Reading: [Simon], Chapter 21, p. 505-522.

1 Concave and convex functions

1.1 Convex Sets

Definition $1 A$ set $X \subset R^{n}$ is called convex if given any two points $x^{\prime}, x^{\prime \prime} \in$ X the line segment joining x^{\prime} and $x^{\prime \prime}$ completely belongs to X, in other words for each $t \in[0,1]$ the point

$$
x^{t}=(1-t) x^{\prime}+t x^{\prime \prime}
$$

is also in X for every $t \in[0,1]$.

The intersection of convex sets is convex.
The union of convex sets is not necessarily convex.

Let $X \subset R^{n}$. The convex hull of X is defined as the smallest convex set that contain X.

The convex hull of X consists of all points which are convex combinations of some points of X

$$
C H(X)=\left\{y \in R^{n}: y=\sum t_{i} x_{i}, \quad x_{i} \in X, \quad \sum t_{i}=1\right\} .
$$

1.2 Concave and Convex Function

A function f is concave if the line segment joining any two points on the graph is never above the graph. More precisely

Definition $2 A$ function $f: S \subset R^{n} \rightarrow R$ defined on a convex set S is concave if given any two points $x^{\prime}, x^{\prime \prime} \in S$ we have

$$
(1-t) f\left(x^{\prime}\right)+t f\left(x^{\prime \prime}\right) \leq f\left((1-t) x^{\prime}+t x^{\prime \prime}\right)
$$

for any $t \in[0,1]$.
f is called strictly concave if

$$
(1-t) f\left(x^{\prime}\right)+t f\left(x^{\prime \prime}\right)<f\left((1-t) x^{\prime}+t x^{\prime \prime}\right) .
$$

Definition $3 A$ function $f: S \subset R^{n} \rightarrow R$ is convex if given any two points $x^{\prime}, x^{\prime \prime} \in S$ we have

$$
(1-t) f\left(x^{\prime}\right)+t f\left(x^{\prime \prime}\right) \geq f\left((1-t) x^{\prime}+t x^{\prime \prime}\right)
$$

for any $t \in[0,1]$.
f is called strictly convex if

$$
(1-t) f\left(x^{\prime}\right)+t f\left(x^{\prime \prime}\right)>f\left((1-t) x^{\prime}+t x^{\prime \prime}\right)
$$

Roughly speaking concavity of a function means that the graph is above chord.

It is clear that if f is concave then $-f$ is convex and vice versa.

Theorem $1 A$ function $f: S \subset R^{n} \rightarrow R$ is concave (convex) if and only if its restriction to every line segment of R^{n} is concave (convex) function of one variable.

Theorem 2 If f is a concave (convex) function then a local maximizer (minimizer) is global.

1.2.1 Characterization in Terms of Graphs

Given a function $f: S \subset R^{n} \rightarrow R$ defined on a convex set S.
The hypograph of f is defined as the set of points $(x, y) \in S \times R$ lying on or bellow the graph of the function:

$$
\text { hyp } f=\{(x, y): x \in S, y \leq f(x)\} .
$$

Similarly, the epigraph of f is defined as the set of points $(x, y) \in S \times R$ lying on or above the graph of the function:

$$
\text { epi } f=\{(x, y): x \in S, y \geq f(x)\}
$$

Theorem 3 (a) A function $f: S \subset R^{n} \rightarrow R$ defined on a convex set S is concave if and only if its hypograpf hyp f is convex.
(b) A function $f: S \subset R^{n} \rightarrow R$ defined on a convex set S is convex if and only if its epigraph epi f is convex.

Proof of (a). Let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in$ hyp f, let us show that

$$
\begin{gathered}
(x t, y t)=\left(t x_{1}+(1-t) x_{2}, t y_{1}+(1-t) y_{2}\right) \in h y p f . \\
y_{t}=t y_{1}+(1-t) y_{2} \leq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right) \leq f\left(t x_{1}+(1-t) x_{2}\right)=f\left(x_{t}\right) .
\end{gathered}
$$

1.2.2 Characterization in Terms of Level Sets

Given a function $f: S \subset R^{n} \rightarrow R$ defined on a convex set S.
Take any number $K \in R$.
The upper contour set U_{K} of f is defined as

$$
U_{K}=\{x \in S, f(x) \geq K\}
$$

Similarly, the lower contour set L_{K} of f is defined as

$$
L_{K}=\{x \in S, f(x) \leq K\} .
$$

Theorem 4 (a) Suppose a function $f: S \subset R^{n} \rightarrow R$ defined on a convex set S is concave. Then for every K the upper contour set U_{K} is either empty or a convex set.
(b) If f is convex, then for every K the lover contour set L_{K} is either empty or a convex set.

Proof. Let us prove only (a).
Let $x_{1}, x_{2} \in U_{k}$, let us show that $x_{t}=t x_{1}+(1-t) x_{2} \in U_{K}$:

$$
f\left(x_{t}\right)=f\left(t x_{1}+(1-t) x_{2}\right) \geq t f\left(x_{1}\right)+(1-t) f\left(x_{2}\right) \geq t K+(1-t) K=K
$$

Remark. Notice that this is only necessary condition, not sufficient: consider the example $f(x)=e^{x}$ or $f(x)=x^{3}$.

1.2.3 Examples of Concave Functions

Theorem 5 Suppose f_{1}, \ldots, f_{n} are concave (convex) functions and $a_{1}>0, \ldots, a_{n}>$ 0 , then the linear combination

$$
F=a_{1} f_{1}+\ldots+a_{n} f_{n}
$$

is concave (convex).

Proof.

$$
\begin{gathered}
F((1-t) x+t y)=\sum a_{i} f_{i}((1-t) x+t y) \geq \sum a_{i}\left[(1-t) f_{i}(x)+t f_{i}(y)\right]= \\
(1-t) \sum a_{i} f(x)+t \sum a_{i} f_{i}(y)=(1-t) F(x)+t F(y)
\end{gathered}
$$

A function of the form $f(x)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=a_{0}+a_{1} x_{1}+a_{2} x_{2}+\ldots+$ $a_{n} x_{n}$ is called affine function (if $a_{0}=0$, it is a linear function).

Theorem 6 An affine function is both concave and convex.
Proof. The theorem follows from previous theorem and following easy to prove statements:
(1) The function $f\left(x_{1}, \ldots, x_{n}\right)=x_{i}$ is concave and convex;
(2) The function $f\left(x_{1}, \ldots, x_{n}\right)=-x_{i}$ is concave and convex;
(3) The constant function $f\left(x_{1}, \ldots, x_{n}\right)=a$ is concave and convex.

Theorem 7 A concave monotonic transformation of a concave function is itself concave.

Proof. Let $f: R^{n} \rightarrow R$ be a concave function and $g: R \rightarrow R$ be concave and increasing, then

$$
\begin{aligned}
& (g \circ f)(1-t) x+t y)= \\
& g(f((1-t) x+t y)) \geq g((1-t) f(x)+t f(y)) \geq(1-t) g(f(x))+t g(f(y))= \\
& (1-t)(g \circ f)(x))+t(g \circ f)(y))
\end{aligned}
$$

here the first inequality holds since f is concave and g is increasing, and the second inequality holds since g is concave.
Remark. Note that just monotonic transformation of a concave function is not necessarily concave: consider, for example $f(x)=x$ and $g(z)=z^{3}$.

Thus the concavity of a function is not ordinal, it is cardinal property.

Economic Example

Suppose production function $f(x)$ is concave and the cost function $c(x)$ is convex. Suppose also p is the positive selling price. Then the profit function

$$
\pi(x)=p f(x)+(-c(x))
$$

is concave as a linear combination with positive coefficients of concave functions. Thus a local maximum of profit function is global in this case (see bellow).

1.3 Calculus Criteria for Concavity

For one variable functions we have the following statements

1. A C^{1} function $f: U \subset R \rightarrow R$ is concave if and only if its first derivative $f^{\prime}(x)$ is decreasing function.
2. A C^{2} function $f: U \subset R \rightarrow R$ is concave if and only if its second derivative $f^{\prime \prime}(x)$ is ≤ 0.

In n-variable case usually instead of $f^{\prime}(x)$ we consider the Jacobian (gradient) $D f(x)$ and instead of $f^{\prime \prime}(x)$ we consider the hessian $D^{2} f(x)$.

It is not clear how to generalize the above statements 1 and 2 to n-variable case since the statement " $D f(x)$ (which is a vector) is decreasing function" has no sense as well as " $D^{2} f(x)$ (which is a matrix) is positive".

Let us reformulate the statements 1 and 2 in the following forms:
1^{\prime}. A C^{1} function $f: U \subset R \rightarrow R$ is concave if and only if

$$
f(y)-f(x) \leq f^{\prime}(x)(y-x)
$$

for all $x, y \in U$.
Hint: Observe that for concave $f(x)$ and $x<y$ one has

$$
f^{\prime}(x) \geq \frac{f(y)-f(x)}{y-x} \geq f^{\prime}(y)
$$

2'. A C^{2} function $f: U \subset R \rightarrow R$ is concave if and only if the one variable quadratic form $Q(y)=f^{\prime \prime}(x) \cdot y^{2}$ is negative semidefinite for all $x \in U$.

Hint: Observe that the quadratic form $Q(y)=f^{\prime \prime}(x) \cdot y^{2}$ is negative semidefinite if and only if the coefficient $f^{\prime \prime}(x) \leq 0$.

Now we can formulate the multi-variable generalization of 1 :
Theorem 8 A C^{1} function $f: U \subset R^{n} \rightarrow R$ is concave if and only if

$$
f(y)-f(x) \leq D f(x)(y-x)
$$

for all $x, y \in U$, that is

$$
f(y)-f(x) \leq \frac{\partial f}{\partial x_{1}}(x)\left(y_{1}-x_{1}\right)+\ldots+\frac{\partial f}{\partial x_{n}}(x)\left(y_{n}-x_{n}\right) .
$$

Similarly f is convex if and only if

$$
f(y)-f(x) \geq D f(x)(y-x)
$$

Remember that concavity of a function means that the graph is above chord? Now we can say

Roughly speaking concavity of a function means that the tangent is above graph.

From this theorem follows
Corollary 1 Suppose f is concave and for some $x_{0}, y \in U$ we have

$$
D f\left(x_{0}\right)\left(y-x_{0}\right) \leq 0
$$

then $f(y) \leq f\left(x_{0}\right)$ for THIS y.
Particularly, if directional derivative of f at x_{0} in any feasible direction is nonpositive, i.e.

$$
D_{y-x_{0}} f\left(x_{0}\right)=D f\left(x_{0}\right)\left(y-x_{0}\right) \leq 0
$$

for $A L L y \in U$, then x_{0} is GLOBAL max of f in U.
Indeed, since of concavity of f we have

$$
f(y)-f\left(x_{0}\right) \leq D f\left(x_{0}\right)\left(y-x_{0}\right) \leq 0
$$

The following theorem is the generalization of 2 :
Theorem 9 A C^{2} function $f: U \subset R^{n} \rightarrow R$ defined on a convex open set U is
(a) concave if and only if the Hessian matrix $D^{2} f(x)$ is negative semidefinite for all $x \in U$;
(b) strictly concave if the Hessian matrix $D^{2} f(x)$ is negative definite for all $x \in U$;
(c) convex if and only if the Hessian matrix $D^{2} f(x)$ is positive semidefinite for all $x \in U$;
(d) strictly convex if the Hessian matrix $D^{2} f(x)$ is positive definite for all $x \in U$;

Remark. Note that the statement (b) (and (d) too) is not "only if": If f is strictly concave then the Hessian is not necessarily negative definite for ANY x. Analyze, for example $f(x)=-x^{4}$.

Let us recall criteria for definiteness of matrix in terms of principal minors:
(1) A matrix H is positive definite if and only if its n leading principal minors are >0.
(2) A matrix H is negative definite if and only if its n leading principal minors alternate in sign so that all odd order ones are <0 and all even order ones are >0.
(3) A matrix H is positive semidefinite if and only if its $2^{n}-1$ principal minors are all ≥ 0.
(4) A matrix H is negative semidefinite if and only if its $2^{n}-1$ principal minors alternate in sign so that odd order minors are ≤ 0 and even order minors are ≥ 0.

Example. Let us determine the definiteness of the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. Its first order principal minors are

$$
M_{1}=1, \quad M_{1}^{\prime}=0
$$

and the only second order principal minor is

$$
M_{2}=0 .
$$

We are in the situation (3), so our matrix is positive semidefinite. Note that corresponding quadratic form is $Q(x, y)=y^{2}$.

Example. Let $f(x, y)=2 x-y-x^{2}+2 x y-y^{2}$. Its Hessian is

$$
\left(\begin{array}{cc}
-2 & 2 \\
2 & -2
\end{array}\right)
$$

which is constant (does not depend on (x, y)) and negative semidefinite. Thus f is concave.
Example. Consider the function $f(x, y)=2 x y$. Its Hessian is

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) .
$$

Since the only second order principal minor is $-1<0$ the matrix ix indefinite, thus f is neither concave nor convex.

Example. Consider the Cobb-Douglas function $f(x, y)=c x^{a} y^{b}$ with $a, b, c>$ 0 in the first orthant $x>0, y>0$.

Its hessian is

$$
\left(\begin{array}{cc}
a(a-1) c x^{a-2} y^{b} & a b c x^{a-1} y^{b-1} \\
a b c x^{a-1} y^{b-1} & b(b-1) c x^{a} y^{b-2}
\end{array}\right)
$$

The principal minors of order 1 of this matrix are

$$
M_{1}=a(a-1) c x^{a-2} y^{b}, \quad M_{1}^{\prime}=b(b-1) c x^{a} y^{b-2}
$$

and the only principal minor of order 2 is

$$
M_{2}=a b c x^{2 a-2} y^{2 b-2}(1-(a+b))
$$

When this function is concave? For this the Hessian must be negative semidefinite. This happens when all principal minors of degree $1 M_{1}$ and M_{1}^{\prime} are ≤ 0 and (only) principal minor of degree $2 M_{2}$ is ≥ 0.

Recall that we work in the first orthant $x>0, y>0$, and $a, b, c>0$.
If our $f(x, y)=c x^{a} y^{b}$ exhibits constant or decreasing return to scale (CRS or DRS), that is $a+b \leq 1$, then clearly $a \leq 0, b \leq 0$, and we have thus the Cobb-Douglas function is concave if and $M_{1} \leq 0, M_{1}^{\prime} \leq 0, M_{2} \geq 0$, thus f is concave.

Remark. So we have shown that if a Cobb-Douglas function $f(x, y)=c x^{a} y^{b}$ is CRS or DRS, it is concave. But can it be convex?

1.4 Concave Functions and Optimization

Concavity of a function replaces the second derivative test to separate local max, min or saddle, moreover, for a concave function a critical point which is local max (min) is global:

Theorem 10 Let $f: U \subset R^{n} \rightarrow R$ be concave (convex) function defined on a convex open set U. If x^{*} is a critical point, that is $D f\left(x^{*}\right)=0$, then it is global maximizer (minimizer).

Proof. Since $D f\left(x^{*}\right)=0$ from the inequality

$$
f(y)-f\left(x^{*}\right) \leq D f\left(x^{*}\right)\left(y-x^{*}\right)=0
$$

follows $f(y) \leq f\left(x^{*}\right)$ for all $y \in U$.
The next result is stronger, it allows to find maximizer also on the boundary of U if it is not assumed open:

Theorem 11 Let $f: U \subset R^{n} \rightarrow R$ be concave function defined on a convex set U. If x^{*} is a point, which satisfies

$$
D f\left(x^{*}\right)\left(y-x^{*}\right) \leq 0
$$

for each $y \in U$, then x^{*} is a global maximizer of f on U.
Similarly, if f is convex and

$$
D f\left(x^{*}\right)\left(y-x^{*}\right) \geq 0
$$

for each $y \in U$, then x^{*} is a global minimizer of f on U.
Proof. From

$$
f(y)-f\left(x^{*}\right) \leq D f\left(x^{*}\right)\left(y-x^{*}\right) \leq 0
$$

follows $f(y) \leq f\left(x^{*}\right)$ for all $y \in U$.
Remark. Here is an example of global maximizer which is not a critical point: Suppose $f: R \rightarrow R$ is an increasing and convex function on $[a, b]$. Then $f^{\prime}(b)(x-b) \leq 0$ for all $x \in[a, b]$. Thus b is global maximizer of f on $[a, b]$.

Lagrange Case

Consider the problem

$$
\max f\left(x_{1}, \ldots, x_{n}\right) \text { s.t. } h_{i}(x)=c_{i}, i=1, \ldots, k .
$$

As we know if $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ is a maximizer, then there exist $\mu^{*}=$ $\left(\mu_{1}^{*}, \ldots, \mu_{k}^{*}\right)$ such that $\left(x^{*}, \mu^{*}\right)$ satisfies Lagrange conditions $D f\left(x^{*}\right)-\mu^{*}$. $D h\left(x^{*}\right)=0$ and $h_{i}\left(x^{*}\right)=c_{i}, i=1, \ldots, k$.

This is the sufficient condition for a global maximum:
Theorem 12 Suppose f is concave, each h_{i} is convex, $\left(x^{*}, \mu^{*}\right)$ satisfies Lagrange conditions and each $\mu_{i} \geq 0$. Then x^{*} is a global maximizer.

KKT Case

Consider the problem

$$
\max f\left(x_{1}, \ldots, x_{n}\right) \text { s.t. } g_{i}(x) \leq c_{i}, i=1, \ldots, k .
$$

As we know if $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ is a maximizer, then there exist $\lambda^{*}=$ $\left(\lambda_{1}^{*}, \ldots, \lambda_{k}^{*}\right)$ such that $\left(x^{*}, \lambda^{*}\right)$ satisfies KKT conditions $D f\left(x^{*}\right)-\lambda^{*} \cdot D g\left(x^{*}\right)=$, $\lambda_{i} \cdot\left(h_{i}\left(x^{*}-c_{i}\right)=0, i=1, \ldots, k, \lambda_{i} \geq 0, \quad g_{i}\left(x^{*}\right)=c_{i}, i=1,2, \ldots, k\right.$.

This is the sufficient condition for a global maximum:
Theorem 13 Suppose f is concave, each g_{i} is convex, and $\left(x^{*}, \lambda^{*}\right)$ satisfies KKT conditions. Then x^{*} is a global maximizer.

Example. Consider a production function $y=g\left(x_{1}, \ldots, x_{n}\right)$, where y denotes output, $x=\left(x_{1}, \ldots, x_{n}\right)$ denotes the input bundle, p denotes the price of output and w_{i} is the cost per unit of input i. Then the cost function is

$$
C(x)=w_{1} x_{1}+\ldots+w_{n} x_{n}
$$

and the profit function is

$$
\pi(x)=p g(x)-C(x)
$$

Our first claim is that if g is concave, then π is concave too: $C(x)$, as a linear function, is convex, then $-C(x)$ is concave, besides $p g(x)$ is concave too since $p>0$, then $\pi(x)=p g(x)+(-C(x))$ is concave.

The first order condition gives

$$
\frac{\partial \pi(x)}{\partial x_{i}}=p \frac{\partial g(x)}{\partial x_{i}}-w_{i}=0
$$

Since of concavity this condition is necessary and sufficient to be interior maximizer. This means that the maximizer of profit is the value of x where marginal revenue product $p \frac{\partial g(x)}{\partial x_{i}}$ equals to the factor price w_{i} for each input.

1.5 Quasiconcave Functions

Recall the property of a concave function f : for each K the lower level set

$$
L_{K}=\{x, f(x) \leq K\}
$$

is concave.
This property is taken as the definition of quasiconcave function:
Definition 1. A function $f(x)$ defined on a convex subset $U \subset R^{n}$ is quasiconcave if

$$
L_{K}=\{x: f(x) \leq K\}
$$

is a convex set for any constant K.
Similarly, f is quasiconvex if

$$
U_{K}=\{x: f(x) \geq K\}
$$

is a convex set for any constant K.
Definition 2. A function $f(x)$ defined on a convex subset $U \subset R^{n}$ is quasiconcave if

$$
f(t x+(1-t) y) \geq \min (f(x), f(y))
$$

for each $x, y \in U$ and $t \in[0,1]$.

Similarly, f is quasiconvex if

$$
f(t x+(1-t) y) \leq \max (f(x), f(y))
$$

Remark. Concavity implies, but is not implied by quasiconcavity. Indeed, the function $f(x)=x^{3}$ is quasiconcave (and quasiconvex) but not concave (and convex).

Remark. Besides f s quasiconcave f and only if $-f$ is quasiconvex.

Theorem 14 Definition 1 and Definition 2 are equivalent.
Proof. (a) Def. $1 \Rightarrow$ Def. 2.
Given:

$$
U_{K}=\{x, f(x) \geq K\}
$$

is a convex set.
Prove:

$$
f(t x+(1-t) y) \geq \min (f(x), f(y))
$$

Indeed, take $K=\min (f(x), f(y))$, suppose this \min is $f(x)$. Then $K=$ $f(x) \leq f(x)$, so $x \in U_{K}$, and $K=f(x) \leq f(y)$, so $y \in U_{K}$. Then, since of convexity of U_{K} we have $t x+(1-t) y \in U_{K}$, that is $K \leq f(t x+(1-t) y)$.
(b) Def. $2 \Rightarrow$ Def. 1 .

Given:

$$
f(t x+(1-t) y) \geq \min (f(x), f(y))
$$

Prove:

$$
U_{K}=\{x, f(x) \geq K\}
$$

is a convex set.
Indeed, suppose $x, y \in U_{K}$, that is $f(x) \geq K, f(y) \geq y$. We want to prove that $f(t x+(1-t) y) \in U_{K}$, i.e. $f(t x+(1-t) y) \geq K$. Indeed, assume $\min (f(x), f(y))=f(x)$, then

$$
f(t x+(1-t) y \geq \min (f(x), f(y))=f(x) \geq K
$$

Theorem 15 A monotonic transformation $g f$ of a quasiconcave function f is itself quasiconcave.

Proof. Take any $K \in R$. Since g is monotonic, there exists $K^{\prime} \in R$ such that $K=g\left(K^{\prime}\right)$. Then
$U_{K}(g f)=\{x, g f(x) \geq K\}=\left\{x, g f \geq g\left(K^{\prime}\right)\right\}=\left\{x, f(x) \geq K^{\prime}\right\}=U_{K^{\prime}}(f)$
is a convex set.
Remark. Thus the quasiconcavity is ordinal property (recall, the concavity is cardinal: a monotonic transformation of concave is not necessarily concave, for example $f(x)=x$ is concave, $g(x)=x^{3}$ is monotonically increasing, but $g(f(x))=x^{3}$ is not concave) .

In particular a monotonic transformation of concave is quaziconcave. But there exists quaziconcave function which is not monotonic transformation of a concave function.

Example. Every Cobb-Douglas function $F\left(x_{1}, x_{2}\right)=A x_{1}^{p} x_{2}^{q}, p, q>0$ is quasiconcave:
(a) As we know an DRS (Decreasing Return to Scale) Cobb-Douglas function such as $f\left(x_{1}, x_{2}\right)=x_{1}^{1 / 3} x_{2}^{1 / 3}$ concave.
(b) An IRS (Increasing Return to Scale) Cobb-Douglas function, such as $x_{1}^{2 / 3} x_{2}^{2 / 3}$ is quasiconcave. Indeed, IRS Cobb-Douglas is monotonic transformation of DRS Cobb-Douglas:

$$
x_{1}^{2 / 3} x_{2}^{2 / 3}=\left(x_{1}^{1 / 3} x_{2}^{1 / 3}\right)^{2},
$$

so $x_{1}^{2 / 3} x_{2}^{2 / 3}=g\left(f\left(x_{1}, x_{2}\right)\right.$ where $f\left(x_{1}, x_{2}\right)=x_{1}^{1 / 3} x_{2}^{2 / 3}$ and $g(z)=z^{2}$.
Example. Any CES function $Q(x, y)=\left(a x^{r}+b y^{r}\right)^{\frac{1}{r}}, a, b>0,0<r<1$ is quasiconcave: $Q(x, y)=g q(x, y)$ where $q(x, y)=\left(a x^{r}+b y^{r}\right)$ is a concave function because it is positive linear combination of concave functions, and $q(z)=z^{\frac{1}{r}}$ is monotonic transformation.

Example. Any increasing function $f: R \rightarrow R$ is quasiconcave (and quasiconvex):

$$
U_{K}=\{x, f(x) \geq K\}=\left[f^{-1} K,+\infty\right)
$$

is a convex set.
Example. Each function $f: R^{1} \rightarrow R^{1}$ which monotonically rises until it reaches a global maximum and the monotonically decrease, such as $f(x)=$ $-x^{2}$, is quasiconcave: U_{K} is convex.

1.5.1 Calculus Criterion for Quasiconcavity

F is quasiconcave if and only if

$$
F(y) \geq F(x) \quad \Rightarrow \quad D F(x)(y-x) \geq 0
$$

F is quasiconvex if and only if

$$
F(y) \leq F(x) \quad \Rightarrow \quad D F(x)(y-x) \geq 0
$$

Exercises

1. By drawing diagrams, determine which of the following sets is convex.
(a) $\left\{(x, y): y=e^{x}\right\}$.(b) $\left\{(x, y): y \geq e^{x}\right\}$. (c) $\{(x, y): x y \geq 1, x>0, y>0\}$.
2. Determine the definiteness of the following symmetric matrices

$$
\left.\begin{array}{l}
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \\
\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
\end{array}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right) .
$$

3. For each of the following functions, determine which, if any, of the following conditions the function satisfies: concavity, strict concavity, convexity, strict convexity. (Use whatever technique is most appropriate for each case.)
(a) $f(x, y)=x+y$
(b) $f(x, y)=x^{2}$
(c) $f(x, y)=x+y-e^{x}-e^{x+y}$
(d) $f(x, y, z)=x^{2}+y^{2}+3 z^{2}-x y+2 x z+y z$
(e) $f(x, y)=3 e^{x}+5 x^{4}-\ln x$
(f) $f(x, y, z)=A x^{a} y^{b} z^{c}, a, b, c>0$.
4. Let $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-x_{1} x_{2}+x_{2}^{2}+3 x_{1}-2 x_{2}+1$. Is f convex, concave, or neither?
5. Prove that any homogenous function on $(0,+\infty)$ is either concave or convex.
6. Suppose that a firm that uses 2 inputs has the production function $f\left(x_{1}, x_{2}\right)=12 x^{1 / 3} x^{1 / 2}$ and faces the input prices $\left(p_{1}, p_{2}\right)$ and the output price q. Show that f is concave for $x_{1}>0$ and $x_{2}>0$, so that the firm's profit is concave.
7. Let $f\left(x_{1}, x_{2}\right)=x_{1}^{3}+2 x_{1}^{2}+2 x_{1} x_{2}+(1 / 2) x_{2}^{2}-8 x_{1}-2 x_{2}-8$. Find the range of values of (x_{1}, x_{2}) for which f is convex, if any.
8. Determine the values of a (if any) for which the function

$$
2 x^{2}+2 x z+2 a y z+2 z^{2}
$$

is concave and the values for which it is convex.
9. Show that the function $f(w, x, y, z)=-w^{2}+2 w x-x^{2}-y^{2}+4 y z-z^{2}$ is not concave.

Homework

Exercise 21.2c from [Simon], Exercise 21.12 from [Simon], Exercise 21.18 from [Simon], Exercise 3f, Exercise 6.

Short Summary
 Concave and Convex

Convex set $X \subset R^{n}: x^{\prime}, x^{\prime \prime} \in X \Rightarrow x^{t}=(1-t) x^{\prime}+t x^{\prime \prime} \in X$.
Convex hull $C H(X)=\left\{y \in R^{n}: y=\sum t_{i} x_{i}, \quad x_{i} \in X, \quad \sum t_{i}=1\right\}$.
Convex function $f: S \subset R^{n} \rightarrow R: x^{\prime}, x^{\prime \prime} \in S \Rightarrow(1-t) f\left(x^{\prime}\right)+t f\left(x^{\prime \prime}\right) \leq$ $f\left((1-t) x^{\prime}+t x^{\prime \prime}\right)$, i.e. graph is above chord.

Hypograph: hyp $f=\{(x, y): x \in S, y \leq f(x)\}$. f is concave iff hyp f is convex.

Epigraph: epi $f=\{(x, y): x \in S, y \geq f(x)\}$. f is convex iff epi f is convex.

Upper contour set: $U_{K}=\{x \in S, f(x) \geq K\}$. If f is concave then U_{K} is convex.

Lower contour set: $U_{K}=\{x \in S, f(x) \leq K\}$. If f is convex then U_{L} is convex.

Calculus Criteria

C^{1} function $f: U \subset R^{n} \rightarrow R$ is concave iff $f(y)-f(x) \leq D f(x)(y-x)$.
C^{2} function $f: U \subset R^{n} \rightarrow R$ is concave iff $D^{2} f(x) \leq 0$.

Concavity and Optimization

If f is concave and $D\left(x^{*}\right)=0$ then x^{*} is global max.
If f is concave and $D f\left(x^{*}\right)\left(y-x^{*}\right) \leq 0$ for $\forall y$ then x^{*} is global max.

Quaziconcavity

f quasiconcave if $U_{K}=\{x: f(x) \geq K\}, \forall K$. Equivalently

$$
f(t x+(1-t) y) \geq \min (f(x), f(y)), \quad \forall x, y, t \in[0,1] .
$$

Concavity - cardinal, quasiconcavity - ordinal.

Calculus Criterion

F is quasiconcave iff

$$
F(y) \geq F(x) \quad \Rightarrow \quad D F(x)(y-x) \geq 0
$$

