Reading: [Simon] p. 313-333, 833-836.

0.1 The Chain Rule

Partial derivatives describe how a function changes in directions parallel to the coordinate axes. Now we shall demonstrate how the partial derivatives can be used to describe how a function changes in any direction. More generally, we are often interested in how a function changes as we move along a curve in its domain. For example, if inputs are changing with time, we may want to know how the corresponding outputs are changing with time. Or, if the input obeys budget restriction which is a line, then how the output changes along the budget line.

0.1.1 Curves

A curve in R^{n} is a continuous function $R \rightarrow R^{n}$

$$
x(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)
$$

here each $x_{i}(t)$ is a continuous function $R \rightarrow R$.
Particular case: A straight line which passes trough a point $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ in direction of a vector $v=\left(v_{1}, \ldots, v_{n}\right)$

$$
x(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)=\left(x_{1}^{*}+v_{1} t, \ldots, x_{n}^{*}+v_{n} t\right) .
$$

Note, that $x(0)=x^{*}$ and $x_{k}^{\prime}(t)=v_{k}$.
The tangent vector for a curve $x(t)$ is the vector $\left(x_{1}^{\prime}(t), \ldots, x_{n}^{\prime}(t)\right)$.
Example. The curve $x(t)=(\cos t, \sin t), \quad t \in[0,2 \pi]$ is the unit circle.
The tangent vector at $t=0$ is $(-\sin 0, \cos 0)=(0,1)$ vertical.
The tangent vector at $t=\pi / 2$ is $(-\sin \pi / 2, \cos \pi / 2)=(-1,0)$ horizontal.

0.1.2 Differentiating Along a Curve - Chain Rule

Let $x(t)$ be a curve in R^{n} and $f: R^{n} \rightarrow R$. Consider the composition

$$
g: R \xrightarrow{x} R^{n} \xrightarrow{f} R,
$$

$g(t)=f\left(x_{1}(t), \ldots, x_{n}(t)\right)$.
The chain rule gives the expression for the derivative of this function

$$
\frac{d g}{d t}\left(t_{0}\right)=\frac{\partial f}{\partial x_{1}}\left(x\left(t_{0}\right)\right) x_{1}^{\prime}\left(t_{0}\right)+\ldots+\frac{\partial f}{\partial x_{n}}\left(x\left(t_{0}\right)\right) x_{n}^{\prime}\left(t_{0}\right) .
$$

or, shortly

$$
\frac{d g}{d t}=\frac{\partial f}{\partial x_{1}} \frac{d x_{1}}{d t}+\ldots+\frac{\partial f}{\partial x_{n}} \frac{d x_{n}}{d t} .
$$

Example. Consider the Cobb-Douglas production function

$$
\begin{equation*}
Q=4 K^{\frac{3}{4}} L^{\frac{1}{4}} . \tag{1}
\end{equation*}
$$

Suppose K and L vary with time t and the interest rate r by the rule

$$
\begin{equation*}
K(t, r)=\frac{10 t^{2}}{r}, \quad L=6 t^{2}+250 r \tag{2}
\end{equation*}
$$

(notice, as r increases, then K decreases and L increases, why?).
If we substitute in Q these expressions for K and L then Q becomes a two variable function of t and r :

$$
\begin{equation*}
Q(t, r)=4 \cdot\left(\frac{10 t^{2}}{r}\right)^{\frac{3}{4}} \cdot\left(6 t^{2}+250 r\right)^{\frac{1}{4}} \tag{3}
\end{equation*}
$$

How to calculate the rate of change of Q with respect to t when $t=10$ and $r=0.1$?

There are three possibilities:
(i) Just calculate the partial derivative with respect to t of (3);
(ii) Use Chain Rule for (1) and (2):

$$
\frac{\partial Q}{\partial t}=\frac{\partial Q}{\partial K} \cdot \frac{\partial K}{\partial t}+\frac{\partial Q}{\partial L} \cdot \frac{\partial L}{\partial t}
$$

(iii) Look in [SB], pp. 318.

Example. (14.12 from [SB]) At a given moment in time, the marginal product of labor is 2.5 and the marginal product of capital is 3 , the amount of capital is increasing by 2 each unit of time and the rate of change of labor is 0.5 . What is the rate of change of output at this time?

Solution. So what is given? $\frac{\partial Q}{\partial L}=2.5, \quad \frac{\partial Q}{\partial K}=3, \quad \frac{\partial K}{\partial t}=2, \quad \frac{\partial L}{\partial t}=0.5$.
What we need to calculate?

$$
\frac{\partial Q}{\partial t}=\frac{\partial Q}{\partial K} \cdot \frac{\partial K}{\partial t}+\frac{\partial Q}{\partial L} \cdot \frac{\partial L}{\partial t}=3 \cdot 2+2.5 \cdot 0.5=7.25
$$

0.2 Gradient

For a function $F: R^{n} \rightarrow R$ the gradient at point $x^{*}=\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ is the vector

$$
\nabla F\left(x^{*}\right)=\left(\frac{\partial F}{\partial x_{1}}\left(x^{*}\right), \ldots, \frac{\partial F}{\partial x_{1}}\left(x^{*}\right)\right)
$$

Sometimes gradient is denoted as $D_{1} F\left(x^{*}\right)$.

Example. Consider again the Cobb-Douglas production function

$$
\begin{equation*}
Q=4 K^{\frac{3}{4}} L^{\frac{1}{4}} . \tag{4}
\end{equation*}
$$

What is the gradient of this function at the point $(K=10000, L=625)$?

$$
\begin{gathered}
D_{1} Q(10000,625)=\left(\frac{\partial Q}{\partial K}(10000,625), \frac{\partial Q}{\partial L}(10000,625)\right)= \\
\left(3 K^{-1 / 4} L^{1 / 4}(10000,625), K^{3 / 4} L^{-3 / 4}(10000,625)\right)=(1.5,8) .
\end{gathered}
$$

MAPLE calculates the gradient vector by
$>$ with(VectorCalculus) :
$>G:=\operatorname{Gradient}\left(4 * x^{(3 / 4)} * y^{(1 / 4)},[x, y]\right)$;

0.2.1 Directional Derivative and Gradient

Directional derivative enables to compute the rate of change of function $F\left(x_{1}, \ldots, x_{n}\right)$ at a given point x^{*} and in the direction given by a unit or normalized vector $v=\left(v_{1}, \ldots, v_{n}\right)$.

This directional derivative is denoted as

$$
\frac{\partial F}{\partial v}\left(x^{*}\right) \quad \text { or } \quad D_{v} F\left(x^{*}\right)
$$

How can one calculate the Dir-Der? Take a straight line which passes trough the point x^{*} in the direction of a given vector $v=\left(v_{1}, \ldots, v_{n}\right)$

$$
x(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)=\left(x_{1}^{*}+v_{1} t, \ldots, x_{n}^{*}+v_{n} t\right) .
$$

Note, that $x(0)=x^{*}$ and $x_{k}^{\prime}(t)=v_{k}$.
The directional derivative $D_{v} F\left(x^{*}\right)$ is the derivative of F along the straight line $x(t)$

$$
\frac{\partial F}{\partial x_{1}}(x(0)) x_{1}^{\prime}(0)+\ldots+\frac{\partial F}{\partial x_{n}}(x(0)) x_{n}^{\prime}(0)=\frac{\partial F}{\partial x_{1}}\left(x^{*}\right) v_{1}+\ldots+\frac{\partial F}{\partial x_{n}}\left(x^{*}\right) v_{n}^{\prime}
$$

Thus directional derivative equals to the inner product of gradient vector at x^{*} and the (normalized) vector $v=\left(v_{1}, \ldots, v_{n}\right)$

$$
D_{v} F\left(x^{*}\right)=\nabla F\left(x^{*}\right) \cdot v .
$$

Note that changing v proportionally (keeping the direction unchanged) changes the inner product in the same proportion.

Example. What is the derivative of our Cobb-Douglas production function $Q=4 K^{\frac{3}{4}} L^{\frac{1}{4}}$ in direction $v=(1,1)$ at the point $(10000,625) ?$

First normalize v :

$$
\hat{v}=\frac{v}{\|v\|}=\frac{v}{\sqrt{2}}=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)
$$

then

$$
\begin{gathered}
D_{\hat{v}} Q\left((10000,625)=D_{1} Q\left((10000,625) \cdot\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=\right.\right. \\
(1.5,8) \cdot\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)=1.5 \cdot \frac{1}{\sqrt{2}}+8 \cdot \frac{1}{\sqrt{2}}=\frac{9.5}{\sqrt{2}}=6.717514420 .
\end{gathered}
$$

And what is the rate of increasing of Q in direction of the gradient vector at the same point $(10000,625)$? As we already know the gradient vector at this point is $(1.5,8)$. Its normalization gives

$$
\frac{(1.5,8)}{\|(1.5,8)\|}=\frac{(1.5,8)}{8.139410298}=\left(\frac{1.5}{8.139410298}, \frac{8}{8.139410298}\right)
$$

Then the derivative of Q in direction of the normalized gradient vector is

$$
(1.5,8) \cdot\left(\frac{1.5}{8.139410298}, \frac{8}{8.139410298}\right)=8.13941
$$

Much faster than in direction of $v=(1,1)$ which vas 6.7175 !

0.2.2 Direction of Maximal Rate of Increasing

Recall that the inner product of two vectors w and v can be expressed as $w \cdot v=\|w\| \cdot\|v\| \cdot \cos \alpha$, so if the lengths $\|w\|$ and $\|v\|$ are fixed the maximal value of the inner product is achieved when $\alpha=0$. Thus the directional derivative

$$
D_{v} F\left(x^{*}\right)=\nabla F\left(x^{*}\right) \cdot v=\left\|\nabla F\left(x^{*}\right)\right\| \cdot\|v\| \cdot \cos \alpha
$$

is maximal if the angle α between the gradient $\nabla F\left(x^{*}\right)$ and the direction v is 0 , so

If the gradient is nonzero vector at x^{*} then it points into the direction in which F increases most rapidly.

Example 14.2 from [SB]. Consider the Cobb-Douglas production function $Q=4 K^{\frac{3}{4}} L^{\frac{1}{4}}$, and, let the current input bundle be ($K=10000, L=625$). In what proportion one should add K and L to $(10000,625)$ to increase the production most rapidly? The gradient in this point is

$$
\nabla Q(10000,625)=\left(\frac{\partial Q}{\partial K}(1000,625), \frac{\partial Q}{\partial L}(1000,625)\right)=(1.5,8)
$$

So this function increases most rapidly in this direction thus one should add K and L in the same proportion $1.5: 8$.

Nope! Suppose we want to allocate 95 . In ratio $1.5: 8$ it is

$$
95=15+80
$$

and calculation shows

$$
F(10015,705)=20634.57297
$$

Now take different allocation

$$
95=0+95
$$

then

$$
F(10000,720)=20720.16051
$$

it is more than in ration $1.5: 8$!

0.2.3 Gradient and Level Curves

A level set for a function $f\left(x_{1}, \ldots, x_{n}\right)$ is a set on which the function is constant. For a function of two variables often this set is a curve.

Example. For the function $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$ the level curve corresponding to the value $f\left(x_{1}, x_{2}\right)=4$ is the set

$$
x_{1}^{2}+x_{2}^{2}=4,
$$

and this is the circle with the center in the origin and radius $r=2$. Similarly, the level curve corresponding to value $f\left(x_{1}, x_{2}\right)=5$ is the circle with the same center and radius $r=\sqrt{5}$, etc. So the level curves for $f\left(x_{1}, x_{2}\right)=x_{1}^{2}+x_{2}^{2}$ are concentric circles (except $f\left(x_{1}, x_{2}\right)=0$ which is a point).

Suppose $x(t)=\left(x_{1}(t), x_{2}(t)\right)$ is a level curve for a function $f\left(x_{1}, x_{2}\right)$ corresponding to a value c, that is

$$
\begin{equation*}
f\left(x_{1}(t), x_{2}(t)\right)=c \tag{5}
\end{equation*}
$$

As we know the tangent vector for a curve $x(t)$ is the vector $\left(x_{1}^{\prime}(t), x_{2}^{\prime}(t)\right)$. Differentiating the equation (5) by t we obtain

$$
\frac{\partial f}{\partial x_{1}} x_{1}^{\prime}(t)+\frac{\partial f}{\partial x_{2}} x_{2}^{\prime}(t)=0
$$

this means $\nabla(f) \cdot\left(x_{1}^{\prime}(t), x_{2}^{\prime}(t)\right)=0$, i.e
If the gradient is nonzero vector, then it is orthogonal to (tangent of) the level curve.

0.3 Jacobian

Let us consider a function $F: R^{n} \rightarrow R^{m}$, which, as we know, is a collection of $R^{n} \rightarrow R$ functions

$$
F(x)=F\left(\begin{array}{c}
x_{1} \\
\ldots \\
x_{n}
\end{array}\right)=\left(\begin{array}{c}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\ldots \ldots \ldots \ldots \ldots \ldots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right) .
$$

The Jacobian of F is defined as the matrix

$$
D F(x)=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(x) & \ldots & \frac{\partial f_{1}}{\partial x_{n}}(x) \\
\ldots & \ldots & \ldots \\
\frac{\partial f_{m}}{\partial x_{1}}(x) & \ldots & \frac{\partial f_{m}}{\partial x_{n}}(x)
\end{array}\right)
$$

As we see the Jacobian is a matrix whose rows are gradients of the functions f_{1}, \ldots, f_{n} :

$$
D F(x)=\left(\begin{array}{c}
D f_{1}(x) \\
\ldots \\
D f_{m}(x)
\end{array}\right)
$$

Other notations for Jacobian

$$
D F(x)=J_{F}(x)=\frac{\partial\left(f_{1}, \ldots, f_{m}\right)}{\partial\left(x_{1}, \ldots, x_{n}\right)}=\frac{\partial F}{\partial x}(x)
$$

Slang: The Jacobian $\frac{\partial F}{\partial x}$ is differentiation of a vector $F(x)=\left(\begin{array}{c}f_{1} \\ \ldots \\ f_{m}\end{array}\right)$ by vector $x=\left(\begin{array}{c}x_{1} \\ \ldots \\ x_{n}\end{array}\right)$, and the result is a matrix.

Particular cases:

$(n=1, m=1) F: R \rightarrow R$, Jacobian $\frac{\partial F}{\partial x}$ is ordinary derivative (scalar by scalar, result is a scalar);
$(m=1) F: R^{n} \rightarrow R$, Jacobian $\frac{\partial F}{\partial x}$ is ordinary Gradient $D F$ (scalar by vector, result is a vector);
$(n=1) F: R \rightarrow R^{m}$, Jacobian $\frac{\partial F}{\partial x}$ is the tangent vector of the curve $F(t)=\left(\begin{array}{l}f_{1}(t) \\ \cdots \\ f_{n}(t)\end{array}\right)$ (vector by scalar, result is a vectors).

Examples

1. Differentiation of scalar by vector. Consider a linear function $F: R^{n} \rightarrow R$, given by $F\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}+\ldots+a_{n} x_{n}$. In matrix form $F(x)=a^{T} \cdot{ }_{M} x$ where $x=\left(\begin{array}{c}x_{1} \\ \ldots \\ x_{n}\end{array}\right)$ and $a=\left(\begin{array}{c}a_{1} \\ \ldots \\ a_{n}\end{array}\right)$ and $a^{T} \cdot{ }_{M} x$ is the matrix product (which equals to $a \cdot_{i} x$ where this means the inner product). In this case we have

$$
D F(x)=\frac{\partial\left(a^{T} \cdot x\right)}{\partial x}=a .
$$

2. Differentiation of vector by vector. Consider a linear function $F: R^{n} \rightarrow R^{m}$, given by $F(x)=A \cdot x$ where

$$
x=\left(\begin{array}{c}
x_{1} \\
\ldots \\
x_{n}
\end{array}\right), \quad A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\ldots & \ldots & \ldots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right) .
$$

Thus

$$
F\left(\begin{array}{l}
x_{1} \\
\ldots \\
x_{n}
\end{array}\right)=\left(\begin{array}{l}
f_{1}(x)=a_{11} x_{1}+\ldots+a_{1 n} x_{n} \\
\ldots \\
f_{m}(x)=a_{m 1} x_{1}+\ldots+a_{m n} x_{n}
\end{array}\right)
$$

and

$$
D F(x)=\frac{\partial(A \cdot x)}{\partial x}=A
$$

3. Differentiation of scalar by vector. Consider a Quadratic form $Q: R^{n} \rightarrow R$, given by

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1, \ldots, n, j=1, \ldots, n} a_{i j} x_{i} x_{j}
$$

in matrix form $Q(x)=x^{T} \cdot A \cdot x$ where

$$
x=\left(\begin{array}{c}
x_{1} \\
\ldots \\
x_{n}
\end{array}\right), \quad A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\ldots & \ldots & \ldots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right) .
$$

Calculation shows that (try!)

$$
D Q(x)=\frac{\partial\left(x^{T} \cdot A \cdot x\right)}{\partial x}=x^{T}\left(A+A^{T}\right)
$$

If A is symmetric then $D Q(x)=\frac{\partial\left(x^{T} \cdot A \cdot x\right)}{\partial x}=2 x^{T} A$.

0.4 Linear Approximation

Start with a function $F: R^{n} \rightarrow R^{m}$, which, as we know, is a collection of $R^{n} \rightarrow R$ functions

$$
F(x)=F\left(\begin{array}{c}
x_{1} \\
\ldots \\
x_{n}
\end{array}\right)=\left(\begin{array}{l}
f_{1}\left(x_{1}, \ldots, x_{n}\right) \\
\ldots \ldots \ldots \ldots \ldots \\
f_{m}\left(x_{1}, \ldots, x_{n}\right)
\end{array}\right)
$$

Our aim is to approximate $F\left(x^{*}+\Delta x\right)$ in terms of the value $F\left(x^{*}\right)$, the vector $\Delta x=\left(\Delta x_{1}, \ldots, \Delta x_{n}\right)$ and the value of Jacobian $D F\left(x^{*}\right)$. Linear approximation of each function $f_{i}: R^{n} \rightarrow R$ gives

$$
\begin{aligned}
& f_{1}\left(x^{*}+\Delta x\right)-f_{1}\left(x^{*}\right)=\frac{\partial f_{1}}{\partial x_{1}}\left(x^{*}\right) \Delta x_{1}+\ldots+\frac{\partial f_{1}}{\partial x_{n}}\left(x^{*}\right) \Delta x_{n} \\
& f_{2}\left(x^{*}+\Delta x\right)-f_{2}\left(x^{*}\right)=\frac{\partial f_{2}}{\partial x_{1}}\left(x^{*}\right) \Delta x_{1}+\ldots+\frac{\partial f_{2}}{\partial x_{n}}\left(x^{*}\right) \Delta x_{n} \\
& \ldots \\
& f_{m}\left(x^{*}+\Delta x\right)-f_{m}\left(x^{*}\right)=\frac{\partial f_{m}}{\partial x_{1}}\left(x^{*}\right) \Delta x_{1}+\ldots+\frac{\partial f_{m}}{\partial x_{n}}\left(x^{*}\right) \Delta x_{n} .
\end{aligned}
$$

Shortly this can be written as

$$
F\left(x^{*}+\Delta x\right)-F\left(x^{*}\right)=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}\left(x^{*}\right) & \ldots & \frac{\partial f_{1}}{\partial x_{n}}\left(x^{*}\right) \\
\ldots & \ldots & \ldots \\
\frac{\partial f_{m}}{\partial x_{1}}\left(x^{*}\right) & \ldots & \frac{\partial f_{m}}{\partial x_{n}}(x *)
\end{array}\right) \cdot\left(\begin{array}{c}
\Delta x_{1} \\
\ldots \\
\Delta x_{n}
\end{array}\right) .
$$

Even more shortly it looks as

$$
F\left(x^{*}+\Delta x\right)-F\left(x^{*}\right)=D F\left(x^{*}\right) \cdot(\Delta x)^{T} .
$$

0.5 Jacobian of Composite function

Consider the composition

$$
R^{3} \xrightarrow{G} R^{3} \xrightarrow{F} R
$$

with

$$
G\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
u(x, y, z) \\
v(x, y, z) \\
w(x, y, z)
\end{array}\right) .
$$

The composition is

$$
(F \circ G)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=F(u(x, y, z), v(x, y, z), w(x, y, z))
$$

By chain rule

$$
\begin{aligned}
& (F \circ G)_{x}=F_{u} u_{x}+F_{v} v_{x}+F_{w} w_{x} \\
& (F \circ G)_{y}=F_{u} u_{y}+F_{v} v_{y}+F_{w} w_{y} \\
& (F \circ G)_{x}=F_{u} u_{z}+F_{v} v_{z}+F_{w} w_{z} .
\end{aligned}
$$

That is the Jacobian (gradient in this case) of the composite function is $D(F \circ G)=\left(F_{u} u_{x}+F_{v} v_{x}+F_{w} w_{x}, F_{u} u_{y}+F_{v} v_{y}+F_{w} w_{y}, F_{u} u_{z}+F_{v} v_{z}+F_{w} w_{z}\right)$.

Note that the Jacobian of G is

$$
D G=\left(\begin{array}{ccc}
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z} \\
w_{x} & w_{y} & w_{z}
\end{array}\right)
$$

and the Jacobian (gradient) of F is

$$
D F=\left(F_{u}, F_{v}, F_{w}\right) .
$$

Not hard to mention that

$$
\begin{gathered}
\left(F_{u}, F_{v}, F_{w}\right) \cdot\left(\begin{array}{ccc}
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z} \\
w_{x} & w_{y} & w_{z}
\end{array}\right)= \\
\left(F_{u} u_{x}+F_{v} v_{x}+F_{w} w_{x}, F_{u} u_{y}+F_{v} v_{y}+F_{w} w_{y}, F_{u} u_{z}+F_{v} v_{z}+F_{w} w_{z}\right)
\end{gathered}
$$

Thus

$$
D(F \circ G)=D F \cdot D G
$$

This is a particular case of the following
Theorem 1 Let

$$
G=\left(\begin{array}{c}
g_{1} \\
\cdot \\
g_{n}
\end{array}\right): R^{m} \rightarrow R^{n}, \quad F=\left(\begin{array}{c}
f_{1} \\
\ddot{.} \\
f_{k}
\end{array}\right): R^{n} \rightarrow R^{k}
$$

and let

$$
R^{m} \xrightarrow{G} R^{n} \xrightarrow{F} R^{k}
$$

be their composition.
Then the Jacobian of the composition $(F \circ G)\left(x^{*}\right)$ is the product of Jacobian matrices

$$
D(F \circ G)\left(x^{*}\right)=D F\left(G\left(x^{*}\right)\right) \cdot D G\left(x^{*}\right)
$$

Example

Let $F(u, v, w)=u^{2}+v+w$ where $u=x+2 y z, v=x^{2}+y, w=z^{2}+x$. Find $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}$.

Note that in fact we have the composition

$$
R^{3} \xrightarrow{G} R^{3} \xrightarrow{F} R
$$

with

$$
G\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
u=x+2 y z \\
v=x^{2}+y \\
w=z^{2}+x
\end{array}\right)
$$

and

$$
F\left(\begin{array}{c}
u \\
v \\
w
\end{array}\right)=u^{2}+v+w
$$

We want to find partial derivatives of the composite function
$(F \circ G)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=(x+2 y z)^{2}+\left(x^{2}+y\right)+\left(z^{2}+x\right)=2 x^{2}+4 x y z+4 y^{2} z^{2}+y+z^{2}+x$.

Three ways:

1. The direct calculation of patrial derivatives show

$$
\frac{\partial F}{\partial x}=4 x+4 y z+1, \frac{\partial F}{\partial y}=4 z x+8 y z^{2}+1, \frac{\partial F}{\partial z}=4 y x+8 y^{2} z+2 z
$$

2. By chain rule

$$
\begin{aligned}
& (F \circ G)_{x}=F_{u} u_{x}+F_{v} v_{x}+F_{w} w_{x}=2 u \cdot 1+1 \cdot 2 x+1 \cdot 1= \\
& 2(x+2 y z) \cdot 1+1 \cdot 2 x+1 \cdot 1=4 x+4 y z+1 \\
& \\
& (F \circ G)_{y}=F_{u} u_{y}+F_{v} v_{y}+F_{w} w_{y}=2 u \cdot 2 z+1 \cdot 1+1 \cdot 0= \\
& 2(x+2 y z) \cdot 2 z+1 \cdot 1+1 \cdot 0=4 x z+8 y z^{2}+1 \\
& \\
& (F \circ G)_{x}=F_{u} u_{z}+F_{v} v_{z}+F_{w} w_{z}=2 u \cdot 2 y+1 \cdot 0+1 \cdot 2 z= \\
& 2(x+2 y z) \cdot 2 y+1 \cdot 0+1 \cdot 2 z=4 x y+8 y^{2} z+2 z .
\end{aligned}
$$

That is the gradient (Jacobian in this case) of the composite function is $D(F \circ G)=\left(F_{u} u_{x}+F_{v} v_{x}+F_{w} w_{x}, F_{u} u_{y}+F_{v} v_{y}+F_{w} w_{y}, F_{u} u_{z}+F_{v} v_{z}+F_{w} w_{z}\right)$.
3. The Jacobian of G is

$$
D G=\left(\begin{array}{ccc}
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z} \\
w_{x} & w_{y} & w_{z}
\end{array}\right)=\left(\begin{array}{ccc}
1 & 2 z & 2 y \\
2 x & 1 & 0 \\
1 & 0 & 2 z
\end{array}\right)
$$

and the Jacobian (gradient) of F is

$$
D F=\left(F\left(u, F_{v}, F_{w}\right)=(2 u, 1,1)=(2(x+2 y z, 1,1) .\right.
$$

Then the Jacobian (the gradient in this case) is

$$
\begin{aligned}
& D(F \circ G)=D F \cdot D G=(2(x+2 y z), 1,1) \cdot\left(\begin{array}{ccc}
1 & 2 z & 2 y \\
2 x & 1 & 0 \\
1 & 0 & 2 z
\end{array}\right)= \\
& \left(\begin{array}{c}
2(x+2 y z)+2 x+1 \\
2(x+2 y z) \cdot 2 z+1 \\
2(x+2 y z) \cdot 2 y+2 z
\end{array}\right)=\left(\begin{array}{c}
4 x+4 y z+1 \\
4 x z+8 y z^{2}+1 \\
4 x y+8 y^{2} z+2 z
\end{array}\right) .
\end{aligned}
$$

1 Higher Order Derivatives

The second order derivative of $f: R^{n} \rightarrow R$ can be calculated as

$$
\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}=\frac{\partial}{\partial x_{j}} \frac{\partial f}{\partial x_{i}}
$$

Sometimes the following notation is used $\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}=f_{x_{j} x_{i}}$. Also the notation $\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}}=\frac{\partial^{2} f}{\partial x_{1}^{2}}$ is used.

Similarly are determined higher order partial derivatives

$$
\frac{\partial^{k} f}{\partial x_{i_{1}} \partial x_{i_{2}} \ldots \partial x_{i_{k}}} .
$$

All n^{2} second order partial derivatives form the Hessian matrix

$$
D^{2} f=\left(\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} \\
\cdots & \cdots & \cdots & \cdots \\
\frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right) .
$$

Young's Theorem. $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}$.
This implies that the Hessian matrix is symmetric.
Using this theorem one can prove similar fact for third order partials

$$
\frac{\partial^{3} f}{\partial x_{i} \partial x_{j} \partial x_{k}}=\frac{\partial^{3} f}{\partial x_{i} \partial x_{k} \partial x_{j}}=\frac{\partial^{3} f}{\partial x_{j} \partial x_{i} \partial x_{k}}=\frac{\partial^{3} f}{\partial x_{j} \partial x_{k} \partial x_{i}}=\frac{\partial^{3} f}{\partial x_{k} \partial x_{i} \partial x_{j}}=\frac{\partial^{3} f}{\partial x_{k} \partial x_{j} \partial x_{i}} .
$$

2 Taylor polynomials for a function of two variables

We already know the linear approximation

$$
\begin{gathered}
F\left(x_{1}+h_{1}, x_{2}+h_{2}\right) \approx P_{2}\left(h_{1}, h_{2}\right)= \\
F\left(x_{1}, x_{2}\right)+\frac{\partial F}{\partial x_{1}}\left(x_{1}, x_{2}\right) \cdot h_{1}+\frac{\partial F}{\partial x_{2}}\left(x_{1}, x_{2}\right) \cdot h_{2}= \\
F\left(x_{1}, x_{2}\right)+\nabla F\left(x_{1}, x_{2}\right) \cdot\binom{h_{1}}{h_{2}} .
\end{gathered}
$$

The second order partial derivatives allow to construct better approximation by second order Taylor polynomial $P_{2}\left(h_{1}, h_{2}\right)$

$$
\begin{aligned}
& F\left(x_{1}+h_{1}, x_{2}+h_{2}\right) \approx P_{2}\left(h_{1}, h_{2}\right)= \\
& F\left(x_{1}, x_{2}\right)+\frac{\partial F}{\partial x_{1}}\left(x_{1}, x_{2}\right) \cdot h_{1}+\frac{\partial F}{\partial x_{2}}\left(x_{1}, x_{2}\right) \cdot h_{2}+ \\
& \frac{1}{2} \frac{\partial^{2} F}{\partial x_{1}^{2}}\left(x_{1}, x_{2}\right) \cdot h_{1}^{2}+\frac{\partial^{2} F}{\partial x_{1} \partial x_{2}}\left(x_{1}, x_{2}\right) \cdot h_{1} h_{2}+\frac{1}{2} \frac{\partial^{2} F}{\partial x_{2}^{2}}\left(x_{1}, x_{2}\right) \cdot h_{2}^{2}= \\
& F\left(x_{1}, x_{2}\right)+\frac{\partial F}{\partial x_{1}}\left(x_{1}, x_{2}\right) \cdot h_{1}+\frac{\partial F}{\partial x_{2}}\left(x_{1}, x_{2}\right) \cdot h_{2}+ \\
& \left.\frac{1}{2} \frac{\partial^{2} F}{\partial x_{1}^{2}}\left(x_{1}, x_{2}\right) \cdot h_{1}^{2}+2 \frac{\partial^{2} F}{\partial x_{1} \partial x_{2}}\left(x_{1}, x_{2}\right) \cdot h_{1} h_{2}+\frac{1}{2} \frac{\partial^{2} F}{\partial x_{2}^{2}}\left(x_{1}, x_{2}\right) \cdot h_{2}^{2}\right] .
\end{aligned}
$$

Note that last three (quadratic) terms in fact represent $\frac{1}{2}$ of the quadratic form determined by Hessian matrix. So

$$
\begin{aligned}
& F\left(x_{1}+h_{1}, x_{2}+h_{2}\right) \approx P_{2}\left(h_{1}, h_{2}\right)= \\
& F\left(x_{1}, x_{2}\right)+D^{1} F\left(x_{1}, x_{2}\right) \cdot\binom{h_{1}}{h_{2}}+\frac{1}{2}\left(h_{1}, h_{2}\right) \cdot D^{2} F\left(x_{1}, x_{2}\right) \cdot\binom{h_{1}}{h_{2}}
\end{aligned}
$$

where $D^{1} F\left(x_{1}, x_{2}\right)$ is the gradient vector at $\left(x_{1}, x_{2}\right)$ and $D^{2} F\left(x_{1}, x_{2}\right)$ is the Hessian matrix at $\left(x_{1}, x_{2}\right)$.

For a function $F\left(x_{1}, \ldots, x_{n}\right)$ the second order Taylor polynomial looks as

$$
\begin{gathered}
F\left(x_{1}+h_{1}, \ldots, x_{n}+h_{n}\right) \approx P_{2}\left(h_{1}, \ldots, h_{n}\right)= \\
F\left(x_{1},, \ldots, x_{n}\right)+ \\
\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}\left(x_{1}, \ldots, x_{n}\right) \cdot h_{k}+\frac{1}{2} \sum_{k=1}^{n} \sum_{s=1}^{n} \frac{\partial^{2} F}{\partial x_{k} \partial x_{s}}\left(x_{1},, \ldots, x_{n}\right) \cdot h_{k} h_{s}
\end{gathered}
$$

General Taylor polynomial

$$
\begin{gathered}
P_{n}\left(h_{1}, \ldots, h_{n}\right)=F\left(x_{1},, \ldots, x_{n}\right)+ \\
\sum_{k=1}^{n} \sum_{i_{1}+\ldots+i_{n}=k} \frac{1}{i_{1}!\ldots \cdot i_{n}!} \frac{\partial^{k} F}{\partial x_{1}^{i_{1}} \partial x_{2}^{i_{2}} \ldots \partial x_{n}^{i_{n}}}\left(x_{1},, \ldots, x_{n}\right) h_{1}^{i_{1}} \cdot \ldots \cdot h_{n}^{i_{n}} .
\end{gathered}
$$

Example. Let $f(x)=a x^{2}+b x+c$ be a 1 -variable quadratic polynomial. Let us show that the Taylor polynomial of f about the point $x^{*}=0$ (i.e. the MacLaurin polynomial) of degree ≥ 2 is f itself.

Indeed, let us calculate the coefficients of Taylor polynomial

$$
P_{n}(x)=f(0)+f^{\prime}(0) \cdot x+\frac{1}{2!} f^{\prime \prime}(0) \cdot x^{2}+\frac{1}{3!} f^{\prime \prime}(0) \cdot x^{3}+\ldots+\frac{1}{n!} f^{[n]}(0) \cdot x^{n}
$$

of f :

$$
\begin{aligned}
& f(0)=c ; \\
& f^{\prime}(0)=(2 a x+b)_{x=0}=b ; \\
& f^{\prime \prime}(0)=2 a \\
& f^{\prime \prime \prime \prime}(0)=0 ; \\
& \cdots \\
& f^{[n]}(0)=0 .
\end{aligned}
$$

Thus

$$
P(x)=c+b x+\frac{1}{2} 2 a x^{2}+0+\ldots+0=f(x) .
$$

Try to prove* the same for a polynomial of degree 2 of two variables: If

$$
F(x, y)=a_{11} x^{2}+2 a_{12} x y+a_{22} y^{2}+b_{1} x+b_{2} y+c
$$

then its Taylor polynomial about the point $(0,0)$ of degree $n \geq 2$ is F itself.
Example. For a given function (enough differentiable) $f(x)$ find a polynomial $P(x)$ of degree 3 such that

$$
f(0)=P(0), f^{\prime}(0)=P^{\prime}(0), f^{\prime \prime}(0)=P^{\prime \prime}(0), f^{\prime \prime \prime}(0)=P^{\prime \prime \prime}(0)
$$

Solution. Suppose this polynomial is

$$
P(x)=d+c x+b x^{2}+a x^{3},
$$

let us find the coefficients a, b, c, d.
$P(0)=d$, so $P(0)=f(0)$ gives $d=f(0)$.
$P^{\prime}(0)=\left(c+2 b x+3 a x^{2}\right)_{x=0}=c$, so $P^{\prime}(0)=f^{\prime}(0)$ gives $c=f^{\prime}(0)$.
$P^{\prime \prime}(0)=(2 b+6 a x)_{x=0}=2 b$, so $P^{\prime \prime}(0)=f^{\prime \prime}(0)$ gives $b=\frac{1}{2} f^{\prime \prime}(0)$.
$P^{\prime \prime \prime}(0)=6 a$, so $P^{\prime \prime \prime}(0)=f^{\prime \prime \prime}(0)$ gives $a=\frac{1}{6} f^{\prime \prime \prime}(0)$.
Finally we get

$$
P(x)=f(0)+f^{\prime}(0) x+\frac{1}{2} f^{\prime \prime}(0) x^{2}+\frac{1}{6} f^{\prime \prime \prime}(0) x^{3} .
$$

Try to solve*: For a given function (enough differentiable) $f(x)$ find a polynomial $P(x)$ of degree n such that $f^{[k]}(0)=P^{[k]}(0)$ for $k=0,1,2, \ldots, n$. Good lack Mr MacLaurin!

Formulate* the similar statement for 2-variable functions, and prove it at last for $n=2$.

Exercises

1. Sketch (well, first in positive orthant $x \geq 0, y \geq 0$) level curves for the following functions
(a) $f(x, y)=x^{2}+y^{2}$,
(b) $f(x, y)=|x|+|y|$,
(c) $f(x, y)=x \cdot y$,
(d) $f(x, y)=\max (x, y)$,
(e) $f(x, y)=\min (x, y)$.
2. Let $f\left(x_{1}, x_{2}\right)=3 x_{1} x_{2}^{2}+2 x_{1}$ and $x(t)=\left(x_{1}(t), x_{2}(t)\right)$ be a curve given by $x_{1}(t)=-3 t^{2}, x_{2}(t)=4 t^{3}+t$.
(a) Use the substitution and direct differentiation to compute the rate of change of the composite $f\left(x_{1}(t), x_{2}(t)\right)$.
(b) Use the chain rule to compute the same rate. Compare the answers of (a) and (b).
3. Find a point on the curve $x(t)=\left(e^{t}+5 t^{2}, t^{4}-4 t\right)$ where the tangent vector is parallel to x axis.
4. In what direction should one move from the point $(2,3)$ to increase $4 x^{2} y$ most rapidly? Present the answer as a vector of length 1.
5. Consider the function $y^{2} e^{3 x}$. In which direction should one move from the point $(0,3)$ to increase most rapidly. Present the answer as a vector of length 1.
6. Compute the directional derivative of $f(x, y)=x y^{2}+x^{3} y$ at the point $(4,-2)$ in the direction $\left(\frac{1}{\sqrt{10}}, \frac{3}{\sqrt{10}}\right)$.
7. A production function $Q=F(K, L)$ obeys the law of diminishing marginal productivity if $\frac{\partial F}{\partial K}>0$ but $\frac{\partial^{2} F}{\partial K^{2}}<0$ and $\frac{\partial F}{\partial L}>0$ but $\frac{\partial^{2} F}{\partial L^{2}}<0$.

For what values of parameters the Cobb-Douglas function $A K^{\alpha} L^{\beta}$ obeys this law?
8. Write third order Taylor polynomial of a function $F(x, y, z)$.
9. Compute the Taylor approximation of order two of the Cobb-Douglas function $F(x, y)=x^{1 / 4} y^{3 / 4}$ at $(1,1)$. Estimate the value $F(1.1,0.9)$ with order one and order two Taylor approximations.

Exercises 14.11-14.17, 14.18-14.20, 14.23-14.27, 30.11-30.15.

Homework

Exercises 14.17, 14.19, 14.20, 14.27, 30.13 from [SB]

Short Summary
 Gradient

The tangent vector for a curve $x(t)=\left(x_{1}(t), \ldots, x_{n}(t)\right)$ is the vector $\left(x_{1}^{\prime}(t), \ldots, x_{n}^{\prime}(t)\right)$.

Chain rule

$$
\frac{d f\left(x_{1}(t), \ldots, x_{n}(t)\right)}{d t}=\frac{\partial f}{\partial x_{1}} \frac{d x_{1}}{d t}+\ldots+\frac{\partial f}{\partial x_{n}} \frac{d x_{n}}{d t} .
$$

Gradient of a function $F\left(x_{1}, \ldots, x_{n}\right)$:

$$
\nabla F\left(x_{1}, \ldots, x_{n}\right)=\left(\frac{\partial F}{\partial x_{1}}\left(x_{1}, \ldots, x_{n}\right), \ldots, \frac{\partial F}{\partial x_{1}}\left(x_{1}, \ldots, x_{n}\right)\right)
$$

Directional derivative of F in direction of a unit vector v at a point x^{*}

$$
D_{v} F\left(x^{*}\right)=\nabla F\left(x^{*}\right) \cdot v=\frac{\partial F}{\partial x_{1}}\left(x^{*}\right) \cdot v_{1}+\ldots+\frac{\partial F}{\partial x_{n}}\left(x^{*}\right) \cdot v_{n}
$$

The gradient vector at x^{*} points into the direction in which F increases most rapidly, and is orthogonal to the (tangent of) level curve.

Jacobian of a function $F: R^{n} \rightarrow R^{m}:$ If $F(x)=\left(\begin{array}{c}f_{1}\left(x_{1}, \ldots, x_{n}\right) \\ \ldots \ldots \ldots \ldots . \\ f_{m}\left(x_{1}, \ldots, x_{n}\right)\end{array}\right)$, its Jacobian is

$$
D F(x)=J_{F}(x)=\frac{\partial\left(f_{1}, \ldots, f_{m}\right.}{x_{1}, \ldots, x_{n}}=\frac{\partial F}{\partial x}(x)=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}}(x) & \ldots & \frac{\partial f_{1}}{\partial x_{n}}(x) \\
\ldots & \ldots & \ldots \\
\frac{\partial f_{m}}{\partial x_{1}}(x) & \ldots & \frac{\partial f_{m}}{\partial x_{n}}(x)
\end{array}\right)
$$

Second order Taylor

$$
\begin{aligned}
& F\left(x_{1}+h_{1}, \ldots, x_{n}+h_{n}\right) \approx F\left(x_{1},, \ldots, x_{n}\right)+\sum_{k=1}^{n} \frac{\partial F}{\partial x_{k}}\left(x_{1},, \ldots, x_{n}\right) \cdot h_{k}+ \\
& \frac{1}{2} \sum_{k=1}^{n} \sum_{s=1}^{n} \frac{\partial^{2} F}{\partial x_{k} \partial x_{s}}\left(x_{1},, \ldots, x_{n}\right) \cdot h_{k} h_{s} .
\end{aligned}
$$

