

$$(\bar{\mu}\bar{f}^i): C^*(B, H_*(G)) \otimes ... \otimes C^*(B, H_*(G)) \otimes C^*(B, H_*(F)) \to C^*(B, H_*(F)).$$

Definition of the map $\beta : \overline{L} \to D^*(B, H_*(F))$. We define $\beta(f, f_0, \overline{f})$ as the class of the twisting cochain $\overline{h} \in M(B, H_*(F)) = \{\overline{h} = \overline{h}^2 + \overline{h}^3 + \dots, \overline{h}^k \in C^k(B, Hom(H_*(F), H_*(F)), \delta h = h \smile h\}$, defined as follows: $\overline{h} = \{\overline{h}(x); x \in J\}$ (here J is the set of free generators of $H_*(F)$), where $\overline{h}(x) = h_0 \cdot x + \sum_i (\overline{\mu} \overline{f}^i)(h_0, \dots, h_0, x)$. The condition (1) allows to check that $\delta \overline{h} = \overline{h} \smile \overline{h}$.

The group G and, respectively, the action $G \times F \to F$, define (non uniquely) certain Hochschild twisting cochain f, and respectively the element \overline{f} , for which the condition (1) is satisfied. This can be done as follows.

Since the groups $H_i(G)$ are assumed free, it is possible to fix a *cycle* choosing homomorphism $g: H_*(G) \to Z_*(G)$. Besides let us fix also a homomorphism $\delta^{-1}: B_*(G) \to C_*(G)$ which satisfies $\delta\delta^{-1} = id$. Let us define also a homomorphism $\phi: Z_*(G) \to C_*(G)$ by $\phi(z) = \delta^{-1}(z - g(cl(z)))$, where cl(z) is the homology class of z..

We construct by induction a sequences of multioperations $f^i = f^3 + f^4 + ...$ and homomorphisms $A_i : H_*(G) \otimes ... \otimes H_*(G) \to C_*(G)$ using the following conditions:

1) $A_2(a_1, a_2) = g(a_1) \cdot g(a_2);$ 2) $A_i(a_1, ..., a_i) \in Z_*(G);$ 3) $f^i(a_1, ..., a_i) = cl(A_i(a_1, ..., a_i)) \in H_*(G);$ 4) $A_{i+1}(a_1, ..., a_{i+1}) = g(a_1) \cdot \phi A_i(a_2, ..., a_{i+1}) + \phi A_i(a_1, ..., a_i) \cdot g(a_{i+1}) + \sum_{s,t,k} \phi A_s(a_1, ..., a_k, f^t(a_{k+1}, ..., a_{i+t}), ..., a_{i+1}) + \sum_{s,t} \phi A_s(a_1, ..., a_s) \cdot \phi A_t(a_{s+1}, ..., a_{i+1}).$

Now we construct \overline{f} . Let $\overline{g} : H_*(F) \to Z_*(F)$ be a cycle choosing homomorphism; $\delta^{-1} : B_*(F) \to C_*(F)$, $\delta\delta^{-1} = id$; and $\psi : Z_*(F) \to C_*(F)$ is given by $\psi(z) = \delta^{-1}(z - \bar{g}(cl(z)))$. As above we construct by induction a sequences of multioperations $\bar{f}^i = \bar{f}^3 + \bar{f}^4 + \dots$ and homomorphisms $\bar{A}_i : H_*(G) \otimes \dots \otimes H_*(G) \otimes H_*(F) \to C_*(F)$ using the following conditions:

 $\begin{aligned} 1) \ \bar{A}_{2}(a,x) &= g(a) \cdot \bar{g}(x); \\ 2) \ \bar{A}_{i}(a_{1},...,a_{i-1},x) \in Z_{*}(F); \\ 3) \ \bar{f}^{i}(a_{1},...,a_{i-1},x) &= class(\bar{A}^{i}(a_{1},...,a_{i-1},x)) \in H_{*}(F); \\ 4) \ \bar{A}_{i+1}(a_{1},...,a_{i},x) &= g(a_{1}) \cdot \psi \bar{A}^{i}(a_{2},...,a_{i-1},x) + \phi A_{i}(a_{1},...,a_{i}) \cdot \bar{g}(x) + \\ \sum_{s,t,k} \psi \bar{A}_{s}(a_{1},...,a_{k},f^{t}(a_{k+1},...,a_{i+t}),...,a_{i},x) + \\ \sum_{s,t} \psi \bar{A}_{s}(a_{1},...,a_{i-t},\bar{f}^{t}(a_{i-t+1},...,a_{i},x)) + \\ \sum_{s,t} \phi A_{s}(a_{1},...,a_{s}) \cdot \psi \bar{A}_{t}(a_{s+1},...,a_{i},x). \end{aligned}$

Theorem. For the above constructed f and \bar{f} there exists a cochain $h_0 = h_0^2 + h_0^3 + ..., h_0^i \in C^i(B, H_{i-1}(G))$ such that $(f, h_0, \bar{f}) \in \bar{L}, \alpha(f, h_0)$ is the predifferential of the principal bundle ξ , and $\beta(f, h_0, \bar{f})$ is the predifferential of the associated bundle η .

In particular if the group G is (n-1)-connected, we obtain the result of Shih: $h_0^r = 0$ for r < n, and consequently $h^r = 0$; as for $n \le r \le 2n-2$ we have $h^r(a) = h_0^r \cdot a$, and h_0^r are cocycles.

References

- [1] W. Shih, Inst. Hautes et Sci., Publ. Math. Fr., 13, 1962.
- [2] E. Fadel, W. Hurewicz, Ann. of Math., 68,2, 1958, 314-347.
- [3] N. Berikashvili, Bull. Georgian Acad. Sci., 51, 1, 1968.
- [4] N. Berikashvili, On differentials of spectrel sequences, Tbilisi, 1971.

A. Razmadze Mathematical Institute of the Georgian Academy of Sciences kade@rmi.acnet.ge