
Reading: [Simon], Chapter 21, p. 505-522.

1 Concave and convex functions

1.1 Convex Sets

Definition 1 A set X ⊂ Rn is called convex if given any two points x′, x′′ ∈
X the line segment joining x′ and x′′ completely belongs to X, in other words
for each t ∈ [0, 1] the point

xt = (1− t)x′ + tx′′

is also in X for every t ∈ [0, 1].

The intersection of convex sets is convex.
The union of convex sets is not necessarily convex.

Let X ⊂ Rn. The convex hull of X is defined as the smallest convex set
that contain X.

The convex hull of X consists of all points which are convex combinations
of some points of X

CH(X) = {y ∈ Rn : y =
∑

tixi, xi ∈ X,
∑

ti = 1}.

1.2 Concave and Convex Function

A function f is concave if the line segment joining any two points on the
graph is never above the graph. More precisely

Definition 2 A function f : S ⊂ Rn → R defined on a convex set S is
concave if given any two points x′, x′′ ∈ S we have

(1− t)f(x′) + tf(x′′) ≤ f((1− t)x′ + tx′′)

for any t ∈ [0, 1].
f is called strictly concave if

(1− t)f(x′) + tf(x′′) < f((1− t)x′ + tx′′).

Definition 3 A function f : S ⊂ Rn → R is convex if given any two points
x′, x′′ ∈ S we have

(1− t)f(x′) + tf(x′′) ≥ f((1− t)x′ + tx′′)

for any t ∈ [0, 1].
f is called strictly convex if

(1− t)f(x′) + tf(x′′) > f((1− t)x′ + tx′′).
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Roughly speaking concavity of a function means that the graph is above
chord.

It is clear that if f is concave then −f is convex and vice versa.

Theorem 1 A function f : S ⊂ Rn → R is concave (convex) if and only
if its restriction to every line segment of Rn is concave (convex) function of
one variable.

Theorem 2 If f is a concave (convex) function then a local maximizer (min-
imizer) is global.

1.2.1 Characterization in Terms of Graphs

Given a function f : S ⊂ Rn → R defined on a convex set S.
The hypograph of f is defined as the set of points (x, y) ∈ S ×R lying on

or bellow the graph of the function:

hyp f = {(x, y) : x ∈ S, y ≤ f(x)}.
Similarly, the epigraph of f is defined as the set of points (x, y) ∈ S×R lying
on or above the graph of the function:

epi f = {(x, y) : x ∈ S, y ≥ f(x)}.
Theorem 3 (a) A function f : S ⊂ Rn → R defined on a convex set S is
concave if and only if its hypograpf hyp f is convex.

(b) A function f : S ⊂ Rn → R defined on a convex set S is convex if
and only if its epigraph epi f is convex.

Proof of (a). Let (x1, y1), (x2, y2) ∈ hyp f , let us show that

(xt, yt) = (tx1 + (1− t)x2, ty1 + (1− t)y2) ∈ hyp f.

yt = ty1 + (1− t)y2 ≤ tf(x1) + (1− t)f(x2) ≤ f(tx1 + (1− t)x2) = f(xt).

1.2.2 Characterization in Terms of Level Sets

Given a function f : S ⊂ Rn → R defined on a convex set S.
Take any number K ∈ R.
The upper contour set UK of f is defined as

UK = {x ∈ S, f(x) ≥ K}.
Similarly, the lower contour set LK of f is defined as

LK = {x ∈ S, f(x) ≤ K}.
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Theorem 4 (a) Suppose a function f : S ⊂ Rn → R defined on a convex
set S is concave. Then for every K the upper contour set UK is either empty
or a convex set.

(b) If f is convex, then for every K the lover contour set LK is either
empty or a convex set.

Proof. Let us prove only (a).
Let x1, x2 ∈ Uk, let us show that xt = tx1 + (1− t)x2 ∈ UK :

f(xt) = f(tx1 + (1− t)x2) ≥ tf(x1) + (1− t)f(x2) ≥ tK + (1− t)K = K.

Remark. Notice that this is only necessary condition, not sufficient: con-
sider the example f(x) = ex or f(x) = x3.

1.2.3 Examples of Concave Functions

Theorem 5 Suppose f1, ..., fn are concave (convex) functions and a1 > 0, ..., an >
0, then the linear combination

F = a1f1 + ... + anfn

is concave (convex).

Proof.

F ((1− t)x + ty) =
∑

aifi((1− t)x + ty) ≥ ∑
ai[(1− t)fi(x) + tfi(y)] =

(1− t)
∑

aif(x) + t
∑

aifi(y) = (1− t)F (x) + tF (y).

A function of the form f(x) = f(x1, x2, ..., xn) = a0 + a1x1 + a2x2 + ... +
anxn is called affine function ( if a0 = 0, it is a linear function).

Theorem 6 An affine function is both concave and convex.

Proof. The theorem follows from previous theorem and following easy to
prove statements:

(1) The function f(x1, ..., xn) = xi is concave and convex;
(2) The function f(x1, ..., xn) = −xi is concave and convex;
(3) The constant function f(x1, ..., xn) = a is concave and convex.

Theorem 7 A concave monotonic transformation of a concave function is
itself concave.

Proof. Let f : Rn → R be a concave function and g : R → R be concave
and increasing, then

(g ◦ f)(1− t)x + ty) =
g(f((1− t)x + ty)) ≥ g((1− t)f(x) + tf(y)) ≥ (1− t)g(f(x)) + tg(f(y)) =
(1− t)(g ◦ f)(x)) + t(g ◦ f)(y)),
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here the first inequality holds since f is concave and g is increasing, and the
second inequality holds since g is concave.
Remark. Note that just monotonic transformation of a concave function is
not necessarily concave: consider, for example f(x) = x and g(z) = z3.

Thus the concavity of a function is not ordinal, it is cardinal property.

Economic Example

Suppose production function f(x) is concave and the cost function c(x) is
convex. Suppose also p is the positive selling price. Then the profit function

π(x) = pf(x) + (−c(x))

is concave as a linear combination with positive coefficients of concave func-
tions. Thus a local maximum of profit function is global in this case (see
bellow).

1.3 Calculus Criteria for Concavity

For one variable functions we have the following statements

1. A C1 function f : U ⊂ R → R is concave if and only if its first derivative
f ′(x) is decreasing function.

2. A C2 function f : U ⊂ R → R is concave if and only if its second derivative
f ′′(x) is ≤ 0.

In n-variable case usually instead of f ′(x) we consider the Jacobian (gra-
dient) Df(x) and instead of f ′′(x) we consider the hessian D2f(x).

It is not clear how to generalize the above statements 1 and 2 to n-variable
case since the statement ”Df(x) (which is a vector) is decreasing function”
has no sense as well as ”D2f(x) (which is a matrix) is positive”.

Let us reformulate the statements 1 and 2 in the following forms:

1’. A C1 function f : U ⊂ R → R is concave if and only if

f(y)− f(x) ≤ f ′(x)(y − x)

for all x, y ∈ U .
Hint: Observe that for concave f(x) and x < y one has

f ′(x) ≥ f(y)− f(x)

y − x
≥ f ′(y).

2’. A C2 function f : U ⊂ R → R is concave if and only if the one variable
quadratic form Q(y) = f ′′(x) · y2 is negative semidefinite for all x ∈ U .

Hint: Observe that the quadratic form Q(y) = f ′′(x) · y2 is negative
semidefinite if and only if the coefficient f ′′(x) ≤ 0.
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Now we can formulate the multi-variable generalization of 1:

Theorem 8 A C1 function f : U ⊂ Rn → R is concave if and only if

f(y)− f(x) ≤ Df(x)(y − x),

for all x, y ∈ U , that is

f(y)− f(x) ≤ ∂f

∂x1

(x)(y1 − x1) + ... +
∂f

∂xn

(x)(yn − xn).

Similarly f is convex if and only if

f(y)− f(x) ≥ Df(x)(y − x).

Remember that concavity of a function means that the graph is above
chord? Now we can say

Roughly speaking concavity of a function means that the tangent is
above graph.

From this theorem follows

Corollary 1 Suppose f is concave and for some x0, y ∈ U we have

Df(x0)(y − x0) ≤ 0,

then f(y) ≤ f(x0) for THIS y.
Particularly, if directional derivative of f at x0 in any feasible direction

is nonpositive, i.e.

Dy−x0f(x0) = Df(x0)(y − x0) ≤ 0

for ALL y ∈ U , then x0 is GLOBAL max of f in U .

Indeed, since of concavity of f we have

f(y)− f(x0) ≤ Df(x0)(y − x0) ≤ 0.

The following theorem is the generalization of 2:

Theorem 9 A C2 function f : U ⊂ Rn → R defined on a convex open set
U is

(a) concave if and only if the Hessian matrix D2f(x) is negative semidef-
inite for all x ∈ U ;

(b) strictly concave if the Hessian matrix D2f(x) is negative definite for
all x ∈ U ;

(c) convex if and only if the Hessian matrix D2f(x) is positive semidefi-
nite for all x ∈ U ;

(d) strictly convex if the Hessian matrix D2f(x) is positive definite for
all x ∈ U ;
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Remark. Note that the statement (b) (and (d) too) is not ”only if”: If f is
strictly concave then the Hessian is not necessarily negative definite for ANY
x. Analyze, for example f(x) = −x4.

Let us recall criteria for definiteness of matrix in terms of principal minors:

(1) A matrix H is positive definite if and only if its n leading principal
minors are > 0.

(2) A matrix H is negative definite if and only if its n leading principal
minors alternate in sign so that all odd order ones are < 0 and all even
order ones are > 0.

(3) A matrix H is positive semidefinite if and only if its 2n − 1 principal
minors are all ≥ 0.

(4) A matrix H is negative semidefinite if and only if its 2n − 1 principal
minors alternate in sign so that odd order minors are ≤ 0 and even order
minors are ≥ 0.

Example. Let us determine the definiteness of the matrix

(
1 0
0 0

)
.

Its first order principal minors are

M1 = 1, M ′
1 = 0,

and the only second order principal minor is

M2 = 0.

We are in the situation (3), so our matrix is positive semidefinite. Note that
corresponding quadratic form is Q(x, y) = y2.

Example. Let f(x, y) = 2x− y − x2 + 2xy − y2. Its Hessian is

(
−2 2
2 −2

)

which is constant (does not depend on (x, y)) and negative semidefinite. Thus
f is concave.
Example. Consider the function f(x, y) = 2xy. Its Hessian is

(
0 1
1 0

)
.

Since the only second order principal minor is −1 < 0 the matrix ix indefinite,
thus f is neither concave nor convex.
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Example. Consider the Cobb-Douglas function f(x, y) = cxayb with a, b, c >
0 in the first orthant x > 0, y > 0.

Its hessian is
(

a(a− 1)cxa−2yb abcxa−1yb−1

abcxa−1yb−1 b(b− 1)cxayb−2

)
.

The principal minors of order 1 of this matrix are

M1 = a(a− 1)cxa−2yb, M ′
1 = b(b− 1)cxayb−2

and the only principal minor of order 2 is

M2 = abcx2a−2y2b−2(1− (a + b)).

When this function is concave? For this the Hessian must be negative
semidefinite. This happens when all principal minors of degree 1 M1 and M ′

1

are ≤ 0 and (only) principal minor of degree 2 M2 is ≥ 0.
Recall that we work in the first orthant x > 0, y > 0, and a, b, c > 0.
If our f(x, y) = cxayb exhibits constant or decreasing return to scale (CRS

or DRS), that is a + b ≤ 1, then clearly a ≤ 0, b ≤ 0, and we have thus the
Cobb-Douglas function is concave if and M1 ≤ 0, M ′

1 ≤ 0, M2 ≥ 0, thus f
is concave.

Remark. So we have shown that if a Cobb-Douglas function f(x, y) = cxayb

is CRS or DRS, it is concave. But can it be convex?

1.4 Concave Functions and Optimization

Concavity of a function replaces the second derivative test to separate local
max, min or saddle, moreover, for a concave function a critical point which
is local max (min) is global:

Theorem 10 Let f : U ⊂ Rn → R be concave (convex) function defined on
a convex open set U . If x∗ is a critical point, that is Df(x∗) = 0, then it is
global maximizer (minimizer).

Proof. Since Df(x∗) = 0 from the inequality

f(y)− f(x∗) ≤ Df(x∗)(y − x∗) = 0

follows f(y) ≤ f(x∗) for all y ∈ U .
The next result is stronger, it allows to find maximizer also on the bound-

ary of U if it is not assumed open:

Theorem 11 Let f : U ⊂ Rn → R be concave function defined on a convex
set U . If x∗ is a point, which satisfies

Df(x∗)(y − x∗) ≤ 0
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for each y ∈ U , then x∗ is a global maximizer of f on U .
Similarly, if f is convex and

Df(x∗)(y − x∗) ≥ 0

for each y ∈ U , then x∗ is a global minimizer of f on U .

Proof. From
f(y)− f(x∗) ≤ Df(x∗)(y − x∗) ≤ 0

follows f(y) ≤ f(x∗) for all y ∈ U .

Remark. Here is an example of global maximizer which is not a critical
point: Suppose f : R → R is an increasing and convex function on [a, b].
Then f ′(b)(x − b) ≤ 0 for all x ∈ [a, b]. Thus b is global maximizer of f on
[a, b].

Lagrange Case

Consider the problem

max f(x1, ..., xn) s.t. hi(x) = ci, i = 1, ..., k.

As we know if x∗ = (x∗1, ..., x
∗
n) is a maximizer, then there exist µ∗ =

(µ∗1, ..., µ
∗
k) such that (x∗, µ∗) satisfies Lagrange conditions Df(x∗) − µ∗ ·

Dh(x∗) = 0 and hi(x
∗) = ci, i = 1, ..., k.

This is the sufficient condition for a global maximum:

Theorem 12 Suppose f is concave, each hi is convex, (x∗, µ∗) satisfies La-
grange conditions and each µi ≥ 0. Then x∗ is a global maximizer.

KKT Case

Consider the problem

max f(x1, ..., xn) s.t. gi(x) ≤ ci, i = 1, ..., k.

As we know if x∗ = (x∗1, ..., x
∗
n) is a maximizer, then there exist λ∗ =

(λ∗1, ..., λ
∗
k) such that (x∗, λ∗) satisfies KKT conditions Df(x∗)−λ∗ ·Dg(x∗) =,

λi · (hi(x
∗ − ci) = 0, i = 1, ..., k, λi ≥ 0, gi(x

∗) = ci, i = 1, 2, ..., k.
This is the sufficient condition for a global maximum:

Theorem 13 Suppose f is concave, each gi is convex, and (x∗, λ∗) satisfies
KKT conditions. Then x∗ is a global maximizer.
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Example. Consider a production function y = g(x1, ..., xn), where y denotes
output, x = (x1, ..., xn) denotes the input bundle, p denotes the price of
output and wi is the cost per unit of input i. Then the cost function is

C(x) = w1x1 + ... + wnxn,

and the profit function is

π(x) = pg(x)− C(x).

Our first claim is that if g is concave, then π is concave too: C(x), as a linear
function, is convex, then −C(x) is concave, besides pg(x) is concave too since
p > 0, then π(x) = pg(x) + (−C(x)) is concave.

The first order condition gives

∂π(x)

∂xi

= p
∂g(x)

∂xi

− wi = 0.

Since of concavity this condition is necessary and sufficient to be interior
maximizer. This means that the maximizer of profit is the value of x where
marginal revenue product p∂g(x)

∂xi
equals to the factor price wi for each input.

1.5 Quasiconcave Functions

Recall the property of a concave function f : for each K the lower level set

LK = {x, f(x) ≤ K}

is concave.
This property is taken as the definition of quasiconcave function:

Definition 1. A function f(x) defined on a convex subset U ⊂ Rn is quasi-
concave if

LK = {x : f(x) ≤ K}
is a convex set for any constant K.

Similarly, f is quasiconvex if

UK = {x : f(x) ≥ K}

is a convex set for any constant K.

Definition 2. A function f(x) defined on a convex subset U ⊂ Rn is quasi-
concave if

f(tx + (1− t)y) ≥ min(f(x), f(y))

for each x, y ∈ U and t ∈ [0, 1].
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Similarly, f is quasiconvex if

f(tx + (1− t)y) ≤ max(f(x), f(y)).

Remark. Concavity implies, but is not implied by quasiconcavity. Indeed,
the function f(x) = x3 is quasiconcave (and quasiconvex) but not concave
(and convex).

Remark. Besides f s quasiconcave f and only if −f is quasiconvex.

Theorem 14 Definition 1 and Definition 2 are equivalent.

Proof. (a) Def. 1 ⇒ Def. 2.
Given:

UK = {x, f(x) ≥ K}
is a convex set.

Prove:
f(tx + (1− t)y) ≥ min(f(x), f(y)).

Indeed, take K = min(f(x), f(y)), suppose this min is f(x). Then K =
f(x) ≤ f(x), so x ∈ UK , and K = f(x) ≤ f(y), so y ∈ UK . Then, since of
convexity of UK we have tx + (1− t)y ∈ UK , that is K ≤ f(tx + (1− t)y).

(b) Def. 2 ⇒ Def. 1.
Given:

f(tx + (1− t)y) ≥ min(f(x), f(y)).

Prove:
UK = {x, f(x) ≥ K}

is a convex set.
Indeed, suppose x, y ∈ UK , that is f(x) ≥ K, f(y) ≥ y. We want to

prove that f(tx + (1− t)y) ∈ UK , i.e. f(tx + (1− t)y) ≥ K. Indeed, assume
min(f(x), f(y)) = f(x), then

f(tx + (1− t)y ≥ min(f(x), f(y)) = f(x) ≥ K.

Theorem 15 A monotonic transformation gf of a quasiconcave function f
is itself quasiconcave.

Proof. Take any K ∈ R. Since g is monotonic, there exists K ′ ∈ R such
that K = g(K ′). Then

UK(gf) = {x, gf(x) ≥ K} = {x, gf ≥ g(K ′)} = {x, f(x) ≥ K ′} = UK′(f)
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is a convex set.

Remark. Thus the quasiconcavity is ordinal property (recall, the concavity
is cardinal: a monotonic transformation of concave is not necessarily concave,
for example f(x) = x is concave, g(x) = x3 is monotonically increasing, but
g(f(x)) = x3 is not concave).

In particular a monotonic transformation of concave is quaziconcave. But
there exists quaziconcave function which is not monotonic transformation of
a concave function.

Example. Every Cobb-Douglas function F (x1, x2) = Axp
1x

q
2, p, q > 0 is

quasiconcave:
(a) As we know an DRS (Decreasing Return to Scale) Cobb-Douglas

function such as f(x1, x2) = x
1/3
1 x

1/3
2 concave.

(b) An IRS (Increasing Return to Scale) Cobb-Douglas function, such as

x
2/3
1 x

2/3
2 is quasiconcave. Indeed, IRS Cobb-Douglas is monotonic transfor-

mation of DRS Cobb-Douglas:

x
2/3
1 x

2/3
2 = (x

1/3
1 x

1/3
2 )2,

so x
2/3
1 x

2/3
2 = g(f(x1, x2) where f(x1, x2) = x

1/3
1 x

2/3
2 and g(z) = z2.

Example. Any CES function Q(x, y) = (axr + byr)
1
r , a, b > 0, 0 < r < 1

is quasiconcave: Q(x, y) = gq(x, y) where q(x, y) = (axr + byr) is a concave
function because it is positive linear combination of concave functions, and
q(z) = z

1
r is monotonic transformation.

Example. Any increasing function f : R → R is quasiconcave (and quasi-
convex):

UK = {x, f(x) ≥ K} = [f−1K, +∞)

is a convex set.

Example. Each function f : R1 → R1 which monotonically rises until it
reaches a global maximum and the monotonically decrease, such as f(x) =
−x2, is quasiconcave: UK is convex.

1.5.1 Calculus Criterion for Quasiconcavity

F is quasiconcave if and only if

F (y) ≥ F (x) ⇒ DF (x)(y − x) ≥ 0.

F is quasiconvex if and only if

F (y) ≤ F (x) ⇒ DF (x)(y − x) ≥ 0.
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Exercises

1. By drawing diagrams, determine which of the following sets is convex.

(a) {(x, y) : y = ex}. (b) {(x, y) : y ≥ ex}. (c) {(x, y) : xy ≥ 1, x > 0, y > 0}.

2. Determine the definiteness of the following symmetric matrices

(
0 0
0 0

) (
1 0
0 0

) (
0 0
0 1

) (
1 0
0 1

)

(
0 1
1 0

) (
1 1
1 0

) (
0 1
1 1

) (
1 1
1 1

)

3. For each of the following functions, determine which, if any, of the
following conditions the function satisfies: concavity, strict concavity, con-
vexity, strict convexity. (Use whatever technique is most appropriate for each
case.)

(a) f(x, y) = x + y
(b) f(x, y) = x2

(c) f(x, y) = x + y − ex − ex+y

(d) f(x, y, z) = x2 + y2 + 3z2 − xy + 2xz + yz
(e) f(x, y) = 3ex + 5x4 − ln x
(f) f(x, y, z) = Axaybzc, a, b, c > 0.

4. Let f(x1, x2) = x2
1 − x1x2 + x2

2 + 3x1 − 2x2 + 1. Is f convex, concave,
or neither?

5. Prove that any homogenous function on (0, +∞) is either concave or
convex.

6. Suppose that a firm that uses 2 inputs has the production function
f(x1, x2) = 12x1/3x1/2 and faces the input prices (p1, p2) and the output price
q. Show that f is concave for x1 > 0 and x2 > 0, so that the firm’s profit is
concave.

7. Let f(x1, x2) = x3
1 + 2x2

1 + 2x1x2 + (1/2)x2
2 − 8x1 − 2x2 − 8. Find the

range of values of (x1, x2) for which f is convex, if any.

8. Determine the values of a (if any) for which the function

2x2 + 2xz + 2ayz + 2z2
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is concave and the values for which it is convex.

9. Show that the function f(w, x, y, z) = −w2 + 2wx−x2− y2 + 4yz− z2

is not concave.

Homework

Exercise 21.2c from [Simon], Exercise 21.12 from [Simon], Exercise 21.18
from [Simon], Exercise 3f, Exercise 6.
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Short Summary
Concave and Convex

Convex set X ⊂ Rn: x′, x′′ ∈ X ⇒ xt = (1− t)x′ + tx′′ ∈ X.
Convex hull CH(X) = {y ∈ Rn : y =

∑
tixi, xi ∈ X,

∑
ti = 1}.

Convex function f : S ⊂ Rn → R: x′, x′′ ∈ S ⇒ (1−t)f(x′)+tf(x′′) ≤
f((1− t)x′ + tx′′), i.e. graph is above chord.

Hypograph: hyp f = {(x, y) : x ∈ S, y ≤ f(x)}. f is concave iff hyp f
is convex.

Epigraph: epi f = {(x, y) : x ∈ S, y ≥ f(x)}. f is convex iff epi f is
convex.

Upper contour set: UK = {x ∈ S, f(x) ≥ K}. If f is concave then UK

is convex.
Lower contour set: UK = {x ∈ S, f(x) ≤ K}. If f is convex then UL

is convex.

Calculus Criteria
C1 function f : U ⊂ Rn → R is concave iff f(y)− f(x) ≤ Df(x)(y − x).
C2 function f : U ⊂ Rn → R is concave iff D2f(x) ≤ 0.

Concavity and Optimization
If f is concave and D(x∗) = 0 then x∗ is global max.
If f is concave and Df(x∗)(y − x∗) ≤ 0 for ∀y then x∗ is global max.

Quaziconcavity
f quasiconcave if UK = {x : f(x) ≥ K}, ∀K. Equivalently

f(tx + (1− t)y) ≥ min(f(x), f(y)), ∀ x, y, t ∈ [0, 1].

Concavity - cardinal, quasiconcavity - ordinal.
Calculus Criterion
F is quasiconcave iff

F (y) ≥ F (x) ⇒ DF (x)(y − x) ≥ 0.
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