Reading [Simon], Chapter 24, p. 633-657.

1 Differential Equations

1.1 Definition and Examples

A differential equation is an equation involving an unknown function (say $y=y(t))$ and one or more of its derivatives

$$
F\left(y, y^{\prime}, y^{\prime \prime}, \ldots, t\right)=0 .
$$

This is general form of differential equation.
First-order differential equation is one which involves only y^{\prime}, y, t, that is $F\left(y^{\prime}, y, t\right)=0$.

Ordinary differential equation is an equation of the form

$$
y^{\prime}=F(y, t) .
$$

Examples.

1. The equation $y^{\prime}=2 t$ has a solution

$$
y(t)=\int 2 t d t=t^{2}+C
$$

this is general solution which depends on the constant C. Assigning to C particular values we obtain particular solutions

$$
y(t)=t^{2}, \quad y(t)=t^{2}+5, \quad y(t)=t^{2}-7, \quad \ldots
$$

A particular solution which satisfies the initial value condition $y(0)=1$ is $y(t)=t^{2}+1$.
2. The equation $y^{\prime}=2 y$ has a solution

$$
y(t)=C e^{2 t}
$$

this is general solution which depends on the constant C. Assigning to C particular values we obtain particular solutions

$$
y(t)=e^{2 t}, \quad y(t)=5 e^{2 t}, \quad y(t)=-7 e^{2 t}, \quad \ldots .
$$

A particular solution which satisfies the initial value condition $y(0)=2$ is $y(t)=2 e^{2 t}$.

This equation has also one important particular solution which corresponds to initial value condition $y(0)=0$, the solution is constant function $y(t)=0$. This solution is called: steady state, stationary solution, stationary point, rest point, equilibrium.
3. The equation $y^{\prime}=2 t y$ has a solution

$$
y(t)=C e^{t^{2}}
$$

this is general solution which depends on the constant C. Assigning to C particular values we obtain particular solutions

$$
y(t)=0, \quad y(t)=e^{t^{2}}, \quad y(t)=5 C e^{t^{2}}, \quad y(t)=-7 C e^{t^{2}}, \quad \ldots .
$$

A particular solution which satisfies the initial value condition $y(1)=3 e$ is $y(t)=3 e^{t^{2}}$.

This equation also has stationary solution $y(t)=0$.
4. The equation $y^{\prime}=y^{2}$ has a solution

$$
y(t)=\frac{1}{C-t}
$$

this is general solution which depends on the constant C. Assigning to C particular values we obtain particular solutions

$$
y(t)=-\frac{1}{t}, \quad y(t)=\frac{1}{5-t}, \quad y(t)=-\frac{1}{7+t}, \quad \ldots .
$$

A particular solution which satisfies the initial value condition $y(1)=1$ is $y(t)=\frac{1}{2-t}$.
5. The Hooke's equation $y^{\prime \prime}=-k y, k>0$ has a solution

$$
y(t)=C_{1} \cos \sqrt{k} t+C_{2} \sin \sqrt{k} t,
$$

this is general solution which depends on the two constants C_{1} and C_{2}. Assigning to C_{1} and C_{2} particular values we obtain particular solutions

$$
y(t)=\cos \sqrt{k} t, \quad y(t)=\sin \sqrt{k} t, \quad y(t)=\cos \left(\sqrt{k}+\frac{\pi}{4}\right), \ldots .
$$

Remark. Most first order differential equations have exactly one particular solution that satisfies a given initial value condition. However there are examples where there are either no, or many solutions that satisfy a given initial value condition, see two examples bellow.

Example 6. The equation $y^{\prime}=g(t)$ with

$$
g(t)=\left\{\begin{array}{ccc}
\frac{1}{t} & \text { if } t \neq 0 \\
0 & \text { if } t=0
\end{array}\right.
$$

has no solution with initial value condition $y(0)=0$.
Example 7. The equation $y^{\prime}=\sqrt{t}$ with initial value condition $y(0)=0$ has solutions: $y(t)=0$ and $y(t)=\frac{t^{2}}{4}$.

1.1.1 Exponential Growth

Here are differential equations which describe various types of growth.

1. $y^{\prime}=k y, k>0$ describes unlimited growth or Malthus growth.

Here the rate of change of the quantity y with respect to time t is proportional to amount present.

General solution is $y(t)=C e^{k t}$. There is the stationary solution $y(t)=0$.
Malthus used this equation to describe the growth of population on the earth. The same equation describes the growth of money on the account in a bank that has a constant percent of rate k. The constant C in this case has the following meaning: $C=y(0)$, so C is the original deposit.
2. $y^{\prime}=-k y, k>0$ describes unlimited decay.

General solution is $y(t)=C e^{-k t}$. There is the stationary solution $y(t)=$ 0.

This equation describes depletion of natural resources, radioactive decay, price-demand curves.
3. $y^{\prime}=k(M-y), k>0$ describes limited growth.

Here the rate of change of the quantity y with respect to time t is proportional to the difference between a limiting value M and the amount present y.

General solution is $y(t)=M\left(1-C e^{-k t}\right)$. There is also the stationary solution $y(t)=M$.

This equation describes sales, depreciations of equipment, company growth.
4. $y^{\prime}=k y(M-y), k>0$ describes logistic growth.

Here the rate of change of the quantity y with respect to time t is proportional to amount present and the difference between a limiting value M and the amount present y.

General solution is $y(t)=\frac{M}{1+C e^{-k M t}}$. There is also the stationary solution $y(t)=M$.

This equation describes long-term population growth, epidemics, sales of new products, rumor spread.

1.2 First Order Equations

1.2.1 First Order Linear Differential Equations

Step 1. Bring the equation to the standard form $y^{\prime}+f(t) y=g(t)$.
Step 2. Compute the integrating factor

$$
I(t)=e^{\left.\int f(t) d t\right)}
$$

then $I^{\prime}(t)=I(t) \cdot f(t)$.
Step 3. Multiply both sides of the equation by $I(t)$:

$$
\begin{gathered}
I(t) \cdot y^{\prime}+I(t) \cdot f(t) \cdot y=I(t) \cdot g(t) \\
I(t) \cdot y^{\prime}+I^{\prime}(t) \cdot y=I(t) \cdot g(t), \quad(I(t) \cdot y)^{\prime}=I(t) \cdot g(t)
\end{gathered}
$$

Step 4. Integrate both sides

$$
I(t) \cdot y=\int I(t) \cdot g(t) d t
$$

Step 5. Solving for y we obtain the general solution

$$
y=\frac{\int I(t) \cdot g(t) d t}{I(t)}
$$

Example. Solve $y^{\prime}=3(5-y)$.

$$
\begin{gathered}
I(t)=e^{\int 3 d t}=e^{3 t} \\
y=\frac{\int e^{3 t} \cdot 3 \cdot 5 d t}{e^{3 t}}=\frac{\int e^{3 t} \cdot 5 d 3 t}{e^{3 t}}=\frac{5 e^{3 t}+C}{e^{3 t}}=\frac{5 e^{3 t}+K}{e^{3 t}}=5+C e^{-3 t} .
\end{gathered}
$$

Example. Solve $y^{\prime}+2 t y=4 t$.

$$
\begin{gathered}
I(t)=e^{\int 2 t d t}=e^{t^{2}} \\
y=\frac{\int e^{t^{2}} \cdot 4 t d t}{e^{t^{2}}}=\frac{2 \int e^{t^{2}} d t^{2}}{e^{t^{2}}}=\frac{2 e^{t^{2}}+C}{e^{t^{2}}}=2+\frac{C}{e^{t^{2}}} .
\end{gathered}
$$

1.3 Separation of Variables

Step 1. Bring the equation to the form $f(y) y^{\prime}=g(t)$

$$
f(y) \frac{d y}{d t}=g(t), \quad f(y) d y=g(t) d t .
$$

Step 2. Integrate both sides $\int f(y) d y=\int g(t) d t$.
Step 3. Solve the obtained equation for y.

Example. Solve $y^{\prime}=3(5-y)$.
Step 1. $\frac{y^{\prime}}{5-y}=3, \frac{d y}{5-y}=3 d t$.
Step 2. $\int \frac{d y}{5-y}=\int 3 d t, \quad-\int \frac{d(5-y)}{5-y}=\int 3 d t, \quad-\ln (5-y)=3 t+K$.
Step 3. $\ln (5-y)=-3 t-K, \quad 5-y=e^{-3 t-K}, \quad y=5-e^{-3 t} e^{-K}=5-C e^{-3 t}$.
Example. Solve $\frac{1}{y} y^{\prime}=\frac{1}{t}$ if $y(2)=6$.
Step 1. $\frac{1}{y} \frac{d y}{d t}=\frac{1}{t}, \frac{d y}{y}=\frac{d t}{t}$.
Step 2. $\int \frac{d y}{y}=\int \frac{d t}{t}, \ln y+C_{1}=\ln t+C_{2}, \ln y=\ln t+C$.
Step 3. $\ln y=\ln e^{C} t, y=e^{C} t$, so the general solution is $y=k t$.
Let us find the particular solution: $6=k \cdot 2, k=3, y=3 t$.

1.4 Linear Second order Equations

1.4.1 Homogenous Linear Second order Equation with constant coefficients

We consider a differential equation

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{1}
\end{equation*}
$$

To this differential equation corresponds the numerical quadratic equation

$$
\begin{equation*}
a r^{2}+b r+c=0 \tag{2}
\end{equation*}
$$

called characteristic equation.
Theorem 1 If the characteristic equation (2) has two distinct roots r_{1} and r_{2}, then the equation (1) has the general solution

$$
y(t)=k_{1} e^{r_{1} t}+k_{2} e^{r_{2} t} .
$$

Example. Consider the problem

$$
y^{\prime \prime}-y^{\prime}-2 y=0, \quad y(0)=3, y^{\prime}(0)=0 .
$$

Corresponding characteristic equation

$$
r^{2}-r-2=0
$$

has the roots $r_{1}=2, r_{2}=-1$. Thus the general solution is

$$
y(t)=k_{1} e^{2 t}+k_{2} e^{-t} .
$$

Plug in initial values

$$
\begin{aligned}
& y(0)=k_{1}+k_{2}=3 \\
& y^{\prime}(0)=2 k_{1}-k_{2}=0
\end{aligned}
$$

Solution gives $k_{1}=1, k_{2}=2$, so our particular solution is

$$
y(t)=e^{2 t}+2 e^{-t} .
$$

Theorem 2 If the characteristic equation (2) has two equal roots $r_{1}=r_{2}$, then the equation (1) has the general solution

$$
y(t)=k_{1} e^{r_{1} t}+k_{2} t e^{r_{1} t} .
$$

Example. Consider the problem

$$
y^{\prime \prime}-2 y^{\prime}+y=0, \quad y(0)=6, y^{\prime}(0)=0
$$

Corresponding characteristic equation

$$
r^{2}-2 r+1=0
$$

has one root $r_{1}=r_{2}=1$. Thus the general solution is

$$
y(t)=k_{1} e^{t}+k_{2} t e^{t}
$$

Plug in initial values

$$
\begin{aligned}
& y(0)=k_{1}=6 \\
& y^{\prime}(0)=k_{1}+2 k_{2}=0
\end{aligned}
$$

Solution gives $k_{1}=6, k_{2}=-3$, so our particular solution is

$$
y(t)=6 e^{t}-3 t e^{t}
$$

Theorem 3 If the characteristic equation (2) has complex roots $\alpha \pm i \beta$, then the equation (1) has the general solution

$$
y(t)=e^{\alpha t}\left(C_{1} \cos \beta t+C_{2} \sin \beta t\right)
$$

Example. Consider the problem

$$
y^{\prime \prime}-2 y^{\prime}+2 y=0, \quad y(0)=6, \quad y^{\prime}(0)=0 .
$$

Corresponding characteristic equation

$$
r^{2}-2 r+2=0
$$

has the roots $r_{1}=1+i, r_{2}=1-i$. Thus the general solution is

$$
y(t)=e^{t}\left(C_{1} \cos t+C_{2} \sin t\right)
$$

Plug in initial values

$$
\begin{aligned}
& y(0)=C_{1}=6 \\
& y^{\prime}(0)=C_{1}+C_{2}=0 .
\end{aligned}
$$

Solution gives $k_{1}=6, k_{2}=-6$, so our particular solution is

$$
y(t)=6 e^{t}(\cos t-\sin t) .
$$

1.4.2 Nonhomogenous Linear Second order Equation with constant coefficients

Nonhomogenous equation looks as

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t) .
$$

Theorem 4 Let $y_{p}(t)$ be any particular solution of the nonhomogenous equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t)
$$

and let $k_{1} y_{1}(t)+k_{2} y_{2}(t)$ be a general solution of the corresponding homogenous equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Then, a general solution of nonhomogenous equation is

$$
y(t)=k_{1} y_{1}(t)+k_{2} y_{2}(t)+y_{p}(t) .
$$

We already know how to find general solution of homogenous equation, but how to find a particular solution of nonhomogenous one?

For this there exists so called method of undetermined coefficients. This method works only if the associated homogeneous equation has constant coefficients

This method is based on a guessing technique. That is, we will guess the form of $y_{p}(t)$ and then plug it in the equation to find it.

In this method one looks for a particular solution which has the same form as the right hand side function $g(t)$. Namely:

If $g(t)=g_{0}$ is constant, then $y_{p}(t)=g_{0} / c$.
If $g(t)$ is polynomial of order n then one looks for $y_{p}(t)$ which is a polynomial of same order.

If $g(t)$ is an exponential $e^{\beta t}$ then one looks for a particular solution of the following form:
(case 1) $A e^{\beta t}$ if β is not a root of characteristic equation.
(case 2) Ate $e^{\beta t}$ if β is a simple root (one of the two roots) of the characteristic equation.
(case 3) $A t^{2} e^{\beta t}$ if β is a double (only) root of the characteristic equation.
Remark. Suppose the right hand side of the equation is the sum of two functions

$$
a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t)+g_{2}(t) .
$$

Then a particular solution of this equation is the sum of particular solutions of the equations

$$
a y^{\prime \prime}+b y^{\prime}+c y=g_{1}(t), \quad a y^{\prime \prime}+b y^{\prime}+c y=g_{2}(t)
$$

Example. Find the general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}-3 y=9 t^{2}
$$

The general solution of homogenous equation $y^{\prime \prime}-2 y^{\prime}-3 y=0$ is

$$
y(t)=k_{1} e^{3 t}+k_{2} e^{-t} .
$$

Now look at a particular solution of $y^{\prime \prime}-2 y^{\prime}-3 y=9 t^{2}$. The right hand side is quadratic polynomial, so we look at

$$
y_{p}(t)=A t^{2}+B t+C .
$$

Plugging this expression into the equation we obtain

$$
(-3 A) t^{2}+(-4 A-3 B) t+(2 A-2 B-3 C)=9 t^{2}
$$

This gives the system

$$
\begin{aligned}
& -3 A=9 \\
& -4 A-3 B=0 \\
& 2 A-2 B-3 C=0
\end{aligned}
$$

whose solution is $A=-3, B=4, C=-14 / 3$. Therefore the particular solution is

$$
y_{p}(t)=-3 t^{2}+4 t-14 / 3
$$

and the general solution is

$$
y(t)=k_{1} e^{3 t}+k_{2} e^{-t}-3 t^{2}+4 t-14 / 3
$$

Example. Find the general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+y=e^{3 t} .
$$

The general solution of homogenous equation $y^{\prime \prime}-2 y^{\prime}+y=0$, as we know, is

$$
y(t)=k_{1} e^{t}+k_{2} t e^{t} .
$$

Now look at a particular solution of $y^{\prime \prime}-2 y^{\prime}+y=e^{3 t}$. First let us mention that 3 is not a root of characteristic equation $r^{2}-2 r+1=0$, thus we look at such solution as $y(t)=A e^{3 t}$. Substitution gives

$$
9 A e^{3 t}-6 A e^{3 t}+A e^{3 t}=e^{3 t}
$$

and we calculate $A=\frac{1}{4}$.
Thus the general solution is

$$
y(t)=k_{1} e^{t}+k_{2} t e^{t}+\frac{1}{4} e^{3 t} .
$$

Example. Find the general solution of the equation

$$
y^{\prime \prime}-2 y^{\prime}+y=e^{t} .
$$

The general solution of homogenous equation $y^{\prime \prime}-2 y^{\prime}+y=0$, as we know, is

$$
y(t)=k_{1} e^{t}+k_{2} t e^{t} .
$$

Now look at a particular solution of $y^{\prime \prime}-2 y^{\prime}+y=e^{t}$. First let us mention that 1 is a double root of characteristic equation $r^{2}-2 r+1=0$, thus we look at such solution as $y(t)=t^{2} A e^{t}$. Calculating $y^{\prime}(t)$ and $y^{\prime \prime}(t)$ and substituting we obtain $A=\frac{1}{2}$. So the particular solution is $y_{p}(t)=\frac{1}{2} t^{2} e^{t}$, and the general solution is

$$
y(t)=k_{1} e^{t}+k_{2} t e^{t}+\frac{1}{2} t^{2} e^{t} .
$$

1.5 The Fundamental Existence and Uniqueness Theorem

Theorem 5 Consider the initial value problem

$$
y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0} .
$$

Suppose that f is continues at the point $\left(t_{0}, y_{0}\right)$. Then there exists a function

$$
y: I \rightarrow R
$$

on an open interval $I=\left(t_{0}-a, t_{0}+a\right)$ about t_{0} that is a solution of our problem on I.

Furthermore, if f is C^{1} at $\left(t_{0}, y_{0}\right)$ then this solution is unique.
Remark. This theorem explains the Examples 6 and 7: in first case the right hand side function is not continues, so there is no solution, and in second case this function is not C^{1}, so there are more then one solutions.

1.6 Economical Examples

1.6.1 Elasticity

Assume that the demand Q depends on price p as $Q=Q(p)$, and that elasticity of demand is constant

$$
\epsilon(p)=\frac{p \cdot Q^{\prime}(p)}{Q(p)}=-1
$$

(constant elasticity demand). One of such functions is $Q(p)=\frac{C}{p}$, the inverse proportionality. Are there other functions with constant elasticity $\epsilon(p)=-1$?

Let us solve the above differential equation:

$$
\begin{gathered}
\frac{d Q}{Q}=-\frac{d p}{p}, \quad \int \frac{d Q}{Q}=-\int \frac{d p}{p}, \quad \ln Q=-\ln p+c, \\
\ln Q+\ln p=C, \quad \ln Q \cdot p=C, \quad Q \cdot p=e^{C}, \quad Q=\frac{C_{1}}{p},
\end{gathered}
$$

thus ANY solution is of the form $Q(p)=\frac{C_{1}}{p}$.

1.6.2 Equilibrium Price

Let $Q_{d}(p)$ be the demand function and $Q_{s}(p)$ be the supply function. The equilibrium prise is the solution of the equation $Q_{d}(p)=Q_{s}(p)$.

Assume that the demand and supply functions are linear: $Q_{d}=c+b p$ and $Q_{s}=g+h p$. Then the equilibrium prise is $\bar{p}=\frac{c-g}{h-b}$.

Suppose now that we start with some initial prise $p_{0}=p(0)$ which may be differs from equilibrium prise \bar{p}. How this prise will change in time?

It is natural to assume that the rate of change of price $\frac{d p}{d t}$ is proportional to the excess demand $Q_{d}-Q_{s}$ that is satisfies the equation

$$
\frac{d p}{d t}=m\left(Q_{d}-Q_{s}\right)
$$

where m is a positive constant. Note that

$$
Q_{d}-Q_{s}=(c+b p)-(g+h p)=(c-g)+(b-h) p,
$$

so the equation looks as

$$
\frac{d p}{d t}=m(c-g)+m(b-h) p
$$

This is first order linear differential equation.
The general solution of this equation is

$$
p(t)=\frac{C \cdot e^{m(b-h) t}}{m(b-h)}+\frac{c-g}{h-b}=C_{1} \cdot e^{m(b-h) t}+\frac{c-g}{h-b} .
$$

Note that usually $b<0$ (the demand function $Q_{d}=c+b p$ decreases in p) and $h>0$ (the supply function is $Q_{s}=g+h p$ increases in p). Thus $\lim _{t \rightarrow \infty} e^{m(b-h) t}=0$. Then the limit of prize $p(t)$ as $t \rightarrow \infty$ is

$$
\begin{gathered}
\lim _{t \rightarrow \infty} p(t)=\lim _{t \rightarrow \infty}\left(C_{1} \cdot e^{m(b-h) t}+\frac{c-g}{h-b}\right)= \\
\lim _{t \rightarrow \infty} C_{1} \cdot e^{m(b-h) t}+\lim _{t o \infty} \frac{c-g}{h-b}=0+\frac{c-g}{h-b}=\frac{c-g}{h-b} .
\end{gathered}
$$

Thus the prise $p(t)$, starting at any initial value $p(0)=p_{0}$, converges to equilibrium prise $\bar{p}=\frac{c-g}{h-b}$

Exercises

1. Find the general solution for each differential equation using separation of variables. Then find the particular solution satisfying the initial condition.
(a) $y^{\prime}=y e^{x}, y(0)=3 e$; (b) $y^{\prime}=x y+y, y(0)=2$;
(c) $x y y^{\prime}=\ln x, y(1)=1$; (d) $x y^{\prime}=x \sqrt{y}+2 \sqrt{y}, y(1)=4$;
(e) $y y^{\prime}=x e^{-y^{2}}, y(0)=1$; (f) $y y^{\prime}=x\left(1+y^{2}\right), y(0)=1$.
2. Find the general solution for each differential equation using integrating factor. Then find the particular solution satisfying the initial condition.
(a) $y^{\prime}+3 x^{2} y=9 x^{2}, y(0)=7$; (b) $y^{\prime}-2 y=e^{3 x}, y(0)=3$;
(c) $y^{\prime}-3 y=6 \sqrt{x} e^{3 x}, y(0)=-2$.
3. Find the general solution for each differential equation using integrating factor.
(a) $y^{\prime}+y=x^{2}$; (b) $x y^{\prime}+2 y=x e^{3 x}$; (c) $x y^{\prime}+y=x \ln x$.
4. Solve the following initial value problems
(a) $y^{\prime \prime}-y=0, \quad y^{\prime}(0)=y(0)=1$; (b) $y^{\prime \prime}+6 y+9=0, \quad y(0)=0, y^{\prime}(0)=1$;
(c) $y^{\prime \prime}+2 y^{\prime}+10 y=0, \quad y(0)=2, \quad y^{\prime}(0)=1$.
5. Find general solution for the following nonhomogenous equations
(a) $y^{\prime \prime}-2 y^{\prime}-y=7$; (b) $y^{\prime \prime}+y^{\prime}-2 y=6 t$; (c) $y^{\prime \prime}-y^{\prime}-2 y=4 e^{-1}$.
6. Solve the logistic growth equation $y^{\prime}=k y(M-y), k>0$ using separation of variables and the following hint

$$
\frac{1}{y(M-y)}=\frac{1}{M y}+\frac{1}{M(M-y)} .
$$

