Structure of $A(\infty)$-algebra and Hochschild and Harrison cohomology

T. Kadeishvili

In [6] for an arbitrary differential algebra C (with free homology modules) in the homology algebra $H(C)$ we have constructed a sequence of operations $\left\{m_{i}\right.$: $\left.\otimes^{i} H(C) \rightarrow H(C), i=3,4, \ldots\right\}$, which, together with ordinary multiplication m_{2} : $H(C) \otimes H(C) \rightarrow H(C)$, turns $H(C)$ into an $A(\infty)$-algebra in the sense of Stasheff [8]. If a differential algebra C is commutative then on $H(C)$ arises an $A(\infty)$-algebra structure of special type which we call commutative. Particularly $A(\infty)$-algebra structure arises on the cohomology algebra $H^{*}(B, \Lambda)$ of a topological space, and a commutative $A(\infty)$-algebra structure arises on the rational cohomology algebra $H^{*}(B, Q)$. Clearly the $A(\infty)$-algebra $\left(H^{*}(B, \Lambda),\left\{m_{i}\right\}\right)$ carries more information than algebra $H^{*}(B, \Lambda)$. Particularly cohomology $A(\infty)$-algebra $\left(H^{*}(B, \Lambda),\left\{m_{i}\right\}\right)$ determines cohomology groups of the loop space ΩB, and commutative $A(\infty)$ algebra $\left(H^{*}(B, Q),\left\{m_{i}\right\}\right)$ determines the rational homotopy type of B. Naturally arises a question when these structures are degenerate, that is when for an $A(\infty)$ algebra $\left(H(C),\left\{m_{i}\right\}\right)$ the operations $m_{i}, i \geq 3$ are trivial?

In this paper we study the connection between $A(\infty)$-structures and Hochschild (Harrison in commutative case) cohomology of the algebra $H(C)$. Particularly we show that if Hochschild cohomology $\operatorname{Hoch}^{n, 2-n}(H(C), H(C))=0$ for $n \geq 3$ then any $A(\infty)$-algebra structure on $H(C)$ is degenerate. Respectively, in commutative case, any commutative $A(\infty)$-algebra structure is degenerate whenever Harrison cohomology $\operatorname{Harr}^{n, 2-n}(H(C), H(C))=0$ for $n \geq 3$

Bellow Λ denotes a field. If $M=\sum M_{q}$ is a graded Λ-module and $a \in M_{p}$ then \hat{a} denotes $(-1)^{\text {dima }}$. To the permutation of elements $a \in M_{p}, b \in M_{q}$ corresponds the sign $(-1)^{p q}$, this rule assignees to an arbitrary permutation σ of graded elements a_{1}, \ldots, a_{n} the sign denoted by $\epsilon(\sigma)$ (the Koszul sign).

1 Products

For an arbitrary graded module $M=\sum M_{q}$ the tensor coalgebra $T(M)$ is defined as

$$
T(M)=\Lambda+M+M \otimes M+\ldots=\sum_{i=0}^{\infty} \otimes^{i} M
$$

the grading in $T(M)$ is defined by $\operatorname{dim}\left(a_{1} \otimes \ldots \otimes a_{n}\right)=\sum \operatorname{dima}_{i}-n$, and the comultipliciation $\nabla: T(M) \rightarrow T(M) \otimes T(M)$ looks as

$$
\nabla\left(a_{1} \otimes \ldots \otimes a_{n}\right)=\sum_{k=0}^{n}\left(a_{1} \otimes \ldots \otimes a_{k}\right) \otimes\left(a_{k+1} \otimes \ldots \otimes a_{n}\right)
$$

(here the empty bracket () means $1 \in \Lambda$). Iterating the comuultiplication ∇ we obtain a sequence of homomorphisms

$$
\left\{\nabla^{i}: T(M) \rightarrow \otimes^{i} T(M), i=1,2, \ldots\right\}
$$

where

$$
\nabla^{1}=i d, \quad \nabla^{2}=\nabla, \quad \nabla^{n}=\left(i d \otimes \nabla^{n-1}\right) \nabla
$$

There is also a product $\mu: T(M) \otimes T(M) \rightarrow T(M)$ which, together with ∇, determines on $T(M)$ a structure of Hopf algebra, this is the shuffle product defined by Eilenberg and MacLane in [4]. This product is defined as

$$
\mu\left(\left(a_{1} \otimes \ldots \otimes a_{n}\right) \otimes\left(a_{n+1} \otimes \ldots \otimes a_{n+m}\right)\right)=\sum \epsilon(\sigma) a_{\sigma(1)} \otimes \ldots \otimes a_{\sigma(n+m)}
$$

where summation is taken over all permutations of the set $(1,2, \ldots, n+m)$ which satisfy the condition: $i<j$ if $1 \leq \sigma(i)<\sigma(j) \leq n$ or $n+1 \leq \sigma(i)<\sigma(j) \leq n+m$.

In [7] it is shown that this product is uniquely characterized by the following axioms:
(1) μ turns $T(M)$ into a Hopf algebra;
(2) $p_{0}\left(\mu\left(a_{+} \otimes b_{+}\right)\right)=p_{1}\left(\mu\left(a_{+} \otimes b_{+}\right)\right)=0$ for arbitrary $a_{+}, b_{+} \in T(M)_{+}$(here $T(M)_{+}=\sum_{n \geq 1} \otimes^{n} M$ and $p_{i}: T(M) \rightarrow \otimes^{i} M$ is the clear projection).

Let us denote

$$
\begin{gathered}
S h^{n}(M)=\sum_{k=1}^{n-1} \mu\left(\left(\otimes^{k} M\right) \otimes\left(\otimes^{n-k} M\right)\right) \subset \otimes^{n} M ; \\
S h(M)=\sum S h^{n}(M) ; C h^{n}(M)=\otimes^{n} M / S h^{n}(M) ; C h(M)=\sum C h^{n}(M) .
\end{gathered}
$$

It is clear that

$$
\begin{gathered}
S h(M)=\mu\left(T(M)_{+} \otimes T(M)_{+}\right) ; C h(M)=T(M) / S h(M) \\
S h^{0}(M)=S h^{1}(M)=0 ; C h^{0}(M)=\Lambda ; C h^{1}(M)=M
\end{gathered}
$$

Suppose now that together with $T(M)$ there is given a graded Λ-module $N=$ $\sum N_{q}$. Denote by $\operatorname{Hom}^{k}\left(\otimes^{n} M, N\right)$ a set of Λ-homomorphisms $f: \otimes^{n} M \rightarrow N$ of degree k (that is $f\left(a_{1} \otimes \ldots \otimes a_{n}\right) \subset M_{q+k}$ where $\left.q=\sum \operatorname{dima}_{i}\right)$. We also use the notation

$$
\operatorname{Hom}\left(\otimes^{n} M, N\right)=\sum_{k} \operatorname{Hom}^{k}\left(\otimes^{n} M, N\right), \operatorname{Hom}(T(M), N)=\sum_{n} \operatorname{Hom}\left(\otimes^{n} M, N\right)
$$

In $\operatorname{Hom}(T(M), M)$ Gerstenhaber [5] has introduced a product which we denote by \smile_{1}, defined as follows. For $f \in \operatorname{Hom}^{k}\left(\otimes^{m} M, N\right), g \in \operatorname{Hom}^{t}\left(\otimes^{n} M, N\right)$ the product $f \smile_{1} g \in \operatorname{Hom}^{k+t}\left(\otimes^{m+n-1} M, N\right)$ looks as
$f \smile_{1} g\left(a_{1} \otimes \ldots \otimes a_{m+n-1}\right)=\sum_{k=0}^{m-1} \pm f\left(a_{1} \otimes \ldots \otimes a_{k} \otimes g\left(a_{k+1} \otimes \ldots \otimes a_{k+n}\right) \otimes \ldots \otimes a_{m+n-1}\right)$.

We shall use also more general product of an element $f \in \operatorname{Hom}(T(M), M)$ and a sequence $\left(g_{1}, \ldots, g_{k}\right), g_{i} \in \operatorname{Hom}(T(M), M)$ defined as

$$
\begin{aligned}
& f \smile_{1}\left(g_{1}, \ldots, g_{k}\right)\left(a_{1} \otimes \ldots \otimes a_{n}\right)= \\
& \sum \pm f\left(a_{1} \otimes \ldots \otimes a_{k_{1}} \otimes g\left(a_{k_{1}+1} \otimes \ldots \otimes a_{k_{1}+p_{1}}\right) \otimes a_{k_{1}+p_{1}+1} \otimes \ldots \otimes a_{k_{1}+t_{1}} \otimes\right. \\
& g_{2}\left(a_{k_{1}+t_{1}+1} \otimes \ldots \otimes a_{k_{1}+t_{1}+p_{2}}\right) \otimes \ldots \\
& \left.\otimes a_{s} \otimes g_{k}\left(a_{s+1} \otimes \ldots \otimes a_{s+p_{k}}\right) \otimes a_{s+p_{k}+1} \otimes \ldots \otimes a_{n}\right) .
\end{aligned}
$$

The product $f \smile_{1} g$ can be written as $f \smile_{1} g=f(i d \otimes g \otimes i d) \nabla^{3}$. Similarly $f \smile_{1}\left(g_{1}, \ldots, g_{k}\right)=f\left(i d \otimes g_{1} \otimes i d \otimes g_{2} \otimes \ldots \otimes i d \otimes g_{k} \otimes i d\right) \nabla^{2 k+1}$. We remark also that these products are defined if $f \in \operatorname{Hom}(T(M), N)$ and $g_{i} \in \operatorname{Hom}(T(M), M)$.

The product $f \smile_{1} g$ is not associative generally but easy to see that

$$
f \smile_{1}\left(g \smile_{1} h\right)-\left(f \smile_{1} g\right) \smile_{1} h=f \smile_{1}(g, h)-f \smile_{1}(h, g)
$$

Let us consider $\operatorname{Hom}(C h(M), M)=\sum_{n} \operatorname{Hom}\left(C h^{n}(M), M\right)$. Clearly

$$
\operatorname{Hom}\left(C h^{n}(M), M\right)=\left\{f \in \operatorname{Hom}\left(\otimes^{n}(M), M\right), f \mid S h^{n}(M)=0\right\}
$$

hence $\operatorname{Hom}\left(C h^{n}(M), M\right)$ is also graded by degree of homomorphisms, i.e.

$$
\operatorname{Hom}\left(C h^{n}(M), M\right)=\sum_{k} \operatorname{Hom}^{k}\left(C h^{n}(M), M\right)
$$

where

$$
\operatorname{Hom}^{k}\left(C h^{n}(M), M\right)=\left\{f \in \operatorname{Hom}^{k}\left(\otimes^{n} M, M\right), f \mid S h^{n}(M)=0\right\}
$$

thus $\operatorname{Hom}(\operatorname{Ch}(M), M) \subset \operatorname{Hom}(T(M), M)$. It is possible to show that if $f, g \in$ $\operatorname{Hom}(C h(M), M)$ then $f \smile_{1} g \in \operatorname{Hom}(C h(M), M)$. Moreover, $f \smile_{1}(g, \ldots, g) \in$ $H o m(C h(M), M)$ too.

2 Hochshild cohomology

Let A be a graded algebra and M be a graded bimodule over A. Hochschild cochain complex is defined as

$$
C^{*}(A, M)=\sum C^{n}(A, M), \quad C^{n}(A, M)=\operatorname{Hom}\left(\otimes^{n} A, M\right)
$$

the coboundary operator $\delta: C^{n}(A, M) \rightarrow C^{n+1}(A, M)$ is given by

$$
\begin{gathered}
\delta f\left(a_{1} \otimes \ldots \otimes a_{n+1}\right)=a_{1} f\left(\left(a_{2} \otimes \ldots \otimes a_{n+1}\right)+\right. \\
\sum_{k} \pm f\left(a_{1} \otimes \ldots \otimes a_{k} a_{k+1} \otimes \ldots \otimes a_{n+1}\right) \pm f\left(a_{1} \otimes \ldots \otimes a_{n}\right) a_{n+1} .
\end{gathered}
$$

Hochschild cohomology of A with coefficients in M is defined as homology of this cochain complex and is denoted by $\operatorname{Hoch}^{*}(A, M)$. Since A and M are graded,
each $C^{n}(A, M)$ is graded too: $C^{n}(A, M)=\sum_{k} C^{n, k}(A, M)$ where $C^{n, k}(A, M)=$ $\operatorname{Hom}^{k}\left(\otimes^{n} A, M\right)$. It is easy to see that $\delta: C^{n, k}(A, M) \rightarrow C^{n+1, k}(A, M)$, so $\left(C^{*, k}(A, M), \delta\right)$ is a direct summand in $\left(C^{*}(A, M), \delta\right)$, thus Hochschild cohomology in this case is bigraded: $\operatorname{Hoch}^{n}(A, M)=\sum_{k} \operatorname{Hoch}^{n, k}(A, M)$ where $\operatorname{Hoch}^{n, k}(A, M)$ is the n-th homology module of $\left(C^{*, k}(A, M), \delta\right)$.

Instead of M we can take the algebra A itself. The complex $C^{*, *}(A, A)$ is a differential algebra with respect to the following product: for $f \in C^{m, k}(A, A)$ and $g \in C^{n, t}(A, A)$ the product $f \smile g \in C^{m+n, k+t}(A, A)$ is defined by

$$
f \smile g\left(a_{1} \otimes \ldots \otimes a_{m+n}\right)=f\left(a_{1} \otimes \ldots \otimes a_{m}\right) \cdot g\left(a_{n+1} \otimes \ldots \otimes a_{m+n}\right)
$$

Besides this product in $C^{*, *}(A, A)$ we have also the product $f \smile_{1} g$ (see the previous section). In [5] it is shown that these products satisfy the standard conditions

$$
\begin{gather*}
\delta(f \smile g)=\delta f \smile g \pm f \smile \delta g \tag{1}\\
\delta\left(f \smile_{1} g\right)=\delta f \smile_{1} g \pm f \smile_{1} \delta g \pm f \smile_{g \pm g \smile f} \tag{2}
\end{gather*}
$$

3 Harrison cohomology

Suppose now A is a commutative graded algebra and M is a module over A. The Harrison cochain complex $\bar{C}^{*}(A, M)$ is defined as a subcomplex of the Hochschild complex

$$
\bar{C}^{*}(A, M)=\left\{f \in C^{*}(A, M)|f| \operatorname{Sh}(A)=0\right\}
$$

i.e. $\quad \bar{C}^{*}(A, M)=\operatorname{Hom}(C h(A), M)=\sum_{n} \operatorname{Hom}\left(C h^{n}(A), M\right)$. In [1] it is shown that $\bar{C}^{*}(A, M)$ is closed with respect to the differential δ (that is if $f \mid \operatorname{Sh}(A)=0$ then $\delta f \mid \operatorname{Sh}(A)=0$). Harrison cohomology of a commutative algebra A with coefficients in an A-module M is defined as homology of the cochain complex $\left(\bar{C}^{*}(A, M), \delta\right)$. These cohomologies we denote by $\operatorname{Harr}^{*}(A, M)$. As above each module $\bar{C}^{n}(A, M)=\operatorname{Hom}\left(C h^{n}(A), M\right)$ is graded by degrees of homomorphisms: $\bar{C}^{n}(A, M)=\sum_{k} \bar{C}^{n, k}(A, M)$ where $\bar{C}^{n, k}(A, M)=\operatorname{Hom}^{k}\left(C h^{n}(A), M\right)$. Besides $\delta: \bar{C}^{n, k}(A, M) \rightarrow \bar{C}^{n+1, k}(A, M)$, so $\left(\bar{C}^{*, k}(A, M), \delta\right)$ is a direct summand in the Harrison complex $\left(\bar{C}^{n}(A, M), \delta\right)$. Thus $\operatorname{Harr}^{n}(A, M)=\sum_{k} \operatorname{Harr}^{n, k}(A, M)$ where $\operatorname{Harr}^{n, k}(A, M)$ is the n-th homology module of $\left(\bar{C}^{*, k}(A, M), \delta\right)$. So Harrison cohomology in is bigraded for graded A and M.

As it is mentioned in the section 1 the Harrison complex $\left(\bar{C}^{*, k}(A, M)\right.$ is closed with respect to products $f \smile_{1} g$ and $f \smile_{1}(g, \ldots, g)$. The formulae (11) and (21) are valid in this subcomplex too.

4 Twisting cochains in the Hochschild and Harrison complexes

In [2], [3] N. Berikashvilihas has defined a functor D from the category of differential algebras to the category of pointed sets, which have applications in the homology
theory of fibrations. We recall shortly its definition. Let (C, d) be a differential graded algebra. A twisting cochain is defined as an element $a=a^{2}+a^{3}+\ldots, a^{i} \in C^{i}$ satisfying the condition $d a= \pm a \cdot a$. Let $T w(C)$ be the set of all twisting cochains. In this set by Berikashvili was introduced the following equivalence relation: $a \sim a$ if there exists an element $p=p^{1}+p^{2}+\ldots, p^{i} \in C^{i}$ such that

$$
a-a^{6}=p \cdot a \pm a \cdot p \pm d p
$$

The factorset of the set $T w(C)$ by this equivalence is denoted by $D(C)$. We are going to introduce the similar definition in the Hochschild and Harrison complexes but with respect to \smile_{1} product. Note that Hochschild and Hasrrison complexes are not differential algebras with respect to the product $f \smile_{1} g$, besides this product is not associative, hence in order to define the functor D some modification is needed.

Let us define a twisting cochain in the Hochschild complex $C^{*, *}(A, A)$ as an element $a=a^{3,-1}+a^{4,-2}+\ldots+a^{i, 2-i}+\ldots, a^{i, 2-i} \in C^{i, 2-i}(A, A)$ satisfying the condition $\delta a=a \smile_{1} a$. Let $T w(A, A)$ be the set of all twisting cochains. Now we introduce in this set the following equivalence relation: $a \sim a^{\prime}$ if there exists an element $p=p^{2,-1}+p^{3,-2}+\ldots+p^{i, 1-i}+\ldots,, p^{i, 1-i} \in C^{i, 1-i}(A, A)$ such that

$$
\begin{equation*}
a-a^{\prime}=\delta p \pm p \smile_{1} a \pm a^{\prime} \smile_{1} p \pm a^{\prime} \smile_{1}(p, p) \pm a^{\prime} \smile_{1}(p, p, p) \pm \ldots \tag{3}
\end{equation*}
$$

(the sum is finite in each dimension). This is an equivalence relation; we denote by $D(A, A)$ the factorset $T w(A, A) / \sim$. The set $D(A, A)$ is a pointed set: a distinguished point is the class of $a=0$, which we denote by $0 \in D(A, A)$.

There is a possibility to perturb twisting cochains without changing their equivalence classes in $D(A, A)$. Indeed, let $A \in T w(A, A)$ and $p \in C^{n, 1-n}(A, A)$ be an arbitrary cochain, then there exists a twisting cochain $\bar{a} \in T w(A, A)$ such that $a^{i}=\bar{a}^{i}$ for $i \leq n, \bar{a}^{n+1}=a^{n+1}+\delta p$ and $\bar{a} \sim a$. The twisting cochain \bar{a} can be solved inductively from the equation (3).

Theorem 1 If $\operatorname{Hoch}^{n, 2-n}(A, A)=0$ for $n \geq 3$ then $D(A, A)=0$.
Proof. We have to show that in this case an arbitrary twisting cochain is equivalent to zero. From the equality $\delta a=a \smile_{1} a$ in dimension $n=3$ we obtain $\delta a^{3}=0$ that is $a^{3} \in C^{3,-1}(A, A)$ is a cocycle. Since $\operatorname{Hoch}^{3,-1}(A, A)=0$ there exists $p^{2,-1} \in$ $C^{2,-1}(A, A)$ such that $a^{3}=\delta p^{2,-1}$. Perturbing our twisting cochain $a=a^{3}+a^{4}+\ldots$ by $p^{2,-1}$ we we obtain new twisting cochain $\bar{a}=\bar{a}^{3}+\bar{a}^{4}+\ldots$ equivalent to a and with $\bar{a}^{3}=0$. Now the component \bar{a}^{4} becomes a cocycle, which, which can be killed using $\operatorname{Hoch}^{4,-2}(A, A)=0$ etc. This completes the proof.

Now turn to the Harrison complex $\bar{C}(A, A)$ of a commutative algebra A. Since $\bar{C}(A, A)$ is closed with respect to \smile_{1} product, here we also can define twisting cochains and the set $\bar{D}(A, A)$ and prove the similar

Theorem 2 If $\operatorname{Harr}^{n, 2-n}(A, A)=0$ for $n \geq 3$ then $D(A, A)=0$.

5 Structure of $A(\infty)$-algebra and Hochschild and Harrison cohomology

$A(\infty)$-algebra was defined by Stasheff in [8]. It is a graded Λ-module $M=\sum M_{q}$ equipped with a sequence of operations - Λ-homomorphisms $\left\{m_{i}: \otimes^{i} M \rightarrow M, i=\right.$ $1,2, \ldots\}$ satisfying the following conditions

$$
\begin{gather*}
m_{i}\left(\otimes^{i} M\right)_{q} \subset M_{q-i+2}, \text { i.e. degm } m_{i}=2-i \tag{4}\\
\sum_{j=1}^{n} \sum_{k=0}^{n-j} \pm m_{i}\left(a_{1} \otimes \ldots \otimes a_{k} \otimes m_{j}\left(a_{k+1} \otimes \ldots \otimes a_{k+j}\right) \otimes \ldots \otimes a_{n}\right)=0 . \tag{5}
\end{gather*}
$$

A morphism of $A(\infty)$-algebras $f:\left(M,\left\{m_{i}\right\}\right) \rightarrow\left(M^{\prime},\left\{m_{i}^{\prime}\right\}\right)$ is a sequence of homomorphisms $\left\{f_{i}: \otimes^{i} M \rightarrow M^{\prime}, i=1,2, \ldots\right\}$ satisfying the following conditions

$$
\begin{gather*}
f_{i}\left(\otimes^{i} M\right)_{q} \subset M_{q-i+1}^{\prime}, \text { i.e. } \operatorname{deg} f_{i}=1-i ; \tag{6}\\
\sum_{j=1}^{n} \sum_{k=0}^{n-j} \pm f_{i}\left(a_{1} \otimes \ldots \otimes a_{k} \otimes m_{j}\left(a_{k+1} \otimes \ldots \otimes a_{k+j}\right) \otimes \ldots \otimes a_{n}\right)= \tag{7}\\
\sum_{t=1}^{n} \sum_{k_{1}+\ldots+k_{t}=n} \pm m_{t}^{\prime}\left(f_{k_{1}}\left(a_{1} \otimes \ldots \otimes a_{k_{1}}\right) \otimes \ldots \otimes f_{k_{t}}\left(a_{n-k_{t}+1} \otimes \ldots \otimes a_{n}\right)\right) .
\end{gather*}
$$

The obtained category is denoted by $A(\infty)$.
For an arbitrary $A(\infty)$-algebra $\left(M,\left\{m_{i}\right\}\right)$ the sequence of operations $\left\{m_{i}\right\}$ defines on the tensor coalgebra $T(M)$ a differential $d: T(M) \rightarrow T(M)$ given by

$$
d\left(a_{1} \otimes \ldots \otimes a_{n}\right)=\sum_{k, j} \pm a_{1} \otimes \ldots \otimes a_{k} \otimes m_{j}\left(a_{k+1} \otimes \ldots \otimes a_{k+j}\right) \otimes \ldots \otimes a_{n}
$$

which fits with the coproduct $\nabla: T(M) \rightarrow T(M) \otimes T(M)$, i.e. turns $T(M)$ into a differential coalgebra. This differential coalgebra $(T(M), d)$ is called \tilde{B}-construction of $A(\infty)$-algebra $\left(M,\left\{m_{i}\right\}\right)$ and is denoted by $\tilde{B}\left(M,\left\{m_{i}\right\}\right)$ ((8) .

An arbitrary morphism of $A(\infty)$-algebras $\left\{f_{i}\right\}:\left(M,\left\{m_{i}\right\}\right) \rightarrow\left(M^{\prime},\left\{m_{i}^{\prime}\right\}\right)$ induces a $D G$-coalgebra morphism $\tilde{B}(f): \tilde{B}\left(M,\left\{m_{i}\right\}\right) \rightarrow \tilde{B}\left(M^{\prime},\left\{m_{i}^{\prime}\right\}\right)$ by

$$
\tilde{B}(f)\left(a_{1} \otimes \ldots \otimes a_{n}\right)=\sum_{t=1}^{n} \sum_{k_{1}+\ldots+k_{t}=n} f_{k_{1}}\left(a_{1} \otimes \ldots \otimes a_{k_{1}}\right) \otimes \ldots \otimes f_{k_{t}}\left(a_{n-k_{t}+1} \otimes \ldots \otimes a_{n}\right) .
$$

Thus \tilde{B} is a functor from the category of $A(\infty)$-algebras to the category of $D G$ coalgebras.

We are interested in $A(\infty)$-algebras of type ($M,\left\{m_{1}=0, m_{2}, m_{3}, \ldots\right\}$), i.e. with $m_{1}=0$. The full subcategory of $A(\infty)$ which objects are such $A(\infty)$-algebras we denote by $A^{0}(\infty)$.

Now let (M, μ) be a graded associative algebra with multiplication $\mu: M \otimes M \rightarrow$ M. Consider all possible $A(\infty)$ structures $\left\{m_{i}\right\}$ on M with $m_{1}=0, m_{2}=\mu$. Two such structures we call equivalent if there exists a morphism of $A(\infty)$-algebras $\left\{p_{i}\right\}:\left(M,\left\{m_{i}\right\}\right) \rightarrow\left(M,\left\{m_{i}^{\prime}\right\}\right)$ for which the first component p_{1} is the identity map (one can show that such morphisms are isomorphisms in the category $A^{0}(\infty)$). The obtained factorset we denote by $(M, \mu)(\infty)$. A trivial $A^{0}(\infty)$ structure we define as $\left\{m_{i}\right\}$ with $m_{i>2}=0$. It's class we denote as $0 \in(M, \mu)(\infty)$.

Proposition 3 The sets $(M, \mu)(\infty)$ and $D(M, M)$ are bijective.
Proof. Let $\left(M,\left\{m_{i}\right\}\right)$ be an $A(\infty)$-algebra with with $m_{1}=0, m_{2}=\mu$; we denote $m=m_{3}+m_{4}+\ldots$. Each operation $m_{i}: \otimes^{i} M \rightarrow M$ can be interpreted as a Hochschild cochain from $C^{i}(M, M)$. It is easy to mention that the condition (5) means exactly $\delta m=m \smile_{1} m$, i.e. $m \in T w(M, M)$. Conversely, each twisting cochain $m=m_{3}+m_{4}+\ldots \in T w(M, M)$ defines on m an $A^{0}(\infty)$-algebra structure $\left(M,\left\{m_{1}=0, m_{2}=\mu, m_{3}, m_{4}, \ldots\right\}\right)$. It remains to show that two $A^{0}(\infty)$-structures $\left\{m_{i}\right\}$ and $\left\{m_{i}^{\prime}\right\}$ are equivalent if and only if the twisting cochains m and m^{\prime} are equivalent. Indeed, if $A^{0}(\infty)$-structures $\left\{m_{i}\right\}$ and $\left\{m_{i}^{\prime}\right\}$ are equivalent, i.e. there exists an isomorphism of $A^{0}(\infty)$-algebras $\left\{i d, p_{2}, p_{3}, \ldots\right\}:\left(M,\left\{m_{i}\right\}\right) \rightarrow\left(M,\left\{m_{i}^{\prime}\right\}\right)$, then the cochain $p=p_{2}+p_{3}+\ldots$ realizes the equivalence of twisting cochains m and m^{\prime}, since the condition (7) is equivalent to (3). Conversely, if $p=p_{2}+p_{3}+\ldots$ realizes the equivalence of twisting cochains m and m^{\prime}, then $\left\{i d, p_{2}, p_{3}, \ldots\right\}:\left(M,\left\{m_{i}\right\}\right) \rightarrow$ $\left(M,\left\{m_{i}^{\prime}\right\}\right)$ is the needed isomorphism.

From this proposition and the theorem 1 follows the
Corollary 4 If for a graded algebra (M, μ) all $\operatorname{Hoch}^{n, 2-n}(M, M)=0$ for $n \geq 3$ then any $A^{0}(\infty)$-algebra structure $\left\{m_{i}\right\}$ on M (with $m_{1}=0, m_{2}=\mu$) is equivalent to trivial one.

Now we turn to the commutative case.
An $A(\infty)$-algebra we call commutative if the sequence of operations $\left\{m_{i}\right\}$ apart of the conditions (4) and (5) satisfies $m_{i} \mid S h^{i}(M)=0$. In this case the differential $d: T(M) \rightarrow T(M)$ defined by $\left\{m_{i}\right\}$ fits with shuffle product, so $\tilde{B}\left(M,\left\{m_{i}\right\}\right)$ becomes a DG-Hopf algebra. A morphism of commutative $A(\infty)$-algebras $\left\{f_{i}\right\}:\left(M,\left\{m_{i}\right\}\right) \rightarrow$ ($M^{\prime},\left\{m_{i}^{\prime}\right\}$) we define as a morphism of $A(\infty)$-algebras which, apart of the conditions (6) and (7) satisfies $f_{i} \mid S h^{i}(M)=0$. In this case $\tilde{B}(f): \tilde{B}\left(M,\left\{m_{i}\right\}\right) \rightarrow \tilde{B}\left(M^{\prime},\left\{m_{i}^{\prime}\right\}\right)$ becomes a map of DG-Hopf algebras (see [7]). The condition $m_{i} \mid S h^{i}(M)=0$ for $i=2$ means that $m_{2}: M \otimes M \rightarrow M$ is commutative and all the operations m_{i} : $\otimes^{i} M \rightarrow M$ are from the Harrison subcomplex $\bar{C}(M, M)$.

Now let (M, μ) be a graded commutative algebra with multiplication $\mu: M \otimes$ $M \rightarrow M$. Consider all possible commutative $A(\infty)$ structures $\left\{m_{i}\right\}$ on M with $m_{1}=0, m_{2}=\mu$; two such structures we call equivalent if there exists a morphism of commutative $A(\infty)$-algebras $\left\{p_{1}=i d, p_{2}, p_{3}, \ldots\right\}:\left(M,\left\{m_{i}\right\}\right) \rightarrow\left(M,\left\{m_{i}^{\prime}\right\}\right)$ (which, as above, is an isomorphism). The obtained factorset we denote by $(M, \mu)(\infty)_{c}$. Exactly as above we obtain the

Proposition 5 The sets $(M, \mu)(\infty)_{c}$ and $\bar{D}(M, M)$ are bijective.
Corollary 6 If for a graded commutative algebra (M, μ) all $\operatorname{Harr}^{n, 2-n}(M, M)=0$ for $n \geq 3$ then any commutative $A^{0}(\infty)$-algebra structure $\left\{m_{i}\right\}$ on M (with $m_{1}=$ $0, m_{2}=\mu$) is equivalent to trivial one.

References

[1] M. Barr, Harrison homology, Hochschild homology and tripples, Journal of algebra, 8 (1968), 314-323.
[2] N. Berikashvili, On differentials of spectral sequences, Bull. Georg. Acad. Sci., 51, 1 (1968), 9-14.
[3] N. Berikashvili, On the homology theory of spaces, Bull. Georg. Acad. Sci., 86, 3 (1977), 529-532.
[4] S. Eilenberg, S. MacLane, On the groups $H(\pi, n)$, 1, Ann. of Math., 58 (1953), 55-106.
[5] M. Gerstenhaber, The homology structure of an associative ring, Ann. of Math., 4 (1963), 267-288.
[6] T. Kadeishvili, On the homology theory of fibre spaces, Russian Mathematics Surveys, 6 (1980), 231-238.
[7] T. Kadeishvili, On the category of differential coalgebras and the category of $A(\infty)$-algebras, Proc. of A. Razmadze Math. Inst., 77 (1985), 50-70.
[8] J. D. Stasheff, Homotopy associativity of H-spaces, TAMS, 108, 2 (1963), 275-313.

