Reading: [Simon], Chapter 21, p. 505-522.

1 Concave and convex functions

1.1 Convex Sets

Definition 1 A set $X \subset \mathbb{R}^n$ is called convex if given any two points $x', x'' \in X$ the line segment joining x' and x'' completely belongs to X, in other words for each $t \in [0, 1]$ the point

$$x^t = (1-t)x' + tx''$$

is also in X for every $t \in [0, 1]$.

The intersection of convex sets is convex.

The union of convex sets is not necessarily convex.

Let $X \subset \mathbb{R}^n$. The *convex hull* of X is defined as the smallest convex set that contain X.

The convex hull of X consists of all points which are *convex combinations* of some points of X

$$CH(X) = \{ y \in \mathbb{R}^n : y = \sum t_i x_i, x_i \in X, \sum t_i = 1 \}.$$

1.2 Concave and Convex Function

A function f is concave if the line segment joining any two points on the graph is never above the graph. More precisely

Definition 2 A function $f : S \subset \mathbb{R}^n \to \mathbb{R}$ defined on a convex set S is concave if given any two points $x', x'' \in S$ we have

$$(1-t)f(x') + tf(x'') \le f((1-t)x' + tx'')$$

for any $t \in [0, 1]$.

f is called strictly concave if

$$(1-t)f(x') + tf(x'') < f((1-t)x' + tx'').$$

Definition 3 A function $f: S \subset \mathbb{R}^n \to \mathbb{R}$ is convex if given any two points $x', x'' \in S$ we have

$$(1-t)f(x') + tf(x'') \ge f((1-t)x' + tx'')$$

for any $t \in [0, 1]$.

f is called strictly convex if

$$(1-t)f(x') + tf(x'') > f((1-t)x' + tx'').$$

Roughly speaking concavity of a function means that the **graph is above chord**.

It is clear that if f is concave then -f is convex and vice versa.

Theorem 1 A function $f : S \subset \mathbb{R}^n \to \mathbb{R}$ is concave (convex) if and only if its restriction to every line segment of \mathbb{R}^n is concave (convex) function of one variable.

Theorem 2 If f is a concave (convex) function then a local maximizer (minimizer) is global.

1.2.1 Characterization in Terms of Graphs

Given a function $f: S \subset \mathbb{R}^n \to \mathbb{R}$ defined on a convex set S.

The hypograph of f is defined as the set of points $(x, y) \in S \times R$ lying on or bellow the graph of the function:

hyp
$$f = \{(x, y) : x \in S, y \le f(x)\}.$$

Similarly, the *epigraph* of f is defined as the set of points $(x, y) \in S \times R$ lying on or above the graph of the function:

$$epi \ f = \{(x, y) : x \in S, y \ge f(x)\}$$

Theorem 3 (a) A function $f : S \subset \mathbb{R}^n \to \mathbb{R}$ defined on a convex set S is concave if and only if its hypograpf hyp f is convex.

(b) A function $f : S \subset \mathbb{R}^n \to \mathbb{R}$ defined on a convex set S is convex if and only if its epigraph epi f is convex.

Proof of (a). Let $(x_1, y_1), (x_2, y_2) \in hyp f$, let us show that

$$(xt, yt) = (tx_1 + (1-t)x_2, ty_1 + (1-t)y_2) \in hyp f.$$

$$y_t = ty_1 + (1-t)y_2 \le tf(x_1) + (1-t)f(x_2) \le f(tx_1 + (1-t)x_2) = f(x_t)$$

1.2.2 Characterization in Terms of Level Sets

Given a function $f: S \subset \mathbb{R}^n \to \mathbb{R}$ defined on a convex set S.

Take any number $K \in \mathbb{R}$.

The upper contour set U_K of f is defined as

$$U_K = \{ x \in S, \ f(x) \ge K \}.$$

Similarly, the *lower contour set* L_K of f is defined as

$$L_K = \{ x \in S, \ f(x) \le K \}.$$

Theorem 4 (a) Suppose a function $f : S \subset \mathbb{R}^n \to \mathbb{R}$ defined on a convex set S is concave. Then for every K the upper contour set U_K is either empty or a convex set.

(b) If f is convex, then for every K the lover contour set L_K is either empty or a convex set.

Proof. Let us prove only (a).

Let $x_1, x_2 \in U_k$, let us show that $x_t = tx_1 + (1-t)x_2 \in U_K$:

$$f(x_t) = f(tx_1 + (1-t)x_2) \ge tf(x_1) + (1-t)f(x_2) \ge tK + (1-t)K = K.$$

Remark. Notice that this is only necessary condition, not sufficient: consider the example $f(x) = e^x$ or $f(x) = x^3$.

1.2.3 Examples of Concave Functions

Theorem 5 Suppose $f_1, ..., f_n$ are concave (convex) functions and $a_1 > 0, ..., a_n > 0$, then the linear combination

$$F = a_1 f_1 + \dots + a_n f_n$$

is concave (convex).

Proof.

$$F((1-t)x + ty) = \sum a_i f_i((1-t)x + ty) \ge \sum a_i [(1-t)f_i(x) + tf_i(y)] = (1-t)\sum a_i f(x) + t\sum a_i f_i(y) = (1-t)F(x) + tF(y).$$

A function of the form $f(x) = f(x_1, x_2, ..., x_n) = a_0 + a_1x_1 + a_2x_2 + ... + a_nx_n$ is called *affine function* (if $a_0 = 0$, it is a linear function).

Theorem 6 An affine function is both concave and convex.

Proof. The theorem follows from previous theorem and following easy to prove statements:

- (1) The function $f(x_1, ..., x_n) = x_i$ is concave and convex;
- (2) The function $f(x_1, ..., x_n) = -x_i$ is concave and convex;
- (3) The constant function $f(x_1, ..., x_n) = a$ is concave and convex.

Theorem 7 A concave monotonic transformation of a concave function is itself concave.

Proof. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a concave function and $g : \mathbb{R} \to \mathbb{R}$ be concave and increasing, then

 $\begin{aligned} &(g \circ f)(1-t)x + ty) = \\ &g(f((1-t)x + ty)) \ge g((1-t)f(x) + tf(y)) \ge (1-t)g(f(x)) + tg(f(y)) = \\ &(1-t)(g \circ f)(x)) + t(g \circ f)(y)), \end{aligned}$

here the first inequality holds since f is concave and g is increasing, and the second inequality holds since g is concave.

Remark. Note that just monotonic transformation of a concave function is not necessarily concave: consider, for example f(x) = x and $g(z) = z^3$.

Thus the concavity of a function is not ordinal, it is cardinal property.

Economic Example

Suppose production function f(x) is *concave* and the cost function c(x) is *convex*. Suppose also p is the positive selling price. Then the profit function

$$\pi(x) = pf(x) + (-c(x))$$

is *concave* as a linear combination with positive coefficients of concave functions. Thus a local maximum of profit function is global in this case (see bellow).

1.3 Calculus Criteria for Concavity

For one variable functions we have the following statements

1. A C^1 function $f: U \subset R \to R$ is concave if and only if its first derivative f'(x) is decreasing function.

2. A C^2 function $f: U \subset R \to R$ is concave if and only if its second derivative f''(x) is ≤ 0 .

In *n*-variable case usually instead of f'(x) we consider the Jacobian (gradient) Df(x) and instead of f''(x) we consider the hessian $D^2f(x)$.

It is not clear how to generalize the above statements 1 and 2 to *n*-variable case since the statement "Df(x) (which is a vector) is decreasing function" has no sense as well as " $D^2f(x)$ (which is a matrix) is positive".

Let us reformulate the statements 1 and 2 in the following forms:

1'. A C^1 function $f: U \subset R \to R$ is concave if and only if

$$f(y) - f(x) \le f'(x)(y - x)$$

for all $x, y \in U$.

Hint: Observe that for concave f(x) and x < y one has

$$f'(x) \ge \frac{f(y) - f(x)}{y - x} \ge f'(y).$$

2'. A C^2 function $f: U \subset R \to R$ is concave if and only if the one variable quadratic form $Q(y) = f''(x) \cdot y^2$ is negative semidefinite for all $x \in U$.

Hint: Observe that the quadratic form $Q(y) = f''(x) \cdot y^2$ is negative semidefinite if and only if the coefficient $f''(x) \leq 0$.

Now we can formulate the multi-variable generalization of 1:

Theorem 8 A C^1 function $f: U \subset \mathbb{R}^n \to \mathbb{R}$ is concave if and only if

$$f(y) - f(x) \le Df(x)(y - x),$$

for all $x, y \in U$, that is

$$f(y) - f(x) \le \frac{\partial f}{\partial x_1}(x)(y_1 - x_1) + \dots + \frac{\partial f}{\partial x_n}(x)(y_n - x_n).$$

Similarly f is convex if and only if

$$f(y) - f(x) \ge Df(x)(y - x).$$

Remember that concavity of a function means that the **graph is above chord**? Now we can say

Roughly speaking concavity of a function means that the **tangent is** above graph.

From this theorem follows

Corollary 1 Suppose f is concave and for some $x_0, y \in U$ we have

$$Df(x_0)(y-x_0) \le 0,$$

then $f(y) \leq f(x_0)$ for THIS y.

Particularly, if directional derivative of f at x_0 in any feasible direction is nonpositive, i.e.

$$D_{y-x_0}f(x_0) = Df(x_0)(y-x_0) \le 0$$

for ALL $y \in U$, then x_0 is GLOBAL max of f in U.

Indeed, since of concavity of f we have

$$f(y) - f(x_0) \le Df(x_0)(y - x_0) \le 0.$$

The following theorem is the generalization of 2:

Theorem 9 A C^2 function $f: U \subset \mathbb{R}^n \to \mathbb{R}$ defined on a convex open set U is

(a) concave if and only if the Hessian matrix $D^2 f(x)$ is negative semidefinite for all $x \in U$;

(b) strictly concave if the Hessian matrix $D^2 f(x)$ is negative definite for all $x \in U$;

(c) convex if and only if the Hessian matrix $D^2 f(x)$ is positive semidefinite for all $x \in U$;

(d) strictly convex if the Hessian matrix $D^2 f(x)$ is positive definite for all $x \in U$;

Remark. Note that the statement (b) (and (d) too) is not "only if": If f is strictly concave then the Hessian is not necessarily negative definite for ANY x. Analyze, for example $f(x) = -x^4$.

Let us recall criteria for definiteness of matrix in terms of principal minors:

(1) A matrix H is positive definite if and only if its n leading principal minors are > 0.

(2) A matrix H is negative definite if and only if its n leading principal minors alternate in sign so that all odd order ones are < 0 and all even order ones are > 0.

(3) A matrix H is positive semidefinite if and only if its $2^n - 1$ principal minors are all ≥ 0 .

(4) A matrix H is negative semidefinite if and only if its $2^n - 1$ principal minors alternate in sign so that odd order minors are ≤ 0 and even order minors are ≥ 0 .

Example. Let us determine the definiteness of the matrix $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

Its first order principal minors are

$$M_1 = 1, \quad M_1' = 0,$$

and the only second order principal minor is

 $M_2 = 0.$

We are in the situation (3), so our matrix is positive semidefinite. Note that corresponding quadratic form is $Q(x, y) = y^2$.

Example. Let $f(x, y) = 2x - y - x^2 + 2xy - y^2$. Its Hessian is

$$\left(\begin{array}{rrr} -2 & 2\\ 2 & -2 \end{array}\right)$$

which is constant (does not depend on (x, y)) and negative semidefinite. Thus f is concave.

Example. Consider the function f(x, y) = 2xy. Its Hessian is

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right).$$

Since the only second order principal minor is -1 < 0 the matrix is indefinite, thus f is neither concave nor convex.

Example. Consider the Cobb-Douglas function $f(x, y) = cx^a y^b$ with a, b, c > 0 in the first orthant x > 0, y > 0.

Its hessian is

$$\left(\begin{array}{cc} a(a-1)cx^{a-2}y^{b} & abcx^{a-1}y^{b-1} \\ abcx^{a-1}y^{b-1} & b(b-1)cx^{a}y^{b-2} \end{array}\right).$$

The principal minors of order 1 of this matrix are

$$M_1 = a(a-1)cx^{a-2}y^b, \quad M_1' = b(b-1)cx^ay^{b-2}$$

and the only principal minor of order 2 is

$$M_2 = abcx^{2a-2}y^{2b-2}(1 - (a+b)).$$

When this function is concave? For this the Hessian must be negative semidefinite. This happens when all principal minors of degree 1 M_1 and M'_1 are ≤ 0 and (only) principal minor of degree 2 M_2 is ≥ 0 .

Recall that we work in the first orthant x > 0, y > 0, and a, b, c > 0.

If our $f(x, y) = cx^a y^b$ exhibits constant or decreasing return to scale (CRS or DRS), that is $a + b \leq 1$, then clearly $a \leq 0$, $b \leq 0$, and we have thus the Cobb-Douglas function is concave if and $M_1 \leq 0$, $M'_1 \leq 0$, $M_2 \geq 0$, thus f is concave.

Remark. So we have shown that if a Cobb-Douglas function $f(x, y) = cx^a y^b$ is CRS or DRS, it is concave. But can it be convex?

1.4 Concave Functions and Optimization

Concavity of a function replaces the second derivative test to separate local max, min or saddle, moreover, for a concave function a critical point which is local max (min) is global:

Theorem 10 Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$ be concave (convex) function defined on a convex open set U. If x^* is a critical point, that is $Df(x^*) = 0$, then it is global maximizer (minimizer).

Proof. Since $Df(x^*) = 0$ from the inequality

$$f(y) - f(x^*) \le Df(x^*)(y - x^*) = 0$$

follows $f(y) \leq f(x^*)$ for all $y \in U$.

The next result is stronger, it allows to find maximizer also on the boundary of U if it is not assumed open:

Theorem 11 Let $f: U \subset \mathbb{R}^n \to \mathbb{R}$ be concave function defined on a convex set U. If x^* is a point, which satisfies

$$Df(x^*)(y - x^*) \le 0$$

for each $y \in U$, then x^* is a global maximizer of f on U. Similarly, if f is convex and

$$Df(x^*)(y - x^*) \ge 0$$

for each $y \in U$, then x^* is a global minimizer of f on U.

Proof. From

$$f(y) - f(x^*) \le Df(x^*)(y - x^*) \le 0$$

follows $f(y) \leq f(x^*)$ for all $y \in U$.

Remark. Here is an example of global maximizer which is not a critical point: Suppose $f : R \to R$ is an increasing and convex function on [a, b]. Then $f'(b)(x - b) \leq 0$ for all $x \in [a, b]$. Thus b is global maximizer of f on [a, b].

Lagrange Case

Consider the problem

max
$$f(x_1, ..., x_n)$$
 s.t. $h_i(x) = c_i, i = 1, ..., k$.

As we know if $x^* = (x_1^*, ..., x_n^*)$ is a maximizer, then there exist $\mu^* = (\mu_1^*, ..., \mu_k^*)$ such that (x^*, μ^*) satisfies Lagrange conditions $Df(x^*) - \mu^* \cdot Dh(x^*) = 0$ and $h_i(x^*) = c_i$, i = 1, ..., k.

This is the sufficient condition for a global maximum:

Theorem 12 Suppose f is concave, each h_i is convex, (x^*, μ^*) satisfies Lagrange conditions and each $\mu_i \geq 0$. Then x^* is a global maximizer.

KKT Case

Consider the problem

max
$$f(x_1, ..., x_n)$$
 s.t. $g_i(x) \le c_i, i = 1, ..., k$.

As we know if $x^* = (x_1^*, ..., x_n^*)$ is a maximizer, then there exist $\lambda^* = (\lambda_1^*, ..., \lambda_k^*)$ such that (x^*, λ^*) satisfies KKT conditions $Df(x^*) - \lambda^* \cdot Dg(x^*) =$, $\lambda_i \cdot (h_i(x^* - c_i) = 0, i = 1, ..., k, \lambda_i \ge 0, g_i(x^*) = c_i, i = 1, 2, ..., k.$

This is the sufficient condition for a global maximum:

Theorem 13 Suppose f is concave, each g_i is convex, and (x^*, λ^*) satisfies KKT conditions. Then x^* is a global maximizer.

Example. Consider a production function $y = g(x_1, ..., x_n)$, where y denotes output, $x = (x_1, ..., x_n)$ denotes the input bundle, p denotes the price of output and w_i is the cost per unit of input i. Then the cost function is

$$C(x) = w_1 x_1 + \dots + w_n x_n,$$

and the profit function is

$$\pi(x) = pg(x) - C(x).$$

Our first claim is that if g is concave, then π is concave too: C(x), as a linear function, is convex, then -C(x) is concave, besides pg(x) is concave too since p > 0, then $\pi(x) = pg(x) + (-C(x))$ is concave.

The first order condition gives

$$\frac{\partial \pi(x)}{\partial x_i} = p \frac{\partial g(x)}{\partial x_i} - w_i = 0.$$

Since of concavity this condition is necessary and sufficient to be interior maximizer. This means that the maximizer of profit is the value of x where marginal revenue product $p\frac{\partial g(x)}{\partial x_i}$ equals to the factor price w_i for each input.

1.5 Quasiconcave Functions

Recall the property of a concave function f: for each K the lower level set

$$L_K = \{x, f(x) \le K\}$$

is concave.

This property is taken as the definition of quasiconcave function:

Definition 1. A function f(x) defined on a convex subset $U \subset \mathbb{R}^n$ is quasiconcave if

$$L_K = \{x : f(x) \le K\}$$

is a convex set for any constant K.

Similarly, f is quasiconvex if

$$U_K = \{x : f(x) \ge K\}$$

is a convex set for any constant K.

Definition 2. A function f(x) defined on a convex subset $U \subset \mathbb{R}^n$ is quasiconcave if

$$f(tx + (1 - t)y) \ge \min(f(x), f(y))$$

for each $x, y \in U$ and $t \in [0, 1]$.

Similarly, f is quasiconvex if

$$f(tx + (1 - t)y) \le max(f(x), f(y)).$$

Remark. Concavity implies, but is not implied by quasiconcavity. Indeed, the function $f(x) = x^3$ is quasiconcave (and quasiconvex) but not concave (and convex).

Remark. Besides f s quasiconcave f and only if -f is quasiconvex.

Theorem 14 Definition 1 and Definition 2 are equivalent.

Proof. (a) Def. $1 \Rightarrow$ Def. 2. Given:

$$U_K = \{x, f(x) \ge K\}$$

is a convex set.

Prove:

$$f(tx + (1-t)y) \ge \min(f(x), f(y)).$$

Indeed, take K = min(f(x), f(y)), suppose this min is f(x). Then $K = f(x) \leq f(x)$, so $x \in U_K$, and $K = f(x) \leq f(y)$, so $y \in U_K$. Then, since of convexity of U_K we have $tx + (1-t)y \in U_K$, that is $K \leq f(tx + (1-t)y)$.

(b) Def. $2 \Rightarrow$ Def. 1. Given:

$$f(tx + (1 - t)y) \ge \min(f(x), f(y)).$$

Prove:

$$U_K = \{x, f(x) \ge K\}$$

is a convex set.

Indeed, suppose $x, y \in U_K$, that is $f(x) \ge K$, $f(y) \ge y$. We want to prove that $f(tx + (1 - t)y) \in U_K$, i.e. $f(tx + (1 - t)y) \ge K$. Indeed, assume min(f(x), f(y)) = f(x), then

$$f(tx + (1 - t)y \ge min(f(x), f(y)) = f(x) \ge K.$$

Theorem 15 A monotonic transformation gf of a quasiconcave function f is itself quasiconcave.

Proof. Take any $K \in R$. Since g is monotonic, there exists $K' \in R$ such that K = g(K'). Then

$$U_K(gf) = \{x, gf(x) \ge K\} = \{x, gf \ge g(K')\} = \{x, f(x) \ge K'\} = U_{K'}(f)$$

is a convex set.

Remark. Thus the quasiconcavity is ordinal property (recall, the concavity is cardinal: a monotonic transformation of concave is not necessarily concave, for example f(x) = x is concave, $g(x) = x^3$ is monotonically increasing, but $g(f(x)) = x^3$ is not concave).

In particular a monotonic transformation of concave is quaziconcave. But there exists quaziconcave function which is not monotonic transformation of a concave function.

Example. Every Cobb-Douglas function $F(x_1, x_2) = Ax_1^p x_2^q$, p, q > 0 is quasiconcave:

(a) As we know an DRS (Decreasing Return to Scale) Cobb-Douglas function such as $f(x_1, x_2) = x_1^{1/3} x_2^{1/3}$ concave.

(b) An IRS (Increasing Return to Scale) Cobb-Douglas function, such as $x_1^{2/3}x_2^{2/3}$ is quasiconcave. Indeed, IRS Cobb-Douglas is monotonic transformation of DRS Cobb-Douglas:

$$x_1^{2/3}x_2^{2/3} = (x_1^{1/3}x_2^{1/3})^2,$$

so $x_1^{2/3}x_2^{2/3} = g(f(x_1, x_2) \text{ where } f(x_1, x_2) = x_1^{1/3}x_2^{2/3} \text{ and } g(z) = z^2.$

Example. Any CES function $Q(x, y) = (ax^r + by^r)^{\frac{1}{r}}$, a, b > 0, 0 < r < 1 is quasiconcave: Q(x, y) = gq(x, y) where $q(x, y) = (ax^r + by^r)$ is a concave function because it is positive linear combination of concave functions, and $q(z) = z^{\frac{1}{r}}$ is monotonic transformation.

Example. Any increasing function $f : R \to R$ is quasiconcave (and quasiconvex):

$$U_K = \{x, f(x) \ge K\} = [f^{-1}K, +\infty)$$

is a convex set.

Example. Each function $f : \mathbb{R}^1 \to \mathbb{R}^1$ which monotonically rises until it reaches a global maximum and the monotonically decrease, such as $f(x) = -x^2$, is quasiconcave: U_K is convex.

1.5.1 Calculus Criterion for Quasiconcavity

F is quasiconcave if and only if

$$F(y) \ge F(x) \implies DF(x)(y-x) \ge 0.$$

F is quasiconvex if and only if

$$F(y) \le F(x) \quad \Rightarrow \quad DF(x)(y-x) \ge 0.$$

Exercises

1. By drawing diagrams, determine which of the following sets is convex.

 $(a) \ \{(x,y): y=e^x\}. \ (b) \ \{(x,y): y\geq e^x\}. \ (c) \ \{(x,y): xy\geq 1, x>0, y>0\}.$

2. Determine the definiteness of the following symmetric matrices

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

3. For each of the following functions, determine which, if any, of the following conditions the function satisfies: concavity, strict concavity, convexity, strict convexity. (Use whatever technique is most appropriate for each case.)

(a)
$$f(x, y) = x + y$$

(b) $f(x, y) = x^2$
(c) $f(x, y) = x + y - e^x - e^{x+y}$
(d) $f(x, y, z) = x^2 + y^2 + 3z^2 - xy + 2xz + yz$
(e) $f(x, y) = 3e^x + 5x^4 - \ln x$
(f) $f(x, y, z) = Ax^a y^b z^c, \ a, b, c > 0.$

4. Let $f(x_1, x_2) = x_1^2 - x_1 x_2 + x_2^2 + 3x_1 - 2x_2 + 1$. Is f convex, concave, or neither?

5. Prove that any homogenous function on $(0, +\infty)$ is either concave or convex.

6. Suppose that a firm that uses 2 inputs has the production function $f(x_1, x_2) = 12x^{1/3}x^{1/2}$ and faces the input prices (p_1, p_2) and the output price q. Show that f is concave for $x_1 > 0$ and $x_2 > 0$, so that the firm's profit is concave.

7. Let $f(x_1, x_2) = x_1^3 + 2x_1^2 + 2x_1x_2 + (1/2)x_2^2 - 8x_1 - 2x_2 - 8$. Find the range of values of (x_1, x_2) for which f is convex, if any.

8. Determine the values of a (if any) for which the function

$$2x^2 + 2xz + 2ayz + 2z^2$$

is concave and the values for which it is convex.

9. Show that the function $f(w, x, y, z) = -w^2 + 2wx - x^2 - y^2 + 4yz - z^2$ is not concave.

Homework

Exercise 21.2c from [Simon], Exercise 21.12 from [Simon], Exercise 21.18 from [Simon], Exercise 3f, Exercise 6.

Short Summary Concave and Convex

Convex set $X \subset R^n$: $x', x'' \in X \Rightarrow x^t = (1-t)x' + tx'' \in X$. Convex hull $CH(X) = \{y \in R^n : y = \sum t_i x_i, x_i \in X, \sum t_i = 1\}.$

Convex function $f: S \subset \mathbb{R}^n \to \mathbb{R}: x', x'' \in S \Rightarrow (1-t)f(x')+tf(x'') \leq f((1-t)x'+tx'')$, i.e. graph is above chord.

Hypograph: hyp $f = \{(x, y) : x \in S, y \leq f(x)\}$. f is concave iff hyp f is convex.

Epigraph: $epi \ f = \{(x, y) : x \in S, y \ge f(x)\}$. f is convex iff $epi \ f$ is convex.

Upper contour set: $U_K = \{x \in S, f(x) \ge K\}$. If f is concave then U_K is convex.

Lower contour set: $U_K = \{x \in S, f(x) \leq K\}$. If f is convex then U_L is convex.

Calculus Criteria

 C^1 function $f: U \subset \mathbb{R}^n \to \mathbb{R}$ is concave iff $f(y) - f(x) \leq Df(x)(y-x)$. C^2 function $f: U \subset \mathbb{R}^n \to \mathbb{R}$ is concave iff $D^2f(x) \leq 0$.

Concavity and Optimization

If f is concave and $D(x^*) = 0$ then x^* is global max. If f is concave and $Df(x^*)(y - x^*) \leq 0$ for $\forall y$ then x^* is global max.

Quaziconcavity

f quasiconcave if $U_K = \{x : f(x) \ge K\}, \forall K$. Equivalently

$$f(tx + (1 - t)y) \ge min(f(x), f(y)), \quad \forall x, y, t \in [0, 1].$$

Concavity - cardinal, quasiconcavity - ordinal.

Calculus Criterion

F is quasiconcave iff

$$F(y) \ge F(x) \quad \Rightarrow \quad DF(x)(y-x) \ge 0.$$