
Reading [Simon], Chapter 24, p. 633-657.

1 Differential Equations

1.1 Definition and Examples

A differential equation is an equation involving an unknown function (say
y = y(t)) and one or more of its derivatives

F (y, y′, y′′, ..., t) = 0.

This is general form of differential equation.
First-order differential equation is one which involves only y′, y, t, that

is F (y′, y, t) = 0.
Ordinary differential equation is an equation of the form

y′ = F (y, t).

Examples.

1. The equation y′ = 2t has a solution

y(t) =
∫

2tdt = t2 + C,

this is general solution which depends on the constant C. Assigning to C
particular values we obtain particular solutions

y(t) = t2, y(t) = t2 + 5, y(t) = t2 − 7, ... .

A particular solution which satisfies the initial value condition y(0) = 1 is
y(t) = t2 + 1.

2. The equation y′ = 2y has a solution

y(t) = Ce2t,

this is general solution which depends on the constant C. Assigning to C
particular values we obtain particular solutions

y(t) = e2t, y(t) = 5e2t, y(t) = −7e2t, ... .
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A particular solution which satisfies the initial value condition y(0) = 2 is
y(t) = 2e2t.

This equation has also one important particular solution which corre-
sponds to initial value condition y(0) = 0, the solution is constant function
y(t) = 0. This solution is called: steady state, stationary solution, stationary
point, rest point, equilibrium.

3. The equation y′ = 2ty has a solution

y(t) = Cet2 ,

this is general solution which depends on the constant C. Assigning to C
particular values we obtain particular solutions

y(t) = 0, y(t) = et2 , y(t) = 5Cet2 , y(t) = −7Cet2 , ... .

A particular solution which satisfies the initial value condition y(1) = 3e is
y(t) = 3et2 .

This equation also has stationary solution y(t) = 0.

4. The equation y′ = y2 has a solution

y(t) =
1

C − t
,

this is general solution which depends on the constant C. Assigning to C
particular values we obtain particular solutions

y(t) = −1

t
, y(t) =

1

5− t
, y(t) = − 1

7 + t
, ... .

A particular solution which satisfies the initial value condition y(1) = 1 is
y(t) = 1

2−t
.

5. The Hooke’s equation y′′ = −ky, k > 0 has a solution

y(t) = C1cos
√

kt + C2sin
√

kt,

this is general solution which depends on the two constants C1 and C2. As-
signing to C1 and C2 particular values we obtain particular solutions

y(t) = cos
√

kt, y(t) = sin
√

kt, y(t) = cos(
√

k +
π

4
), ... .
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Remark. Most first order differential equations have exactly one particular
solution that satisfies a given initial value condition. However there are
examples where there are either no, or many solutions that satisfy a given
initial value condition, see two examples bellow.

Example 6. The equation y′ = g(t) with

g(t) =

{
1
t

if t 6= 0
0 if t = 0

has no solution with initial value condition y(0) = 0.

Example 7. The equation y′ =
√

t with initial value condition y(0) = 0 has
solutions: y(t) = 0 and y(t) = t2

4
.

1.1.1 Exponential Growth

Here are differential equations which describe various types of growth.

1. y′ = ky, k > 0 describes unlimited growth or Malthus growth.
Here the rate of change of the quantity y with respect to time t is pro-

portional to amount present.
General solution is y(t) = Cekt. There is the stationary solution y(t) = 0.
Malthus used this equation to describe the growth of population on the

earth. The same equation describes the growth of money on the account in
a bank that has a constant percent of rate k. The constant C in this case
has the following meaning: C = y(0), so C is the original deposit.

2. y′ = −ky, k > 0 describes unlimited decay.
General solution is y(t) = Ce−kt. There is the stationary solution y(t) =

0.
This equation describes depletion of natural resources, radioactive decay,

price-demand curves.

3. y′ = k(M − y), k > 0 describes limited growth.
Here the rate of change of the quantity y with respect to time t is propor-

tional to the difference between a limiting value M and the amount present
y.
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General solution is y(t) = M(1 − Ce−kt). There is also the stationary
solution y(t) = M .

This equation describes sales, depreciations of equipment, company growth.

4. y′ = ky(M − y), k > 0 describes logistic growth.
Here the rate of change of the quantity y with respect to time t is pro-

portional to amount present and the difference between a limiting value M
and the amount present y.

General solution is y(t) = M
1+Ce−kMt . There is also the stationary solution

y(t) = M .
This equation describes long-term population growth, epidemics, sales of

new products, rumor spread.

1.2 First Order Equations

1.2.1 First Order Linear Differential Equations

Step 1. Bring the equation to the standard form y′ + f(t)y = g(t).
Step 2. Compute the integrating factor

I(t) = e
∫

f(t)dt),

then I ′(t) = I(t) · f(t).
Step 3. Multiply both sides of the equation by I(t):

I(t) · y′ + I(t) · f(t) · y = I(t) · g(t),

I(t) · y′ + I ′(t) · y = I(t) · g(t), (I(t) · y)′ = I(t) · g(t);

Step 4. Integrate both sides

I(t) · y =
∫

I(t) · g(t)dt;

Step 5. Solving for y we obtain the general solution

y =

∫
I(t) · g(t)dt

I(t)
.

Example. Solve y′ = 3(5− y).
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I(t) = e
∫

3dt = e3t,

y =

∫
e3t · 3 · 5dt

e3t
=

∫
e3t · 5d3t

e3t
=

5e3t + C

e3t
=

5e3t + K

e3t
= 5 + Ce−3t.

Example. Solve y′ + 2ty = 4t.

I(t) = e
∫

2tdt = et2 ,

y =

∫
et2 · 4tdt

et2
=

2
∫

et2dt2

et2
=

2et2 + C

et2
= 2 +

C

et2
.

1.3 Separation of Variables

Step 1. Bring the equation to the form f(y)y′ = g(t)

f(y)
dy

dt
= g(t), f(y)dy = g(t)dt.

Step 2. Integrate both sides
∫

f(y)dy =
∫

g(t)dt.
Step 3. Solve the obtained equation for y.

Example. Solve y′ = 3(5− y).
Step 1. y′

5−y
= 3, dy

5−y
= 3dt.

Step 2.
∫ dy

5−y
=

∫
3dt, − ∫ d(5−y)

5−y
=

∫
3dt, −ln(5− y) = 3t + K.

Step 3. ln(5−y) = −3t−K, 5−y = e−3t−K , y = 5−e−3te−K = 5−Ce−3t.

Example. Solve 1
y
y′ = 1

t
if y(2) = 6.

Step 1. 1
y

dy
dt

= 1
t
, dy

y
= dt

t
.

Step 2.
∫ dy

y
=

∫ dt
t
, ln y + C1 = ln t + C2, ln y = ln t + C.

Step 3. ln y = ln eCt, y = eCt, so the general solution is y = kt.
Let us find the particular solution: 6 = k · 2, k = 3, y = 3t.
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1.4 Linear Second order Equations

1.4.1 Homogenous Linear Second order Equation with constant
coefficients

We consider a differential equation

ay′′ + by′ + cy = 0. (1)

To this differential equation corresponds the numerical quadratic equation

ar2 + br + c = 0 (2)

called characteristic equation.

Theorem 1 If the characteristic equation (2) has two distinct roots r1 and
r2, then the equation (1) has the general solution

y(t) = k1e
r1t + k2e

r2t.

Example. Consider the problem

y′′ − y′ − 2y = 0, y(0) = 3, y′(0) = 0.

Corresponding characteristic equation

r2 − r − 2 = 0

has the roots r1 = 2, r2 = −1. Thus the general solution is

y(t) = k1e
2t + k2e

−t.

Plug in initial values
y(0) = k1 + k2 = 3
y′(0) = 2k1 − k2 = 0.

Solution gives k1 = 1, k2 = 2, so our particular solution is

y(t) = e2t + 2e−t.
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Theorem 2 If the characteristic equation (2) has two equal roots r1 = r2,
then the equation (1) has the general solution

y(t) = k1e
r1t + k2te

r1t.

Example. Consider the problem

y′′ − 2y′ + y = 0, y(0) = 6, y′(0) = 0.

Corresponding characteristic equation

r2 − 2r + 1 = 0

has one root r1 = r2 = 1. Thus the general solution is

y(t) = k1e
t + k2te

t.

Plug in initial values

y(0) = k1 = 6
y′(0) = k1 + 2k2 = 0.

Solution gives k1 = 6, k2 = −3, so our particular solution is

y(t) = 6et − 3tet.

Theorem 3 If the characteristic equation (2) has complex roots α± iβ, then
the equation (1) has the general solution

y(t) = eαt(C1cosβt + C2sinβt).

Example. Consider the problem

y′′ − 2y′ + 2y = 0, y(0) = 6, y′(0) = 0.

Corresponding characteristic equation

r2 − 2r + 2 = 0
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has the roots r1 = 1 + i, r2 = 1− i. Thus the general solution is

y(t) = et(C1cos t + C2sin t).

Plug in initial values

y(0) = C1 = 6
y′(0) = C1 + C2 = 0.

Solution gives k1 = 6, k2 = −6, so our particular solution is

y(t) = 6et(cos t− sin t).

1.4.2 Nonhomogenous Linear Second order Equation with con-
stant coefficients

Nonhomogenous equation looks as

ay′′ + by′ + cy = g(t).

Theorem 4 Let yp(t) be any particular solution of the nonhomogenous equa-
tion

ay′′ + by′ + cy = g(t),

and let k1y1(t)+k2y2(t) be a general solution of the corresponding homogenous
equation

ay′′ + by′ + cy = 0.

Then, a general solution of nonhomogenous equation is

y(t) = k1y1(t) + k2y2(t) + yp(t).

We already know how to find general solution of homogenous equation,
but how to find a particular solution of nonhomogenous one?

For this there exists so called method of undetermined coefficients. This
method works only if the associated homogeneous equation has constant
coefficients

This method is based on a guessing technique. That is, we will guess the
form of yp(t) and then plug it in the equation to find it.
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In this method one looks for a particular solution which has the same
form as the right hand side function g(t). Namely:

If g(t) = g0 is constant, then yp(t) = g0/c.

If g(t) is polynomial of order n then one looks for yp(t) which is a poly-
nomial of same order.

If g(t) is an exponential eβt then one looks for a particular solution of the
following form:
(case 1) Aeβt if β is not a root of characteristic equation.
(case 2) Ateβt if β is a simple root (one of the two roots) of the characteristic
equation.
(case 3) At2eβt if β is a double (only) root of the characteristic equation.

Remark. Suppose the right hand side of the equation is the sum of two
functions

ay′′ + by′ + cy = g1(t) + g2(t).

Then a particular solution of this equation is the sum of particular solutions
of the equations

ay′′ + by′ + cy = g1(t), ay′′ + by′ + cy = g2(t).

Example. Find the general solution of the equation

y′′ − 2y′ − 3y = 9t2.

The general solution of homogenous equation y′′ − 2y′ − 3y = 0 is

y(t) = k1e
3t + k2e

−t.

Now look at a particular solution of y′′− 2y′− 3y = 9t2. The right hand side
is quadratic polynomial, so we look at

yp(t) = At2 + Bt + C.

Plugging this expression into the equation we obtain

(−3A)t2 + (−4A− 3B)t + (2A− 2B − 3C) = 9t2.
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This gives the system
−3A = 9
−4A− 3B = 0
2A− 2B − 3C = 0

whose solution is A = −3, B = 4, C = −14/3. Therefore the particular
solution is

yp(t) = −3t2 + 4t− 14/3,

and the general solution is

y(t) = k1e
3t + k2e

−t − 3t2 + 4t− 14/3.

Example. Find the general solution of the equation

y′′ − 2y′ + y = e3t.

The general solution of homogenous equation y′′ − 2y′ + y = 0, as we know,
is

y(t) = k1e
t + k2te

t.

Now look at a particular solution of y′′ − 2y′ + y = e3t. First let us mention
that 3 is not a root of characteristic equation r2 − 2r + 1 = 0, thus we look
at such solution as y(t) = Ae3t. Substitution gives

9Ae3t − 6Ae3t + Ae3t = e3t,

and we calculate A = 1
4
.

Thus the general solution is

y(t) = k1e
t + k2te

t +
1

4
e3t.

Example. Find the general solution of the equation

y′′ − 2y′ + y = et.

The general solution of homogenous equation y′′ − 2y′ + y = 0, as we know,
is

y(t) = k1e
t + k2te

t.
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Now look at a particular solution of y′′ − 2y′ + y = et. First let us mention
that 1 is a double root of characteristic equation r2−2r+1 = 0, thus we look
at such solution as y(t) = t2Aet. Calculating y′(t) and y′′(t) and substituting
we obtain A = 1

2
. So the particular solution is yp(t) = 1

2
t2et, and the general

solution is

y(t) = k1e
t + k2te

t +
1

2
t2et.

1.5 The Fundamental Existence and Uniqueness The-
orem

Theorem 5 Consider the initial value problem

y′ = f(t, y), y(t0) = y0.

Suppose that f is continues at the point (t0, y0). Then there exists a function

y : I → R

on an open interval I = (t0 − a, t0 + a) about t0 that is a solution of our
problem on I.

Furthermore, if f is C1 at (t0, y0) then this solution is unique.

Remark. This theorem explains the Examples 6 and 7: in first case the right
hand side function is not continues, so there is no solution, and in second
case this function is not C1, so there are more then one solutions.

1.6 Economical Examples

1.6.1 Elasticity

Assume that the demand Q depends on price p as Q = Q(p), and that
elasticity of demand is constant

ε(p) =
p ·Q′(p)

Q(p)
= −1

(constant elasticity demand). One of such functions is Q(p) = C
p
, the inverse

proportionality. Are there other functions with constant elasticity ε(p) = −1?
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Let us solve the above differential equation:

dQ
Q

= −dp
p
,

∫ dQ
Q

= − ∫ dp
p
, ln Q = −ln p + c,

ln Q + ln p = C, ln Q · p = C, Q · p = eC , Q = C1

p
,

thus ANY solution is of the form Q(p) = C1

p
.

1.6.2 Equilibrium Price

Let Qd(p) be the demand function and Qs(p) be the supply function. The
equilibrium prise is the solution of the equation Qd(p) = Qs(p).

Assume that the demand and supply functions are linear: Qd = c + bp
and Qs = g + hp. Then the equilibrium prise is p = c−g

h−b
.

Suppose now that we start with some initial prise p0 = p(0) which may
be differs from equilibrium prise p. How this prise will change in time?

It is natural to assume that the rate of change of price dp
dt

is proportional
to the excess demand Qd −Qs that is satisfies the equation

dp

dt
= m(Qd −Qs)

where m is a positive constant. Note that

Qd −Qs = (c + bp)− (g + hp) = (c− g) + (b− h)p,

so the equation looks as

dp

dt
= m(c− g) + m(b− h)p.

This is first order linear differential equation.
The general solution of this equation is

p(t) =
C · em(b−h)t

m(b− h)
+

c− g

h− b
= C1 · em(b−h)t +

c− g

h− b
.

Note that usually b < 0 (the demand function Qd = c + bp decreases in
p) and h > 0 (the supply function is Qs = g + hp increases in p). Thus
limt→∞ em(b−h)t = 0. Then the limit of prize p(t) as t →∞ is

limt→∞ p(t) = limt→∞(C1 · em(b−h)t + c−g
h−b

) =

limt→∞ C1 · em(b−h)t + limto∞
c−g
h−b

= 0 + c−g
h−b

= c−g
h−b

.

Thus the prise p(t), starting at any initial value p(0) = p0, converges to
equilibrium prise p = c−g

h−b
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Exercises

1. Find the general solution for each differential equation using separation
of variables. Then find the particular solution satisfying the initial condition.

(a) y′ = yex, y(0) = 3e; (b) y′ = xy + y, y(0) = 2;
(c) xyy′ = ln x, y(1) = 1; (d) xy′ = x

√
y + 2

√
y, y(1) = 4;

(e) yy′ = xe−y2
, y(0) = 1; (f) yy′ = x(1 + y2), y(0) = 1.

2. Find the general solution for each differential equation using integrat-
ing factor. Then find the particular solution satisfying the initial condition.

(a) y′ + 3x2y = 9x2, y(0) = 7; (b) y′ − 2y = e3x, y(0) = 3;
(c) y′ − 3y = 6

√
xe3x, y(0) = −2.

3. Find the general solution for each differential equation using integrat-
ing factor.

(a) y′ + y = x2; (b) xy′ + 2y = xe3x; (c) xy′ + y = xln x.

4. Solve the following initial value problems

(a) y′′−y = 0, y′(0) = y(0) = 1; (b) y′′+6y+9 = 0, y(0) = 0, y′(0) = 1;
(c) y′′ + 2y′ + 10y = 0, y(0) = 2, y′(0) = 1.

5. Find general solution for the following nonhomogenous equations

(a) y′′ − 2y′ − y = 7; (b) y′′ + y′ − 2y = 6t; (c) y′′ − y′ − 2y = 4e−1.

6. Solve the logistic growth equation y′ = ky(M − y), k > 0 using
separation of variables and the following hint

1

y(M − y)
=

1

My
+

1

M(M − y)
.
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