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2 Structure of A(∞)-algebra and Hochschild and
Harrison cohomology

T. Kadeishvili

In [6] for an arbitrary differential algebra C (with free homology modules) in
the homology algebra H(C) we have constructed a sequence of operations {mi :
⊗iH(C) → H(C), i = 3, 4, ...}, which, together with ordinary multiplication m2 :
H(C) ⊗ H(C) → H(C), turns H(C) into an A(∞)-algebra in the sense of Stasheff
[8]. If a differential algebra C is commutative then on H(C) arises an A(∞)-algebra
structure of special type which we call commutative. Particularly A(∞)-algebra
structure arises on the cohomology algebra H∗(B, Λ) of a topological space, and
a commutative A(∞)-algebra structure arises on the rational cohomology algebra
H∗(B, Q). Clearly the A(∞)-algebra (H∗(B, Λ), {mi}) carries more information
than algebra H∗(B, Λ). Particularly cohomology A(∞)-algebra (H∗(B, Λ), {mi})
determines cohomology groups of the loop space ΩB, and commutative A(∞)-
algebra (H∗(B, Q), {mi}) determines the rational homotopy type of B. Naturally
arises a question when these structures are degenerate, that is when for an A(∞)-
algebra (H(C), {mi}) the operations mi, i ≥ 3 are trivial?

In this paper we study the connection between A(∞)-structures and Hochschild
(Harrison in commutative case) cohomology of the algebra H(C). Particularly we
show that if Hochschild cohomology Hochn,2−n(H(C), H(C)) = 0 for n ≥ 3 then
any A(∞)-algebra structure on H(C) is degenerate. Respectively, in commutative
case, any commutative A(∞)-algebra structure is degenerate whenever Harrison
cohomology Harrn,2−n(H(C), H(C)) = 0 for n ≥ 3

Bellow Λ denotes a field. If M =
∑

Mq is a graded Λ-module and a ∈ Mp then â
denotes (−1)dima. To the permutation of elements a ∈ Mp, b ∈ Mq corresponds the
sign (−1)pq, this rule assignees to an arbitrary permutation σ of graded elements
a1, ..., an the sign denoted by ǫ(σ) (the Koszul sign).

1 Products

For an arbitrary graded module M =
∑

Mq the tensor coalgebra T (M) is defined as

T (M) = Λ + M + M ⊗ M + ... =
∞∑

i=0

⊗iM ;
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the grading in T (M) is defined by dim(a1 ⊗ ... ⊗ an) =
∑

dimai − n, and the
comultipliciation ∇ : T (M) → T (M) ⊗ T (M) looks as

∇(a1 ⊗ ... ⊗ an) =
n∑

k=0

(a1 ⊗ ... ⊗ ak) ⊗ (ak+1 ⊗ ... ⊗ an)

(here the empty bracket () means 1 ∈ Λ). Iterating the comuultiplication ∇ we
obtain a sequence of homomorphisms

{∇i : T (M) → ⊗iT (M), i = 1, 2, ...}

where
∇1 = id, ∇2 = ∇, ∇n = (id ⊗∇n−1)∇.

There is also a product µ : T (M) ⊗ T (M) → T (M) which, together with ∇, deter-
mines on T (M) a structure of Hopf algebra, this is the shuffle product defined by
Eilenberg and MacLane in[4]. This product is defined as

µ((a1 ⊗ ... ⊗ an) ⊗ (an+1 ⊗ ... ⊗ an+m)) =
∑

ǫ(σ)aσ(1) ⊗ ... ⊗ aσ(n+m),

where summation is taken over all permutations of the set (1, 2, ..., n + m) which
satisfy the condition: i < j if 1 ≤ σ(i) < σ(j) ≤ n or n + 1 ≤ σ(i) < σ(j) ≤ n + m.

In [7] it is shown that this product is uniquely characterized by the following
axioms:

(1) µ turns T (M) into a Hopf algebra;
(2) p0(µ(a+ ⊗ b+)) = p1(µ(a+ ⊗ b+)) = 0 for arbitrary a+, b+ ∈ T (M)+ (here

T (M)+ =
∑

n≥1 ⊗
nM and pi : T (M) → ⊗iM is the clear projection).

Let us denote

Shn(M) =
∑n−1

k=1 µ((⊗kM) ⊗ (⊗n−kM)) ⊂ ⊗nM ;
Sh(M) =

∑
Shn(M); Chn(M) = ⊗nM/Shn(M); Ch(M) =

∑
Chn(M).

It is clear that

Sh(M) = µ(T (M)+ ⊗ T (M)+); Ch(M) = T (M)/Sh(M);
Sh0(M) = Sh1(M) = 0; Ch0(M) = Λ; Ch1(M) = M.

Suppose now that together with T (M) there is given a graded Λ-module N =∑
Nq. Denote by Homk(⊗nM, N) a set of Λ-homomorphisms f : ⊗nM → N of

degree k (that is f(a1 ⊗ ... ⊗ an) ⊂ Mq+k where q =
∑

dimai). We also use the
notation

Hom(⊗nM, N) =
∑

k

Homk(⊗nM, N), Hom(T (M), N) =
∑

n

Hom(⊗nM, N).

In Hom(T (M), M) Gerstenhaber [5] has introduced a product which we denote by
⌣1, defined as follows. For f ∈ Homk(⊗mM, N), g ∈ Homt(⊗nM, N) the product
f ⌣1 g ∈ Homk+t(⊗m+n−1M, N) looks as

f ⌣1 g(a1⊗ ...⊗am+n−1) =
m−1∑

k=0

±f(a1⊗ ...⊗ak ⊗g(ak+1⊗ ...⊗ak+n)⊗ ...⊗am+n−1).
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We shall use also more general product of an element f ∈ Hom(T (M), M) and
a sequence (g1, ..., gk), gi ∈ Hom(T (M), M) defined as

f ⌣1 (g1, ..., gk)(a1 ⊗ ... ⊗ an) =∑
±f(a1 ⊗ ... ⊗ ak1

⊗ g(ak1+1 ⊗ ... ⊗ ak1+p1
) ⊗ ak1+p1+1 ⊗ ... ⊗ ak1+t1⊗

g2(ak1+t1+1 ⊗ ... ⊗ ak1+t1+p2
) ⊗ ...

⊗as ⊗ gk(as+1 ⊗ ... ⊗ as+pk
) ⊗ as+pk+1 ⊗ ... ⊗ an).

The product f ⌣1 g can be written as f ⌣1 g = f(id ⊗ g ⊗ id)∇3. Similarly
f ⌣1 (g1, ..., gk) = f(id⊗ g1 ⊗ id⊗ g2 ⊗ ...⊗ id⊗ gk ⊗ id)∇2k+1. We remark also that
these products are defined if f ∈ Hom(T (M), N) and gi ∈ Hom(T (M), M).

The product f ⌣1 g is not associative generally but easy to see that

f ⌣1 (g ⌣1 h) − (f ⌣1 g) ⌣1 h = f ⌣1 (g, h) − f ⌣1 (h, g).

Let us consider Hom(Ch(M), M) =
∑

n Hom(Chn(M), M). Clearly

Hom(Chn(M), M) = {f ∈ Hom(⊗n(M), M), f |Shn(M) = 0},

hence Hom(Chn(M), M) is also graded by degree of homomorphisms, i.e.

Hom(Chn(M), M) =
∑

k

Homk(Chn(M), M)

where

Homk(Chn(M), M) = {f ∈ Homk(⊗nM, M), f |Shn(M) = 0},

thus Hom(Ch(M), M) ⊂ Hom(T (M), M). It is possible to show that if f, g ∈
Hom(Ch(M), M) then f ⌣1 g ∈ Hom(Ch(M), M). Moreover, f ⌣1 (g, ..., g) ∈
Hom(Ch(M), M) too.

2 Hochshild cohomology

Let A be a graded algebra and M be a graded bimodule over A. Hochschild cochain
complex is defined as

C∗(A, M) =
∑

Cn(A, M), Cn(A, M) = Hom(⊗nA, M),

the coboundary operator δ : Cn(A, M) → Cn+1(A, M) is given by

δf(a1 ⊗ ... ⊗ an+1) = a1f((a2 ⊗ ... ⊗ an+1)+∑
k ±f(a1 ⊗ ... ⊗ akak+1 ⊗ ... ⊗ an+1) ± f(a1 ⊗ ... ⊗ an)an+1.

Hochschild cohomology of A with coefficients in M is defined as homology of this
cochain complex and is denoted by Hoch∗(A, M). Since A and M are graded,
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each Cn(A, M) is graded too: Cn(A, M) =
∑

k Cn,k(A, M) where Cn,k(A, M) =
Homk(⊗nA, M). It is easy to see that δ : Cn,k(A, M) → Cn+1,k(A, M) , so
(C∗,k(A, M), δ) is a direct summand in (C∗(A, M), δ), thus Hochschild cohomology
in this case is bigraded: Hochn(A, M) =

∑
k Hochn,k(A, M) where Hochn,k(A, M)

is the n-th homology module of (C∗,k(A, M), δ).
Instead of M we can take the algebra A itself. The complex C∗,∗(A, A) is a

differential algebra with respect to the following product: for f ∈ Cm,k(A, A) and
g ∈ Cn,t(A, A) the product f ⌣ g ∈ Cm+n,k+t(A, A) is defined by

f ⌣ g(a1 ⊗ ... ⊗ am+n) = f(a1 ⊗ ... ⊗ am) · g(an+1 ⊗ ... ⊗ am+n).

Besides this product in C∗,∗(A, A) we have also the product f ⌣1 g (see the previous
section). In [5] it is shown that these products satisfy the standard conditions

δ(f ⌣ g) = δf ⌣ g ± f ⌣ δg; (1)

δ(f ⌣1 g) = δf ⌣1 g ± f ⌣1 δg ± f ⌣ g ± g ⌣ f. (2)

3 Harrison cohomology

Suppose now A is a commutative graded algebra and M is a module over A. The
Harrison cochain complex C̄∗(A, M) is defined as a subcomplex of the Hochschild
complex

C̄∗(A, M) = {f ∈ C∗(A, M)| f |Sh(A) = 0},

i.e. C̄∗(A, M) = Hom(Ch(A), M) =
∑

n Hom(Chn(A), M). In [1] it is shown
that C̄∗(A, M) is closed with respect to the differential δ (that is if f |Sh(A) = 0
then δf |Sh(A) = 0). Harrison cohomology of a commutative algebra A with
coefficients in an A-module M is defined as homology of the cochain complex
(C̄∗(A, M), δ). These cohomologies we denote by Harr∗(A, M). As above each
module C̄n(A, M) = Hom(Chn(A), M) is graded by degrees of homomorphisms:
C̄n(A, M) =

∑
k C̄n,k(A, M) where C̄n,k(A, M) = Homk(Chn(A), M). Besides

δ : C̄n,k(A, M) → C̄n+1,k(A, M) , so (C̄∗,k(A, M), δ) is a direct summand in the
Harrison complex (C̄n(A, M), δ). Thus Harrn(A, M) =

∑
k Harrn,k(A, M) where

Harrn,k(A, M) is the n-th homology module of (C̄∗,k(A, M), δ). So Harrison coho-
mology in is bigraded for graded A and M .

As it is mentioned in the section 1 the Harrison complex (C̄∗,k(A, M) is closed
with respect to products f ⌣1 g and f ⌣1 (g, ..., g). The formulae (1) and (2) are
valid in this subcomplex too.

4 Twisting cochains in the Hochschild and Har-

rison complexes

In [2], [3] N. Berikashvilihas has defined a functor D from the category of differential
algebras to the category of pointed sets, which have applications in the homology
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theory of fibrations. We recall shortly its definition. Let (C, d) be a differential
graded algebra. A twisting cochain is defined as an element a = a2 +a3 + ..., ai ∈ Ci

satisfying the condition da = ±a · a. Let Tw(C) be the set of all twisting cochains.
In this set by Berikashvili was introduced the following equivalence relation: a ∼ a
if there exists an element p = p1 + p2 + ..., pi ∈ Ci such that

a − a‘ = p · a ± a · p ± dp.

The factorset of the set Tw(C) by this equivalence is denoted by D(C). We are
going to introduce the similar definition in the Hochschild and Harrison complexes
but with respect to ⌣1 product. Note that Hochschild and Hasrrison complexes are
not differential algebras with respect to the product f ⌣1 g, besides this product is
not associative, hence in order to define the functor D some modification is needed.

Let us define a twisting cochain in the Hochschild complex C∗,∗(A, A) as an
element a = a3,−1 + a4,−2 + ... + ai,2−i + ..., ai,2−i ∈ Ci,2−i(A, A) satisfying the
condition δa = a ⌣1 a. Let Tw(A, A) be the set of all twisting cochains. Now
we introduce in this set the following equivalence relation: a ∼ a′ if there exists an
element p = p2,−1 + p3,−2 + ... + pi,1−i + ..., , pi,1−i ∈ Ci,1−i(A, A) such that

a − a′ = δp ± p ⌣1 a ± a′ ⌣1 p ± a′ ⌣1 (p, p) ± a′ ⌣1 (p, p, p) ± ... (3)

(the sum is finite in each dimension). This is an equivalence relation; we denote
by D(A, A) the factorset Tw(A, A)/ ∼. The set D(A, A) is a pointed set: a distin-
guished point is the class of a = 0, which we denote by 0 ∈ D(A, A).

There is a possibility to perturb twisting cochains without changing their equiv-
alence classes in D(A, A). Indeed, let A ∈ Tw(A, A) and p ∈ Cn,1−n(A, A) be
an arbitrary cochain, then there exists a twisting cochain ā ∈ Tw(A, A) such that
ai = āi for i ≤ n, ān+1 = an+1 + δp and ā ∼ a. The twisting cochain ā can be solved
inductively from the equation (3).

Theorem 1 If Hochn,2−n(A, A) = 0 for n ≥ 3 then D(A, A) = 0.

Proof. We have to show that in this case an arbitrary twisting cochain is equivalent
to zero. From the equality δa = a ⌣1 a in dimension n = 3 we obtain δa3 = 0 that
is a3 ∈ C3,−1(A, A) is a cocycle. Since Hoch3,−1(A, A) = 0 there exists p2,−1 ∈
C2,−1(A, A) such that a3 = δp2,−1. Perturbing our twisting cochain a = a3 + a4 + ...
by p2,−1 we we obtain new twisting cochain ā = ā3 + ā4 + ... equivalent to a and
with ā3 = 0. Now the component ā4 becomes a cocycle, which, which can be killed
using Hoch4,−2(A, A) = 0 etc. This completes the proof.

Now turn to the Harrison complex C̄(A, A) of a commutative algebra A. Since
C̄(A, A) is closed with respect to ⌣1 product, here we also can define twisting
cochains and the set D̄(A, A) and prove the similar

Theorem 2 If Harrn,2−n(A, A) = 0 for n ≥ 3 then D(A, A) = 0.
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5 Structure of A(∞)-algebra and Hochschild and

Harrison cohomology

A(∞)-algebra was defined by Stasheff in[8]. It is a graded Λ-module M =
∑

Mq

equipped with a sequence of operations - Λ-homomorphisms {mi : ⊗iM → M, i =
1, 2, ...} satisfying the following conditions

mi(⊗
iM)q ⊂ Mq−i+2, i.e. degmi = 2 − i; (4)

n∑

j=1

n−j∑

k=0

±mi(a1 ⊗ ... ⊗ ak ⊗ mj(ak+1 ⊗ ... ⊗ ak+j) ⊗ ... ⊗ an) = 0. (5)

A morphism of A(∞)-algebras f : (M, {mi}) → (M ′, {m′
i}) is a sequence of

homomorphisms {fi : ⊗iM → M ′, i = 1, 2, ...} satisfying the following conditions

fi(⊗
iM)q ⊂ M ′

q−i+1, i.e. degfi = 1 − i; (6)

∑n
j=1

∑n−j
k=0 ±fi(a1 ⊗ ... ⊗ ak ⊗ mj(ak+1 ⊗ ... ⊗ ak+j) ⊗ ... ⊗ an) =∑n

t=1

∑
k1+...+kt=n ±m′

t(fk1
(a1 ⊗ ... ⊗ ak1

) ⊗ ... ⊗ fkt
(an−kt+1 ⊗ ... ⊗ an)).

(7)

The obtained category is denoted by A(∞).
For an arbitrary A(∞)-algebra (M, {mi}) the sequence of operations {mi} defines

on the tensor coalgebra T (M) a differential d : T (M) → T (M) given by

d(a1 ⊗ ... ⊗ an) =
∑

k,j

±a1 ⊗ ... ⊗ ak ⊗ mj(ak+1 ⊗ ... ⊗ ak+j) ⊗ ... ⊗ an

which fits with the coproduct ∇ : T (M) → T (M) ⊗ T (M), i.e. turns T (M) into a
differential coalgebra. This differential coalgebra (T (M), d) is called B̃-construction
of A(∞)-algebra (M, {mi}) and is denoted by B̃(M, {mi}) ([8]).

An arbitrary morphism of A(∞)-algebras {fi} : (M, {mi}) → (M ′, {m′
i}) induces

a DG-coalgebra morphism B̃(f) : B̃(M, {mi}) → B̃(M ′, {m′
i}) by

B̃(f)(a1 ⊗ ... ⊗ an) =
n∑

t=1

∑

k1+...+kt=n

fk1
(a1 ⊗ ... ⊗ ak1

) ⊗ ... ⊗ fkt
(an−kt+1 ⊗ ... ⊗ an).

Thus B̃ is a functor from the category of A(∞)-algebras to the category of DG-
coalgebras.

We are interested in A(∞)-algebras of type (M, {m1 = 0, m2, m3, ...}), i.e. with
m1 = 0. The full subcategory of A(∞) which objects are such A(∞)-algebras we
denote by A0(∞).

Now let (M, µ) be a graded associative algebra with multiplication µ : M⊗M →
M . Consider all possible A(∞) structures {mi} on M with m1 = 0, m2 = µ.
Two such structures we call equivalent if there exists a morphism of A(∞)-algebras
{pi} : (M, {mi}) → (M, {m′

i}) for which the first component p1 is the identity map
(one can show that such morphisms are isomorphisms in the category A0(∞)). The
obtained factorset we denote by (M, µ)(∞). A trivial A0(∞) structure we define as
{mi} with mi>2 = 0. It’s class we denote as 0 ∈ (M, µ)(∞).
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Proposition 3 The sets (M, µ)(∞) and D(M, M) are bijective.

Proof. Let (M, {mi}) be an A(∞)-algebra with with m1 = 0, m2 = µ; we denote
m = m3 + m4 + ... . Each operation mi : ⊗iM → M can be interpreted as a
Hochschild cochain from Ci(M, M). It is easy to mention that the condition (5)
means exactly δm = m ⌣1 m, i.e. m ∈ Tw(M, M). Conversely, each twisting
cochain m = m3 + m4 + ... ∈ Tw(M, M) defines on m an A0(∞)-algebra structure
(M, {m1 = 0, m2 = µ, m3, m4, ...}). It remains to show that two A0(∞)-structures
{mi} and {m′

i} are equivalent if and only if the twisting cochains m and m′ are
equivalent. Indeed, if A0(∞)-structures {mi} and {m′

i} are equivalent, i.e. there
exists an isomorphism of A0(∞)-algebras {id, p2, p3, ...} : (M, {mi}) → (M, {m′

i}),
then the cochain p = p2 +p3 + ... realizes the equivalence of twisting cochains m and
m′, since the condition (7) is equivalent to (3). Conversely, if p = p2+p3+ ... realizes
the equivalence of twisting cochains m and m′, then {id, p2, p3, ...} : (M, {mi}) →
(M, {m′

i}) is the needed isomorphism.
From this proposition and the theorem 1 follows the

Corollary 4 If for a graded algebra (M, µ) all Hochn,2−n(M, M) = 0 for n ≥ 3
then any A0(∞)-algebra structure {mi} on M (with m1 = 0, m2 = µ) is equivalent
to trivial one.

Now we turn to the commutative case.
An A(∞)-algebra we call commutative if the sequence of operations {mi} apart

of the conditions (4) and (5) satisfies mi|Shi(M) = 0. In this case the differential
d : T (M) → T (M) defined by {mi} fits with shuffle product, so B̃(M, {mi}) becomes
a DG-Hopf algebra. A morphism of commutative A(∞)-algebras {fi} : (M, {mi}) →
(M ′, {m′

i}) we define as a morphism of A(∞)-algebras which, apart of the conditions
(6) and (7) satisfies fi|Shi(M) = 0. In this case B̃(f) : B̃(M, {mi}) → B̃(M ′, {m′

i})
becomes a map of DG-Hopf algebras (see [7]). The condition mi|Shi(M) = 0 for
i = 2 means that m2 : M ⊗ M → M is commutative and all the operations mi :
⊗iM → M are from the Harrison subcomplex C̄(M, M).

Now let (M, µ) be a graded commutative algebra with multiplication µ : M ⊗
M → M . Consider all possible commutative A(∞) structures {mi} on M with
m1 = 0, m2 = µ; two such structures we call equivalent if there exists a morphism of
commutative A(∞)-algebras {p1 = id, p2, p3, ...} : (M, {mi}) → (M, {m′

i}) (which,
as above, is an isomorphism). The obtained factorset we denote by (M, µ)(∞)c.
Exactly as above we obtain the

Proposition 5 The sets (M, µ)(∞)c and D̄(M, M) are bijective.

Corollary 6 If for a graded commutative algebra (M, µ) all Harrn,2−n(M, M) = 0
for n ≥ 3 then any commutative A0(∞)-algebra structure {mi} on M (with m1 =
0, m2 = µ)is equivalent to trivial one.
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