Reading [Simon], Chapter 18, p. 424-439.

1 Inequality Constraints

1.1 One Inequality constraint

Problem: maximize $f(x, y)$ subject to $g(x, y) \leq b$.
As we see here the constraint is written as inequality instead of equality.
An inequality constraint $g(x, y) \leq b$ is called binding (or active) at a point (x, y) if $g(x, y)=b$ and not binding (or inactive) if $g(x, y)<b$.

Again we consider the same Lagrangian function

$$
L(x, y, \lambda)=f(x, y)-\lambda[g(x, y)-b] .
$$

Theorem 1 Suppose $\left(x^{*}, y^{*}\right)$ is a solution of the above problem: $\left(x^{*}, y^{*}\right)$ maximizes f on the constraint set $g^{*}(x, y) \leq b$.

Suppose the following qualification is satisfied: If $g\left(x^{*}, y^{*}\right)=b$ (i.e. if $\left(x^{*}, y^{*}\right)$ is binding) then $D g\left(x^{*}, y^{*}\right) \neq(0,0)$. Then there exists a multiplier λ^{*} such that
(a) $\left.\frac{\partial L}{\partial x}\left(x^{*}, y^{*}, \lambda^{*}\right)\right)=0$,
(b) $\left.\frac{\partial L}{\partial y}\left(x^{*}, y^{*}, \lambda^{*}\right)\right)=0$,
(c) $\lambda^{*}\left[g\left(x^{*}, y^{*}\right)-b\right]=0$,
(d) $\lambda^{*} \geq 0$,
(e) $g\left(x^{*}, y^{*}\right) \leq b$.

Remark 1. These conditions, as well as the conditions from theorems bellow concerning with inequality conditions are called Karush-Kuhn-Tucker (KKT) conditions.

Remark 2. For the minimization problem the condition (d) must be replaced by (d') $\lambda^{*} \leq 0$.

Almost a proof. Consider the following two cases: $\left(x^{*}, y^{*}\right)$ is binding or not binding.

Case 1: $\left(x^{*}, y^{*}\right)$ is not binding $g\left(x^{*}, y^{*}\right)<0$.

This means that $\left(x^{*}, y^{*}\right)$ is an inner (unconstraint) maximum, thus $f_{x}\left(x^{*}, y^{*}\right)=$ $0, f_{y}\left(x^{*}, y^{*}\right)=0$. In this case we can take $\lambda=0$ the conditions (a) - (e) are satisfied. Indeed
(a) $\left.L_{x}\left(x^{*}, y^{*}, \lambda^{*}\right)\right)=f_{x}\left(x^{*}, y^{*}\right)-\lambda \cdot g_{x}\left(x^{*}, y^{*}\right)=f_{x}\left(x^{*}, y^{*}\right)-0 \cdot g_{x}\left(x^{*}, y^{*}\right)=0$;
(b) $\left.L_{y}\left(x^{*}, y^{*}, \lambda^{*}\right)\right)=f_{y}\left(x^{*}, y^{*}\right)-\lambda \cdot g_{y}\left(x^{*}, y^{*}\right)=f_{y}\left(x^{*}, y^{*}\right)-0 \cdot g_{x}\left(x^{*}, y^{*}\right)=0$;
(c) $\lambda^{*} \cdot\left[g\left(x^{*}, y^{*}\right)-b\right]=0 \cdot\left[g\left(x^{*}, y^{*}\right)-b\right]=0$;
(d) $0=\lambda^{*} \geq 0$;
(e) $g\left(x^{*}, y^{*}\right)-b<0$.

Case 2: $\left(x^{*}, y^{*}\right)$ is binding $g\left(x^{*}, y^{*}\right)=0$.

This means that $\left(x^{*}, y^{*}\right)$ is a maximizer constrained by the equality condition, thus there exists λ^{*} such that

$$
L_{x}\left(x^{*}, y^{*}\right)=0, L_{y}\left(x^{*}, y^{*}\right)=0, L_{\lambda}\left(x^{*}, y^{*}\right)=0
$$

this again implies the needed conditions (a) - (e):
(a) $\left.L_{x}\left(x^{*}, y^{*}, \lambda^{*}\right)\right)=0$;
(b) $\left.L_{y}\left(x^{*}, y^{*}, \lambda^{*}\right)\right)=0$;
(c) $\lambda^{*} \cdot\left[g\left(x^{*}, y^{*}\right)-b\right]=\lambda^{*} \cdot 0=0$;
(d) since of maximality of $\left(x^{*}, y^{*}\right)$ the gradients $\nabla f\left(x^{*}, y^{*}\right)$ and $\nabla g\left(x^{*}, y^{*}\right)$ must have the same directions, thus $\lambda \geq 0$;
(e) $g\left(x^{*}, y^{*}\right)-b=0$.

Remark. What is the meaning of the zero $\lambda=0$ multiplier in Case 1? The shadow price in this case is 0 : the maximal value $f\left(x^{*}, y^{*}\right)$ does not change when we change b a little.

Example 1. Minimize $f(x, y)=x^{2}+y^{2}$ subject of $g(x, y)=2 x+y \leq 2$.
Solution. There are no critical points of g at all, so the qualification is satisfied.

The lagrangian in this case is

$$
L(x, y, \lambda)=x^{2}+y^{2}-\lambda(2 x+y-2),
$$

and the KKT conditions from Theorem are
(a) $\frac{\partial L}{\partial x}(x, y, \lambda)=2 x-2 \lambda=0$,
(b) $\frac{\partial L}{\partial y}(x, y, \lambda)=2 y-\lambda y=0$,
(c) $\lambda[g(x, y)-b]=\lambda(2 x+y-2)=0$,
(d) $\lambda \leq 0$,
(e) $g(x, y)=2 x+y \leq 2$.

We consider two cases:
Case 1. $\lambda=0$, in this case our system looks as
(a) $x=0$,
(b) $y=0$,
(c) $0=0$,
(d) $0 \leq 0$,
(e) $2 x+y \leq 2$,
so the solution in this case is $(x, y, \lambda)=(0,0,0)$.
Case 2. $2 x+y-2=0$, in this case our system looks as
(a) $2 x=2 \lambda$,
(b) $2 y=\lambda$,
(c) $2 x+y-2=0$,
(d) $\lambda \leq 0$,
(e) $2 x+y \leq 2$,
so $x=2 y, 2 x+y=2$, this gives the solution $x=0.8, y=0.4$ but $\lambda=0.8>0$ so this solution can not be a minimizer.

So if this constrained minimization problem has a solution, it can be only $(0,0)$.

Example 2. Maximize $f(x, y)=x y$ subject of $g(x, y)=x^{2}+y^{2} \leq 2$.
Solution. The constraint function $g(x, y)$ has no critical points at all, so the qualification is satisfied.

The Lagrangian in this case is

$$
L(x, y, \lambda)=x y-\lambda\left(x^{2}+y^{2}-2\right)
$$

and the KKT conditions from Theorem are
(a) $\left.\frac{\partial L}{\partial x}\left(x, y, \lambda^{*}\right)\right)=y-2 \lambda x=0$,
(b) $\left.\frac{\partial L}{\partial y}(x, y, \lambda)\right)=x-2 \lambda=0$,
(c) $\lambda^{*}[g(x, y)-b]=\lambda\left(x^{2}+y^{2}-2\right)=0$,
(d) $\lambda \geq 0$,
(e) $g(x, y)=x^{2}+y^{2} \leq 2$.

We consider two cases:
Case 1: $\lambda=0$. In this case our system looks as
(a) $y=0$,
(b) $x=0$,
(c) $0=0$,
(d) $0 \geq 0$,
(e) $x^{2}+y^{2} \leq 2$
so the solution in this case is $\left(x^{*}, y^{*}, \lambda^{*}\right)=(0,0,0)$.
Case 2: $x^{2}+y^{2}-2=0$. In this case our system looks as
(a) $y-2 \lambda x=0$,
(b) $x-2 \lambda y=0$,
(c) $\left(x^{2}+y^{2}-2\right)=0$,
(d) $\lambda \geq 0$,
(e) $x^{2}+y^{2} \leq 2$.

The first two equations yield

$$
\lambda=\frac{y}{2 x}=\frac{x}{2 y}, \quad \text { or } \quad x^{2}=y^{2} .
$$

Together with the condition (c) it gives thew system

$$
\begin{aligned}
& x^{2}=y^{2} \\
& x^{2}+y^{2}=2 .
\end{aligned}
$$

The solution gives $x^{2}=1, y^{2}=1$, or $x= \pm 1, y= \pm 1$. Combining with $\lambda=\frac{y}{2 x}$ we obtain corresponding $\lambda= \pm \frac{1}{2}$.

Combining all these solutions we get the following candidates for maximizers

$$
\begin{array}{lll}
x^{*}=+1, & y^{*}=+1, & \lambda^{*}=+\frac{1}{2} \\
x^{*}=-1, & y^{*}=-1, & \lambda^{*}=+\frac{1}{2} \\
x^{*}=+1, & y^{*}=-1, & \lambda^{*}=-\frac{1}{2} \\
x^{*}=-1, & y^{*}=+1 & \lambda^{*}=-\frac{1}{2}
\end{array}
$$

The last two solution contradict to the condition $(e) \lambda \geq 0$, so, including $(0,0,0)$ there are three candidates which satisfy the first order conditions. Note that the constraint set is compact. Plugging these three into the objective function, we find that $f(1,1)=1, f(-1,-1)=1$ so both $(1,1)$ and $(-1,-1)$ are the needed maximizers.

Note that the two points with negative multipliers

$$
\begin{array}{lll}
x^{*}=+1, & y^{*}=-1, & \lambda^{*}=-\frac{1}{2} \\
x^{*}=-1, & y^{*}=+1 & \lambda^{*}=-\frac{1}{2} .
\end{array}
$$

are the solutions of the problem of minimizing of $f(x, y)=x y$ subject to $g(x, y)=x^{2}+y^{2} \leq 1$.

Economical Application. Consider the standard problem of maximization of the utility function

$$
U\left(x_{1}, x_{2}\right)
$$

subject to the budget inequality constraint

$$
p_{1} x_{1}+p_{2} x_{2} \leq I
$$

Suppose additionally that $p_{1}>0, p_{2}>0$ and the utility function is monotonic in both arguments, that is for each commodity bundle $\left(x_{1}, x_{2}\right)$

$$
\frac{\partial U}{\partial x_{1}}\left(x_{1}, x_{2}\right)>0, \quad \frac{\partial U}{\partial x_{2}}\left(x_{1}, x_{2}\right)>0 .
$$

This means that our commodities are goods.
Then the KKT implies an important result: the optimal solution is necessarily binding

$$
p_{1} x_{1}+p_{2} x_{2}=I,
$$

that is at optimizer the consumer spends all the available income.
Indeed, for the Lagrangian

$$
L\left(x_{1}, x_{2}\right)=f\left(x_{1}, x_{2}\right)-\lambda\left(p_{1} x_{1}+p_{2} x_{2}-I\right)
$$

we have

$$
\begin{aligned}
& \frac{\partial L}{\partial x_{1}}\left(x_{1}, x_{2}\right)=\frac{\partial U}{\partial x_{L}}\left(x_{1}, x_{2}\right)-\lambda p_{1}=0, \\
& \frac{\partial L}{\partial x_{2}}\left(x_{1}, x_{2}\right)=\frac{\partial U}{\partial x_{2}}\left(x_{1}, x_{2}\right)-\lambda p_{1}=0,
\end{aligned}
$$

now, since $\frac{\partial U}{\partial x_{1}}\left(x_{1}, x_{2}\right)>0$ and (or) $\frac{\partial U}{\partial x_{2}}\left(x_{1}, x_{2}\right)>0$, it follows that $\lambda>0$. Then from the condition

$$
\lambda\left(p_{1} x_{1}+p_{2} x_{2}-I\right)=0
$$

we get

$$
p_{1} x_{1}+p_{2} x_{2}-I=0
$$

Notice that it is enough to require that just one of commodities is a good.

1.2 Two Inequality Constraints

Maybe it will be useful to consider separately the following problem:

$$
\max f\left(x_{1}, x_{2}, x_{3}\right)=0 \quad \text { s.t. } \quad g_{1}\left(x_{1}, x_{2}, x_{3}\right) \leq b_{1}, \quad g_{2}\left(x_{1}, x_{2}, x_{3}\right) \leq b_{2}
$$

Lagrangian function in this case is

$$
\begin{aligned}
& L\left(x_{1}, x_{2}, x_{3}\right)= \\
& f\left(x_{1}, x_{2}, x_{3}\right)-\lambda_{1}\left(g_{1}\left(x_{1}, x_{2}, x_{3}\right)-a\right)-\lambda_{2}\left(g_{2}\left(x_{1}, x_{2}, x_{3}\right)-b_{2}\right) .
\end{aligned}
$$

The KKT conditions in this case look as
(1) $\frac{\partial}{\partial x_{1}} f\left(x_{1}, x_{2}, x_{3}\right)-\lambda_{1} \frac{\partial}{\partial x_{1}} g_{1}\left(x_{1}, x_{2}, x_{3}\right)-\lambda_{2} \frac{\partial}{\partial x_{1}} g_{2}\left(x_{1}, x_{2}, x_{3}\right)=0$
(2) $\frac{\partial}{\partial x_{2}} f\left(x_{1}, x_{2}, x_{3}\right)-\lambda_{1} \frac{\partial}{\partial x_{2}} g_{1}\left(x_{1}, x_{2}, x_{3}\right)-\lambda_{2} \frac{\partial}{\partial x_{2}} g_{2}\left(x_{1}, x_{2}, x_{3}\right)=0$
(3) $\frac{\partial}{\partial x_{3}} f\left(x_{1}, x_{2}, x_{3}\right)-\lambda_{1} \frac{\partial}{\partial x_{3}} g_{1}\left(x_{1}, x_{2}, x_{3}\right)-\lambda_{2} \frac{\partial}{\partial x_{3}} g_{2}\left(x_{1}, x_{2}, x_{3}\right)=0$
(4) $\lambda_{1}\left[g_{1}\left(x_{1}, x_{2}, x_{3}\right)-b_{1}\right]=0$
(5) $\quad \lambda_{2}\left[g_{2}\left(x_{1}, x_{2}, x_{3}\right)-b_{2}\right]=0$
(6) $\lambda_{1} \geq 0$
(7) $\lambda_{2} \geq 0$
(8) $g_{1}\left(x_{1}, x_{2}, x_{3}\right) \leq b_{1}$
(9) $\quad g_{2}\left(x_{1}, x_{2}, x_{3}\right) \leq b_{2}$.

Consider, concerning complementary slackness conditions (4) and (5), the following 4 cases:
Case 1: $\lambda_{1}=0, \lambda_{2}=0$.
Case 2: $g_{1}\left(x_{1}, x_{2}, x_{3}\right)-b_{1}=0, \lambda_{2}=0$.
Case 3: $\lambda_{1}=0, g_{2}\left(x_{1}, x_{2}, x_{3}\right)-b_{2}=0$.
Case 4: $g_{1}\left(x_{1}, x_{2}, x_{3}\right)-b_{1}=0, g_{2}\left(x_{1}, x_{2}, x_{3}\right)-b_{2}=0$.
We rewrite the KKT conditions in these cases:

Case 1: $\lambda_{1}=0, \lambda_{2}=0$.
(1) $\frac{\partial}{\partial x_{1}} f\left(x_{1}, x_{2}, x_{3}\right)=0$
(2) $\frac{\partial}{\partial x_{2}} f\left(x_{1}, x_{2}, x_{3}\right)=0$
(3) $\frac{\partial}{\partial x_{3}} f\left(x_{1}, x_{2}, x_{3}\right)=0$
(8) $g_{1}\left(x_{1}, x_{2}, x_{3}\right) \leq b_{1}$
(9) $\quad g_{2}\left(x_{1}, x_{2}, x_{3}\right) \leq b_{2}$
so in this case we face ordinary nonconstrained optimization problem

$$
\max f\left(x_{1}, x_{2}, x_{3}\right),
$$

but with additional conditions $g_{1}\left(x_{1}, x_{2}, x_{3}\right) \leq b_{1}$ and $g_{2}\left(x_{1}, x_{2}, x_{3}\right) \leq b_{2}$, that is ignore all candidates (critical points of f) which are out of feasible region.

Case 2: $g_{1}\left(x_{1}, x_{2}, x_{3}\right)-b_{1}=0, \lambda_{2}=0$.
(1) $\frac{\partial}{\partial x_{1}} f\left(x_{1}, x_{2}, x_{3}\right)-\lambda_{1} \frac{\partial}{\partial x_{1}} g_{1}\left(x_{1}, x_{2}, x_{3}\right)=0$
(2) $\frac{\partial}{\partial x_{2}} f\left(x_{1}, x_{2}, x_{3}\right)-\lambda_{1} \frac{\partial}{\partial x_{2}} g_{1}\left(x_{1}, x_{2}, x_{3}\right)=0$
(3) $\frac{\partial^{2}}{\partial x_{3}} f\left(x_{1}, x_{2}, x_{3}\right)-\lambda_{1} \frac{\partial^{2}}{\partial x_{3}} g_{1}\left(x_{1}, x_{2}, x_{3}\right)=0$
(4) $g_{1}\left(x_{1}, x_{2}, x_{3}\right)-b_{1}=0$
(6) $\lambda_{1} \geq 0$
(9) $g_{2}\left(x_{1}, x_{2}, x_{3}\right) \leq b_{2}$
so in this case we face the problem with one equality constraint

$$
\max f\left(x_{1}, x_{2}, x_{3}\right) \text { s.t. } g_{1}\left(x_{1}, x_{2}, x_{3}\right)=b_{1}
$$

with additional conditions $g_{2}\left(x_{1}, x_{2}, x_{3}\right) \leq b_{2}, \quad \lambda_{1} \geq 0$, that is we ignore all candidates with $g_{2}\left(x_{1}, x_{2}, x_{3}\right)>b_{2}$ or $\lambda_{1}<0$.

Case 3: $\lambda_{1}=0, g_{2}\left(x_{1}, x_{2}, x_{3}\right)-b_{2}=0$.

$$
\begin{align*}
& \text { (1) } \frac{\partial}{\partial x_{1}} f\left(x_{1}, x_{2}, x_{3}\right)-\lambda_{1} \frac{\partial}{\partial x_{1}} g_{1}\left(x_{1}, x_{2}, x_{3}\right)=0 \\
& \text { (2) } \frac{\partial}{\partial x_{2}} f\left(x_{1}, x_{2}, x_{3}\right)-\lambda_{1} \frac{\partial}{\partial x_{2}} g_{1}\left(x_{1}, x_{2}, x_{3}\right)=0 \\
& \text { (3) } \frac{\partial}{\partial x_{3}} f\left(x_{1}, x_{2}, x_{3}\right)-\lambda_{1} \frac{\partial}{\partial x_{3}} g_{1}\left(x_{1}, x_{2}, x_{3}\right)=0 \tag{4}\\
& \text { (4) } \\
& \text { (5) } \tag{6}\\
& g_{2}\left(x_{1}, x_{2}, x_{3}\right)-b_{2}=0 \tag{9}\\
& \text { (6) } \\
& \text { (7) } \\
& \lambda_{2} \geq 0 \\
& \text { (8) } \\
& g_{1}\left(x_{1}, x_{2}, x_{3}\right) \leq b_{1}
\end{align*}
$$

so in this case we face the problem with one equality constraint

$$
\max f\left(x_{1}, x_{2}, x_{3}\right) \text { s.t. } g_{2}\left(x_{1}, x_{2}, x_{3}\right)=b_{2}
$$

with additional conditions $g_{1}\left(x_{1}, x_{2}, x_{3}\right) \leq b_{1}, \quad \lambda_{2} \geq 0$, that is we ignore all candidates with $g_{1}\left(x_{1}, x_{2}, x_{3}\right)>b_{2}$ or $\lambda_{2}<0$.

Case 4: $g_{1}\left(x_{1}, x_{2}, x_{3}\right)-b_{1}=0, g_{2}\left(x_{1}, x_{2}, x_{3}\right)-b_{2}=0$.
(1) $\frac{\partial}{\partial x_{1}} f\left(x_{1}, x_{2}, x_{3}\right)-\lambda_{1} \frac{\partial}{\partial x_{1}} g_{1}\left(x_{1}, x_{2}, x_{3}\right)-\lambda_{2} \frac{\partial}{\partial x_{1}} g_{2}\left(x_{1}, x_{2}, x_{3}\right)=0$
(2) $\frac{\partial}{\partial x_{2}} f\left(x_{1}, x_{2}, x_{3}\right)-\lambda_{1} \frac{\partial}{\partial x_{2}} g_{1}\left(x_{1}, x_{2}, x_{3}\right)-\lambda_{2} \frac{\partial}{\partial x_{2}} g_{2}\left(x_{1}, x_{2}, x_{3}\right)=0$
(3) $\frac{\partial}{\partial x_{3}} f\left(x_{1}, x_{2}, x_{3}\right)-\lambda_{1} \frac{\partial}{\partial x_{3}} g_{1}\left(x_{1}, x_{2}, x_{3}\right)-\lambda_{2} \frac{\partial}{\partial x_{3}} g_{2}\left(x_{1}, x_{2}, x_{3}\right)=0$
(4) $g_{1}\left(x_{1}, x_{2}, x_{3}\right)-b_{1}=0$
(5) $\quad g_{2}\left(x_{1}, x_{2}, x_{3}\right)-b_{2}=0$
(6) $\lambda_{1} \geq 0$
(7) $\quad \lambda_{2} \geq 0$
so in this case we face the problem with two equality constraint

$$
\max f\left(x_{1}, x_{2}, x_{3}\right) \text { s.t. } g_{1}\left(x_{1}, x_{2}, x_{3}\right)=b_{1}, \quad g_{2}\left(x_{1}, x_{2}, x_{3}\right)=b_{2}
$$

with additional conditions $\lambda_{1} \geq 0, \quad \lambda_{2} \geq 0$, that is we ignore all candidates with $\lambda_{1}<0$ or $\lambda_{2}<0$.

1.3 Several Inequality Constraints

Problem: maximize $f\left(x_{1}, \ldots, x_{n}\right)$ subject to k inequality constraints

$$
g_{1}\left(x_{1}, \ldots, x_{n}\right) \leq b_{1}, \ldots, g_{k}\left(x_{1}, \ldots, x_{n}\right) \leq b_{k}
$$

Recall that constraint $g_{i}(x) \leq b$ is binding at a solution candidate $x^{*}=$ $\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ if $g_{i}\left(x^{*}\right)=b$, and it is called not binding or slack if $g\left(x^{*}\right)<b$.

Theorem 2 Suppose $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ is a maximizer for our problem, and suppose first k_{0} constraints are binding at x^{*} and the last $k-k_{0}$ are not binding.

Suppose that the following qualification is satisfied: the rank of the Jacobian of the binding constraints

$$
\left(\begin{array}{ccc}
\frac{\partial g_{1}}{\partial x_{1}}\left(x^{*}\right) & \ldots & \frac{\partial g_{1}}{\partial x_{n}}\left(x^{*}\right) \\
\ldots & \ldots & \ldots \\
\frac{\partial g_{k_{0}}}{\partial x_{1}}\left(x^{*}\right) & \ldots & \frac{\partial g_{k_{0}}}{\partial x_{n}}\left(x^{*}\right)
\end{array}\right)
$$

is k_{0}, as large as it can be. In other words the gradients of the active inequality constraints are linearly independent at x^{*}.

Consider the lagrangian

$$
\begin{aligned}
& L\left(x_{1}, \ldots, x_{n}, \lambda_{1}, \ldots, \lambda_{k}\right)= \\
& f\left(x_{1}, \ldots, x_{n}\right)-\lambda_{1}\left[g_{1}\left(x_{1}, \ldots, x_{n}\right)-b_{1}\right]-\ldots-\lambda_{k}\left[g_{(}\left(x_{1}, \ldots, x_{n}\right)-b_{1}\right] .
\end{aligned}
$$

Then there exist multipliers $\lambda^{*}=\left(\lambda_{1}^{*}, \ldots, \lambda_{k}^{*}\right)$ such that the following $K K T$ conditions are satisfied
(a) $\frac{\partial L}{\partial x_{1}}\left(x^{*}, \lambda^{*}\right)=0, \ldots, \frac{\partial L}{\partial x_{n}}\left(x^{*}, \lambda^{*}\right)=0$,
(b) $\lambda_{1}^{*}\left[g_{1}\left(x^{*}\right)-b_{1}\right]=0, \ldots, \lambda_{k}^{*}\left[g_{k}\left(x^{*}\right)-b_{k}\right]=0$,
(c) $\lambda_{1}^{*} \geq 0, \ldots, \lambda_{k}^{*} \geq 0$,
(d) $\quad g_{1}\left(x^{*}\right) \leq b_{1}, \ldots, g_{k}\left(x^{*}\right) \leq b_{k}$.

Remark. Actually, the Theorem can be reformulated as follows:
Suppose $x^{*} \in R^{n}$ is a maximizer of $f(x)$ s.t. $g_{1}(x) \leq b_{1}, \ldots, g_{k}(x) \leq b_{k}$, suppose also that firs k_{0} constraints are binding at x^{*}, i.e.

$$
g_{1}(x)=b_{1}, \ldots, g_{k_{0}}(x)=b_{k_{0}}
$$

and others are nonbinding, and suppose the vectors

$$
D g_{1}\left(x^{*}\right), \ldots, D g_{k_{0}}\left(x^{*}\right)
$$

are linearly independent. Then

$$
D f\left(x^{*}\right) \in \operatorname{span}\left(D g_{1}\left(x^{*}\right), \ldots, D g_{k_{0}}\left(x^{*}\right)\right)
$$

i.e.

$$
D f\left(x^{*}\right)=\lambda_{1} D g_{1}\left(x^{*}\right)+\ldots+\lambda_{k_{0}} D g_{k_{0}}\left(x^{*}\right)
$$

and all the coefficients are nonnegative: $\lambda_{1} \geq 0, \ldots, \lambda_{k_{0}} \geq 0$.
Remark. For the minimization problem the condition (c) must be replaced by
(c') $\lambda_{1}^{*} \leq 0, \ldots, \lambda_{k}^{*} \leq 0$.
Example 3. Solve the problem
maximize $f\left(x_{1}, x_{2}\right)=-\left(x_{1}-4\right)^{2}-\left(x_{2}-4\right)^{2}$ subject to $g_{1}\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \leq$ $4, \quad g_{2}\left(x_{1}, x_{2}\right)=x_{1}+3 x_{2} \leq 9$.

Solution. The Lagrangean looks as

$$
L\left(x_{1}, x_{2}\right)=-\left(x_{1}-4\right)^{2}-\left(x_{2}-4\right)^{2}-\lambda_{1}\left(x_{1}+x_{2}-4\right)-\lambda_{2}\left(x_{1}+3 x_{2}-9\right) .
$$

The KKT conditions look as

$$
\begin{aligned}
& -2\left(x_{1}-4\right)-\lambda_{1}-\lambda_{2}=0 \\
& -2\left(x_{2}-4\right)-\lambda_{1}-3 \lambda_{2}=0 \\
& \lambda_{1}\left(x_{1}+x_{2}-4\right)=0 \\
& \lambda_{2}\left(x_{1}+3 x_{2}-9\right)=0 \\
& \lambda_{1} \geq 0, \quad \lambda_{2} \geq 0 \\
& x_{1}+x_{2} \leq 4, \quad x_{1}+3 x_{2} \leq 9 .
\end{aligned}
$$

Analyzing the conditions $\lambda_{1}\left(x_{1}+x_{2}-4\right)=0, \quad \lambda_{2}\left(x_{1}+3 x_{2}-9\right)=0$ we consider the following cases

Case 1: $x_{1}+x_{2}-4=0, x_{1}+3 x_{2}-9=0$. In this case the solution gives $x_{1}=\frac{3}{2}, x_{2}=\frac{5}{2}, \lambda_{1}=6, \lambda_{2}=-1$ but the this solution violates the condition $\lambda_{2} \geq 0$, so NO SOLUTION of KKT in this case.

Case 2: $x_{1}+x_{2}-4=0, \lambda_{2}=0$. In this case the solution gives $x_{1}=$ $2, x_{2}=2, \lambda_{1}=4, \lambda_{2}=0$. This solution is OK, it fulfills KKT.

Case 3: $\lambda_{1}=0, x_{1}+3 x_{2}-9=0$. In this case the solution gives $x_{1}=$ $3.3, x_{2}=1.8$ but this violates the condition $x_{1}+x_{2} \leq 4$, so NO SOLUTION of KKT in this case.

Case 4: $\lambda_{1}=0, \lambda_{2}=0$. In this case the solution gives $x_{1}=4, x_{2}=4, \lambda_{1}=$ $0, \lambda_{2}=0$, this solution violates $x_{1}+x_{2} \leq 4$, so NO SOLUTION of KKT in this case.

Finally we have the single solution of KKT $x_{1}=2, x_{2}=2, \lambda_{1}=4, \lambda_{2}=0$. But KKT is just a necessary condition. So, is it a solution of our maximization problem?

1.4 Mixed constraints

Problem: maximize $f\left(x_{1}, \ldots, x_{n}\right)$ subject to k inequality and m equality constraints

$$
\begin{aligned}
& g_{1}\left(x_{1}, \ldots, x_{n}\right) \leq b_{1}, \ldots, g_{k}\left(x_{1}, \ldots, x_{n}\right) \leq b_{k} \\
& h_{1}\left(x_{1}, \ldots, x_{n}\right)=c_{1}, \ldots, h_{m}\left(x_{1}, \ldots, x_{n}\right)=c_{m}
\end{aligned}
$$

Theorem 3 Suppose $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ is a maximizer for our problem, and suppose first k_{0} inequality constraints are binding at x^{*} and the last $k-k_{0}$ are not binding.

Suppose that the following qualification is satisfied: the rank of the

Jacobian of the binding constraints

$$
\left(\begin{array}{ccc}
\frac{\partial g_{1}}{\partial x_{1}}\left(x^{*}\right) & \ldots & \frac{\partial g_{1}}{\partial x_{n}}\left(x^{*}\right) \\
\ldots & \ldots & \ldots \\
\frac{\partial g_{k_{0}}}{\partial x_{1}}\left(x^{*}\right) & \ldots & \frac{\partial g_{k_{0}}}{\partial x_{n}}\left(x^{*}\right) \\
\frac{\partial h_{1}}{\partial x_{1}}\left(x^{*}\right) & \ldots & \frac{\partial h_{1}}{\partial x_{n}}\left(x^{*}\right) \\
\ldots & \ldots & \ldots \\
\frac{\partial h_{m}}{\partial x_{1}}\left(x^{*}\right) & \ldots & \frac{\partial h_{m}}{\partial x_{n}}\left(x^{*}\right)
\end{array}\right)
$$

is $k_{0}+m$, as large as it can be. In other words the gradients of the active inequality constraints and the gradients of the equality constraints are linearly independent at x^{*}.

Consider the lagrangian

$$
\begin{aligned}
& \left.L\left(x_{1}, \ldots, x_{n}, \lambda_{1}, \ldots, \lambda_{k}, \mu_{1}, \ldots \mu_{m}\right)\right)=f\left(x_{1}, \ldots, x_{n}\right)+ \\
& -\lambda_{1}\left[g_{1}\left(x_{1}, \ldots, x_{n}\right)-b_{1}\right]-\ldots-\lambda_{k}\left[g_{(}\left(x_{1}, \ldots, x_{n}\right)-b_{1}\right]+ \\
& -\mu_{1}\left[h_{1}\left(x_{1}, \ldots, x_{n}\right)-c_{1}\right]-\ldots-\mu_{m}\left[h_{(}\left(x_{1}, \ldots, x_{n}\right)-c_{1}\right] .
\end{aligned}
$$

Then there exist multipliers $\lambda^{*}=\left(\lambda_{1}^{*}, \ldots, \lambda_{k}^{*}\right), \mu^{*}=\left(\mu_{1}^{*}, \ldots, \mu_{m}^{*}\right)$ such that
(a) $\frac{\partial L}{\partial x_{1}}\left(x^{*}, \lambda^{*}, \mu^{*}\right)=0, \ldots, \frac{\partial L}{\partial x_{n}}\left(x^{*}, \lambda^{*}, \mu^{*}\right)=0$,
(b) $\quad \lambda_{1}^{*}\left[g_{1}\left(x^{*}\right)-b_{1}\right]=0, \ldots, \lambda_{k}^{*}\left[g_{k}\left(x^{*}\right)-b_{1}\right]=0$,
(c) $h_{1}\left(x^{*}\right)=c_{1}, \ldots, h_{m}\left(x^{*}\right)=c_{m}$,
(d) $\quad \lambda_{1}^{*} \geq 0, \ldots, \lambda_{k}^{*} \geq 0$,
(e) $\quad g_{1}\left(x^{*}\right) \leq b_{1}, \ldots, g_{1}\left(x^{*}\right) \leq b_{1}$.

Remark. Actually, the Theorem can be reformulated as follows:
Suppose $x^{*} \in R^{n}$ is a maximizer of $f(x)$ s.t.

$$
g_{1}(x) \leq b_{1}, \ldots, g_{k}(x) \leq b_{k}, \quad h_{1}(x)=c_{1}, \ldots, h_{m}(x)=c_{m}
$$

Suppose also that first k_{0} inequality constraints are binding at x^{*}, i.e.

$$
g_{1}(x)=b_{1}, \ldots, g_{k_{0}}(x)=b_{k_{0}}
$$

and the others are nonbinding, and and suppose the vectors

$$
D g_{1}\left(x^{*}\right), \ldots, D g_{k_{0}}\left(x^{*}\right), D h_{1}\left(x^{*}\right), \ldots, D h_{m}\left(x^{*}\right)
$$

are linearly independent. Then

$$
D f\left(x^{*}\right) \in \operatorname{span}\left(D g_{1}\left(x^{*}\right), \ldots, D g_{k_{0}}\left(x^{*}\right), D h_{1}\left(x^{*}\right), \ldots, D h_{m}\left(x^{*}\right)\right.
$$

i.e.
$D f\left(x^{*}\right)=\lambda_{1} D g_{1}\left(x^{*}\right)+\ldots+\lambda_{k_{0}} D g_{k_{0}}\left(x^{*}\right)+\mu_{1} D h_{1}\left(x^{*}\right)+\ldots+\mu_{m} D h_{m}\left(x^{*}\right)$
and all the λ_{i} coefficients are nonnegative: $\lambda_{1} \geq 0, \ldots, \lambda_{k_{0}} \geq 0$.

1.5 Economical Applications

The KKT conditions sometimes are used not for the finding of optimizers, rather for some important qualitative conclusions.

1.5.1 A Sales-Maximizing Firm with Advertizing

Let:
$y \in R_{+}$production;
$C(y)$ - cost of manufacturing $\mathrm{f} y$ units (assume that $C^{\prime}>0$);
$a \in R_{+}$- advertising cost;
$C(y)+a$ - total cost;
$R(y, a)$ - revenue (assume that $R_{a}>0$);
$m \in R_{+}$- minimal level of profit.
$\Pi=R(y, a)-C(y)-a$ - profit.
Problem:

$$
\max \quad R(y, a) \text { s.t. } \Pi \geq m, \quad a \geq 0
$$

Equivalently

$$
\max R(y, a) \quad \text { s.t. } \quad-a \leq 0, \quad m-R(y, a)+C(y)+a \leq 0 .
$$

Lagrangian:

$$
L\left(y, a, \lambda_{1}, \lambda_{2}\right)=R(y, a)+\lambda_{1} a-\lambda_{2}(m-R(y, a)+C(y)+a) .
$$

The KKT conditions for a maximizer y^{*} :
(1) $L_{y}=\left(1+\lambda_{2}\right) R_{y}\left(y^{*}, a\right)-\lambda_{2} C^{\prime}\left(y^{*}\right)=0$
(2) $L_{a}=\left(1+\lambda_{2}\right) R_{a}\left(y^{*}, a\right)+\lambda_{1}-\lambda_{2}=0$
(3) $\lambda_{1} a=0$
(4) $\lambda_{2}\left(m-R\left(y^{*}, a\right)+C\left(y^{*}\right)+a\right)=0$
(5) $\lambda_{1} \geq 0$
(6) $\lambda_{2} \geq 0$
(7) $-a \leq 0$
(8) $m-R\left(y^{*}, a\right)+C\left(y^{*}\right)+a \leq 0$.

Observation 1. In (2) we have $\left(1+\lambda_{2}\right) R_{a}\left(y^{*}, a\right)>0, \lambda_{1} \geq 0 \Rightarrow \lambda_{2}>0$. This, (4) gives

$$
m-R\left(y^{*}, a\right)+C\left(y^{*}\right)+a=0
$$

i.e. at maximizer y^{*} we have $R\left(y^{*}\right)-C\left(y^{*}\right)-a=m$, that is the revenue is maximal when the profit is at minimal allowed level!

Observation 2. Let us estimate the marginal profit at the revenue maximizer y^{*} using (1):

$$
\begin{gathered}
\left(1+\lambda_{2}\right) \Pi_{y}\left(y^{*}, a\right)= \\
\left(1+\lambda_{2}\right)\left(R_{y}\left(y^{*}\right)-C^{\prime}\left(y^{*}\right)\right)=\left(1+\lambda_{2}\right) R_{y}\left(y^{*}\right)-\left(1+\lambda_{2}\right) C^{\prime}\left(y^{*}\right)= \\
\left(1+\lambda_{2}\right) R_{y}\left(y^{*}\right)-\lambda_{2} C^{\prime}\left(y^{*}\right)-C^{\prime}\left(y^{*}\right)=L_{y}\left(y^{*}, a\right)-C^{\prime}\left(y^{*}\right)=0-C^{\prime}\left(y^{*}\right)= \\
-C\left(y^{*}\right)<0
\end{gathered}
$$

thus the revenue maximizer y^{*} is greater than the profit maximizer.

Exercises

1. Compare the solutions of following problems
(a) Find the maximizer of $f(x, y)=10-x^{2}-y^{2}$.
(b) Find the maximizer of $f(x, y)=10-x^{2}-y^{2}$, subject to the constraint $h(x, y)=2 x^{2}+y^{2}=2$.
(c) Find the maximizer of $f(x, y)=10-x^{2}-y^{2}$, subject to the constraint $g(x, y)=2 x^{2}+y^{2} \leq 2$.
(d) Find the maximizer of $f(x, y)=10-x^{2}-y^{2}$, subject to the constraint $g(x, y)=2 x^{2}+y^{2} \geq 2$.
2. Compare the solutions of following problems
(a) Find the minimizer of $f(x, y)=10+x^{2}+y^{2}$.
(b) Find the minimizer of $f(x, y)=10+x^{2}+y^{2}$, subject to the constraint $h(x, y)=2 x^{2}+y^{2}=2$.
(c) Find the minimizer of $f(x, y)=10+x^{2}+y^{2}$, subject to the constraint $g(x, y)=2 x^{2}+y^{2} \leq 2$.
(d) Find the minimizer of $f(x, y)=10+x^{2}+y^{2}$, subject to the constraint $g(x, y)=2 x^{2}+y^{2} \geq 2$.
3. Find the dimensions of the box with largest volume if the total surface area is $24 \mathrm{~cm}^{2}$.
4. Find the maximum and minimum of $f(x, y)=5 x-3 y$ subject to the constraint $x^{2}+y^{2}=136$.
5. Find the maximum and minimum of $f(x, y)=4 x^{2}+10 y^{2}$ subject to the constraint $x^{2}+y^{2} \leq 4$.
6. Write down the KKT conditions for the problem:

Minimize $f\left(x_{1}, x_{2}, x_{3}\right)=-x_{1}^{3}+x_{2}^{2}-2 x_{1} x_{3}^{2}$ subject to the constraints: $2 x_{1}+x_{2}^{2}+x_{3}-5=0,5 x_{1}^{2}-x_{2}^{2}-x_{3} \geq 2, x_{1} \geq 0, x_{2} \geq 2, x_{3} \geq 0$. Verify the KKT conditions for $(1,0,3)$.
7. Write down the KKT conditions for the problem:

Minimize $f\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$ subject to the constraints: $-x_{1}+$ $x_{2}-x_{3} \geq-10, x_{1}+x_{2}+4 x_{3} \geq 20$. Find all the solutions.

Homework
Exercises 18.10, 18.11, 18.12, 18.15, 18.17 from [Simon].

