
Reading: [Simon] p. 313-333, 833-836.

0.1 The Chain Rule

Partial derivatives describe how a function changes in directions parallel to
the coordinate axes. Now we shall demonstrate how the partial derivatives
can be used to describe how a function changes in any direction. More
generally, we are often interested in how a function changes as we move
along a curve in its domain. For example, if inputs are changing with time,
we may want to know how the corresponding outputs are changing with time.
Or, if the input obeys budget restriction which is a line, then how the output
changes along the budget line.

0.1.1 Curves

A curve in Rn is a continuous function R → Rn

x(t) = (x1(t), ... , xn(t))

here each xi(t) is a continuous function R → R.

Particular case: A straight line which passes trough a point x∗ = (x∗1, ... , x∗n)
in direction of a vector v = (v1, ... , vn)

x(t) = (x1(t), ... , xn(t)) = (x∗1 + v1t, ... , x∗n + vnt).

Note, that x(0) = x∗ and x′k(t) = vk.

The tangent vector for a curve x(t) is the vector (x′1(t), ... , x′n(t)).

Example. The curve x(t) = (cos t, sin t), t ∈ [0, 2π] is the unit circle.
The tangent vector at t = 0 is (−sin 0, cos 0) = (0, 1) vertical.
The tangent vector at t = π/2 is (−sin π/2, cos π/2) = (−1, 0) horizontal.

0.1.2 Differentiating Along a Curve - Chain Rule

Let x(t) be a curve in Rn and f : Rn → R. Consider the composition

g : R
x→ Rn f→ R,

g(t) = f(x1(t), ... , xn(t)).
The chain rule gives the expression for the derivative of this function

dg

dt
(t0) =

∂f

∂x1

(x(t0))x
′
1(t0) + ... +

∂f

∂xn

(x(t0))x
′
n(t0).

or, shortly
dg

dt
=

∂f

∂x1

dx1

dt
+ ... +

∂f

∂xn

dxn

dt
.
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Example. Consider the Cobb-Douglas production function

Q = 4K
3
4 L

1
4 . (1)

Suppose K and L vary with time t and the interest rate r by the rule

K(t, r) =
10t2

r
, L = 6t2 + 250r (2)

(notice, as r increases, then K decreases and L increases, why?).
If we substitute in Q these expressions for K and L then Q becomes a

two variable function of t and r:

Q(t, r) = 4 · (10t2

r
)

3
4 · (6t2 + 250r)

1
4 . (3)

How to calculate the rate of change of Q with respect to t when t = 10
and r = 0.1?

There are three possibilities:

(i) Just calculate the partial derivative with respect to t of (3);

(ii) Use Chain Rule for (1) and (2):

∂Q

∂t
=

∂Q

∂K
· ∂K

∂t
+

∂Q

∂L
· ∂L

∂t
.

(iii) Look in [SB], pp. 318.

Example. (14.12 from [SB]) At a given moment in time, the marginal
product of labor is 2.5 and the marginal product of capital is 3, the amount
of capital is increasing by 2 each unit of time and the rate of change of labor
is 0.5. What is the rate of change of output at this time?

Solution. So what is given? ∂Q
∂L

= 2.5, ∂Q
∂K

= 3, ∂K
∂t

= 2, ∂L
∂t

= 0.5.
What we need to calculate?

∂Q

∂t
=

∂Q

∂K
· ∂K

∂t
+

∂Q

∂L
· ∂L

∂t
= 3 · 2 + 2.5 · 0.5 = 7.25.

0.2 Gradient

For a function F : Rn → R the gradient at point x∗ = (x∗1, ..., x
∗
n) is the

vector

∇F (x∗) = (
∂F

∂x1

(x∗), ... ,
∂F

∂x1

(x∗)).

Sometimes gradient is denoted as D1F (x∗).
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Example. Consider again the Cobb-Douglas production function

Q = 4K
3
4 L

1
4 . (4)

What is the gradient of this function at the point (K = 10000, L = 625)?

D1Q(10000, 625) = ( ∂Q
∂K

(10000, 625), ∂Q
∂L

(10000, 625)) =
(3K−1/4L1/4(10000, 625), K3/4L−3/4(10000, 625)) = (1.5, 8).

MAPLE calculates the gradient vector by
> with(V ectorCalculus) :
> G := Gradient(4 ∗ x(3/4) ∗ y(1/4), [x, y]);

0.2.1 Directional Derivative and Gradient

Directional derivative enables to compute the rate of change of function
F (x1, ..., xn) at a given point x∗ and in the direction given by a unit or
normalized vector v = (v1, ..., vn).

This directional derivative is denoted as

∂F

∂v
(x∗) or DvF (x∗).

How can one calculate the Dir-Der? Take a straight line which passes
trough the point x∗ in the direction of a given vector v = (v1, ... , vn)

x(t) = (x1(t), ... , xn(t)) = (x∗1 + v1t, ... , x∗n + vnt).

Note, that x(0) = x∗ and x′k(t) = vk.
The directional derivative DvF (x∗) is the derivative of F along the

straight line x(t)

∂F

∂x1

(x(0))x′1(0) + ... +
∂F

∂xn

(x(0))x′n(0) =
∂F

∂x1

(x∗)v1 + ... +
∂F

∂xn

(x∗)v′n.

Thus directional derivative equals to the inner product of gradient vector
at x∗ and the (normalized ) vector v = (v1, ... , vn)

DvF (x∗) = ∇F (x∗) · v.

Note that changing v proportionally (keeping the direction unchanged)
changes the inner product in the same proportion.

Example. What is the derivative of our Cobb-Douglas production function
Q = 4K

3
4 L

1
4 in direction v = (1, 1) at the point (10000, 625)?
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First normalize v:

v̂ =
v

||v|| =
v√
2

= (
1√
2
,

1√
2
),

then

Dv̂Q((10000, 625) = D1Q((10000, 625) · ( 1√
2
, 1√

2
) =

(1.5, 8) · ( 1√
2
, 1√

2
) = 1.5 · 1√

2
+ 8 · 1√

2
= 9.5√

2
= 6.717514420.

And what is the rate of increasing of Q in direction of the gradient vector at
the same point (10000, 625)? As we already know the gradient vector at this
point is (1.5, 8). Its normalization gives

(1.5, 8)

||(1.5, 8)|| =
(1.5, 8)

8.139410298
= (

1.5

8.139410298
,

8

8.139410298
).

Then the derivative of Q in direction of the normalized gradient vector is

(1.5, 8) · ( 1.5

8.139410298
,

8

8.139410298
) = 8.13941.

Much faster than in direction of v = (1, 1) which vas 6.7175!

0.2.2 Direction of Maximal Rate of Increasing

Recall that the inner product of two vectors w and v can be expressed as
w ·v = ||w|| · ||v|| · cos α, so if the lengths ||w|| and ||v|| are fixed the maximal
value of the inner product is achieved when α = 0. Thus the directional
derivative

DvF (x∗) = ∇F (x∗) · v = ||∇F (x∗)|| · ||v|| · cosα

is maximal if the angle α between the gradient ∇F (x∗) and the direction v
is 0, so

If the gradient is nonzero vector at x∗ then it points into the
direction in which F increases most rapidly.

Example 14.2 from [SB]. Consider the Cobb-Douglas production function

Q = 4K
3
4 L

1
4 , and, let the current input bundle be (K = 10000, L = 625).

In what proportion one should add K and L to (10000, 625) to increase the
production most rapidly? The gradient in this point is

∇Q(10000, 625) = (
∂Q

∂K
(1000, 625),

∂Q

∂L
(1000, 625)) = (1.5, 8).
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So this function increases most rapidly in this direction thus one should add
K and L in the same proportion 1.5 : 8.

Nope! Suppose we want to allocate 95. In ratio 1.5 : 8 it is

95 = 15 + 80

and calculation shows

F (10015, 705) = 20634.57297.

Now take different allocation

95 = 0 + 95

then
F (10000, 720) = 20720.16051,

it is more than in ration 1.5 : 8!

0.2.3 Gradient and Level Curves

A level set for a function f(x1, ... , xn) is a set on which the function is
constant. For a function of two variables often this set is a curve.

Example. For the function f(x1, x2) = x2
1+x2

2 the level curve corresponding
to the value f(x1, x2) = 4 is the set

x2
1 + x2

2 = 4,

and this is the circle with the center in the origin and radius r = 2. Similarly,
the level curve corresponding to value f(x1, x2) = 5 is the circle with the same
center and radius r =

√
5, etc. So the level curves for f(x1, x2) = x2

1 +x2
2 are

concentric circles (except f(x1, x2) = 0 which is a point).

Suppose x(t) = (x1(t), x2(t)) is a level curve for a function f(x1, x2) cor-
responding to a value c, that is

f(x1(t), x2(t)) = c. (5)

As we know the tangent vector for a curve x(t) is the vector (x′1(t), x
′
2(t)).

Differentiating the equation (5) by t we obtain

∂ f

∂ x1

x′1(t) +
∂ f

∂ x2

x′2(t) = 0,

this means ∇(f) · (x′1(t), x′2(t)) = 0, i.e

If the gradient is nonzero vector, then it is orthogonal to (tan-
gent of) the level curve.
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0.3 Jacobian

Let us consider a function F : Rn → Rm, which, as we know, is a collection
of Rn → R functions

F (x) = F




x1

...
xn


 =




f1(x1, ..., xn)
.................
fm(x1, ..., xn)


 .

The Jacobian of F is defined as the matrix

DF (x) =




∂f1

∂x1
(x) ... ∂f1

∂xn
(x)

... ... ...
∂fm

∂x1
(x) ... ∂fm

∂xn
(x)


 .

As we see the Jacobian is a matrix whose rows are gradients of the functions
f1, ... , fn:

DF (x) =




Df1(x)
...

Dfm(x)


 .

Other notations for Jacobian

DF (x) = JF (x) =
∂(f1, ... , fm)

∂(x1, ... , xn)
=

∂F

∂x
(x).

Slang: The Jacobian ∂F
∂x

is differentiation of a vector F (x) =




f1

...
fm


 by

vector x =




x1

...
xn


, and the result is a matrix.

Particular cases:

(n = 1, m = 1) F : R → R, Jacobian ∂F
∂x

is ordinary derivative (scalar
by scalar, result is a scalar);

( m = 1) F : Rn → R, Jacobian ∂F
∂x

is ordinary Gradient DF (scalar by
vector, result is a vector);

(n = 1) F : R → Rm, Jacobian ∂F
∂x

is the tangent vector of the curve

F (t) =




f1(t)
...
fn(t)


 (vector by scalar, result is a vectors).

Examples
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1. Differentiation of scalar by vector. Consider a linear function
F : Rn → R, given by F (x1, ... , xn) = a1x1 + ... + anxn. In matrix form

F (x) = aT ·M x where x =




x1

...
xn


 and a =




a1

...
an


 and aT ·M x is the matrix

product (which equals to a ·i x where this means the inner product). In this
case we have

DF (x) =
∂(aT · x)

∂x
= a.

2. Differentiation of vector by vector. Consider a linear function
F : Rn → Rm, given by F (x) = A · x where

x =




x1

...
xn


 , A =




a11 ... a1n

... ... ...
am1 ... amn


 .

Thus

F




x1

...
xn


 =




f1(x) = a11x1 + ... + a1nxn

...
fm(x) = am1x1 + ... + amnxn




and

DF (x) =
∂(A · x)

∂x
= A.

3. Differentiation of scalar by vector. Consider a Quadratic form
Q : Rn → R, given by

Q(x1, ... , xn) =
∑

i=1,...,n, j=1,...,n

aijxixj,

in matrix form Q(x) = xT · A · x where

x =




x1

...
xn


 , A =




a11 ... a1n

... ... ...
an1 ... ann


 .

Calculation shows that (try!)

DQ(x) =
∂(xT · A · x)

∂x
= xT (A + AT ).

If A is symmetric then DQ(x) = ∂(xT ·A·x)
∂x

= 2xT A.
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0.4 Linear Approximation

Start with a function F : Rn → Rm, which, as we know, is a collection of
Rn → R functions

F (x) = F




x1

...
xn


 =




f1(x1, ..., xn)
.................
fm(x1, ..., xn)


 .

Our aim is to approximate F (x∗ + ∆x) in terms of the value F (x∗), the
vector ∆x = (∆x1, ... , ∆xn) and the value of Jacobian DF (x∗). Linear
approximation of each function fi : Rn → R gives

f1(x
∗ + ∆x)− f1(x

∗) = ∂f1

∂x1
(x∗)∆x1 + ... + ∂f1

∂xn
(x∗)∆xn

f2(x
∗ + ∆x)− f2(x

∗) = ∂f2

∂x1
(x∗)∆x1 + ... + ∂f2

∂xn
(x∗)∆xn

...

fm(x∗ + ∆x)− fm(x∗) = ∂fm

∂x1
(x∗)∆x1 + ... + ∂fm

∂xn
(x∗)∆xn.

Shortly this can be written as

F (x∗ + ∆x)− F (x∗) =




∂f1

∂x1
(x∗) ... ∂f1

∂xn
(x∗)

... ... ...
∂fm

∂x1
(x∗) ... ∂fm

∂xn
(x∗)


 ·




∆x1

...
∆xn


 .

Even more shortly it looks as

F (x∗ + ∆x)− F (x∗) = DF (x∗) · (∆x)T .

0.5 Jacobian of Composite function

Consider the composition

R3 G→ R3 F→ R

with

G




x
y
z


 =




u(x, y, z)
v(x, y, z)
w(x, y, z)


 .

The composition is

(F ◦G)




x
y
z


 = F (u(x, y, z), v(x, y, z), w(x, y, z)).

By chain rule
(F ◦G)x = Fuux + Fvvx + Fwwx

(F ◦G)y = Fuuy + Fvvy + Fwwy

(F ◦G)x = Fuuz + Fvvz + Fwwz.
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That is the Jacobian (gradient in this case) of the composite function is

D(F ◦G) = (Fuux +Fvvx +Fwwx, Fuuy +Fvvy +Fwwy, Fuuz +Fvvz +Fwwz).

Note that the Jacobian of G is

DG =




ux uy uz

vx vy vz

wx wy wz




and the Jacobian (gradient) of F is

DF = (Fu, Fv, Fw).

Not hard to mention that

(Fu, Fv, Fw) ·



ux uy uz

vx vy vz

wx wy wz


 =

(Fuux + Fvvx + Fwwx, Fuuy + Fvvy + Fwwy, Fuuz + Fvvz + Fwwz).

Thus
D(F ◦G) = DF ·DG.

This is a particular case of the following

Theorem 1 Let

G =




g1

..
gn


 : Rm → Rn, F =




f1

..
fk


 : Rn → Rk,

and let
Rm G→ Rn F→ Rk

be their composition.
Then the Jacobian of the composition (F ◦G)(x∗) is the product of Jaco-

bian matrices
D(F ◦G)(x∗) = DF (G(x∗)) ·DG(x∗).

Example
Let F (u, v, w) = u2 + v + w where u = x + 2yz, v = x2 + y, w = z2 + x.

Find ∂F
∂x

, ∂F
∂y

, ∂F
∂z

.
Note that in fact we have the composition

R3 G→ R3 F→ R
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with

G




x
y
z


 =




u = x + 2yz
v = x2 + y
w = z2 + x




and

F




u
v
w


 = u2 + v + w.

We want to find partial derivatives of the composite function

(F ◦G)




x
y
z


 = (x+2yz)2+(x2+y)+(z2+x) = 2x2+4xyz+4y2z2+y+z2+x.

Three ways:

1. The direct calculation of patrial derivatives show

∂F

∂x
= 4x + 4yz + 1,

∂F

∂y
= 4zx + 8yz2 + 1,

∂F

∂z
= 4yx + 8y2z + 2z.

2. By chain rule

(F ◦G)x = Fuux + Fvvx + Fwwx = 2u · 1 + 1 · 2x + 1 · 1 =
2(x + 2yz) · 1 + 1 · 2x + 1 · 1 = 4x + 4yz + 1

(F ◦G)y = Fuuy + Fvvy + Fwwy = 2u · 2z + 1 · 1 + 1 · 0 =
2(x + 2yz) · 2z + 1 · 1 + 1 · 0 = 4xz + 8yz2 + 1

(F ◦G)x = Fuuz + Fvvz + Fwwz = 2u · 2y + 1 · 0 + 1 · 2z =
2(x + 2yz) · 2y + 1 · 0 + 1 · 2z = 4xy + 8y2z + 2z.

That is the gradient (Jacobian in this case) of the composite function is

D(F ◦G) = (Fuux +Fvvx +Fwwx, Fuuy +Fvvy +Fwwy, Fuuz +Fvvz +Fwwz).

3. The Jacobian of G is

DG =




ux uy uz

vx vy vz

wx wy wz


 =




1 2z 2y
2x 1 0
1 0 2z




and the Jacobian (gradient) of F is

DF = (F (u, Fv, Fw) = (2u, 1, 1) = (2(x + 2yz, 1, 1).
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Then the Jacobian (the gradient in this case) is

D(F ◦G) = DF ·DG = (2(x + 2yz), 1, 1) ·



1 2z 2y
2x 1 0
1 0 2z


 =




2(x + 2yz) + 2x + 1
2(x + 2yz) · 2z + 1
2(x + 2yz) · 2y + 2z


 =




4x + 4yz + 1
4xz + 8yz2 + 1
4xy + 8y2z + 2z


 .

1 Higher Order Derivatives

The second order derivative of f : Rn → R can be calculated as

∂2f

∂xj∂xi

=
∂

∂xj

∂f

∂xi

.

Sometimes the following notation is used ∂2f
∂xj∂xi

= fxjxi
. Also the notation

∂2f
∂x1∂x1

= ∂2f
∂x2

1
is used.

Similarly are determined higher order partial derivatives

∂kf

∂xi1∂xi2 ... ∂xik

.

All n2 second order partial derivatives form the Hessian matrix

D2f =




∂2f
∂x2

1

∂2f
∂x2∂x1

... ∂2f
∂xn∂x1

∂2f
∂x1∂x2

∂2f
∂x2

2
... ∂2f

∂xn∂x2

... ... ... ...
∂2f

∂x1∂xn

∂2f
∂x2∂xn

... ∂2f
∂x2

n




.

Young’s Theorem. ∂2f
∂xi∂xj

= ∂2f
∂xj∂xi

.

This implies that the Hessian matrix is symmetric.
Using this theorem one can prove similar fact for third order partials

∂3f
∂xi∂xj∂xk

= ∂3f
∂xi∂xk∂xj

= ∂3f
∂xj∂xi∂xk

= ∂3f
∂xj∂xk∂xi

= ∂3f
∂xk∂xi∂xj

= ∂3f
∂xk∂xj∂xi

.
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2 Taylor polynomials for a function of two

variables

We already know the linear approximation

F (x1 + h1, x2 + h2) ≈ P2(h1, h2) =
F (x1, x2) + ∂F

∂x1
(x1, x2) · h1 + ∂F

∂x2
(x1, x2) · h2 =

F (x1, x2) +∇F (x1, x2) ·
(

h1

h2

)
.

The second order partial derivatives allow to construct better approxima-
tion by second order Taylor polynomial P2(h1, h2)

F (x1 + h1, x2 + h2) ≈ P2(h1, h2) =
F (x1, x2) + ∂F

∂x1
(x1, x2) · h1 + ∂F

∂x2
(x1, x2) · h2+

1
2

∂2F
∂x2

1
(x1, x2) · h2

1 + ∂2F
∂x1∂x2

(x1, x2) · h1h2 + 1
2

∂2F
∂x2

2
(x1, x2) · h2

2 =

F (x1, x2) + ∂F
∂x1

(x1, x2) · h1 + ∂F
∂x2

(x1, x2) · h2+
1
2
[∂2F

∂x2
1
(x1, x2) · h2

1 + 2 ∂2F
∂x1∂x2

(x1, x2) · h1h2 + 1
2

∂2F
∂x2

2
(x1, x2) · h2

2].

Note that last three (quadratic) terms in fact represent 1
2

of the quadratic
form determined by Hessian matrix. So

F (x1 + h1, x2 + h2) ≈ P2(h1, h2) =

F (x1, x2) + D1F (x1, x2) ·
(

h1

h2

)
+ 1

2
(h1, h2) ·D2F (x1, x2) ·

(
h1

h2

)

where D1F (x1, x2) is the gradient vector at (x1, x2) and D2F (x1, x2) is the
Hessian matrix at (x1, x2).

For a function F (x1, ..., xn) the second order Taylor polynomial looks as

F (x1 + h1, ... , xn + hn) ≈ P2(h1, ... , hn) =
F (x1, , ... , xn)+∑n

k=1
∂F
∂xk

(x1, , ... , xn) · hk + 1
2

∑n
k=1

∑n
s=1

∂2F
∂xk∂xs

(x1, , ... , xn) · hkhs.

General Taylor polynomial

Pn(h1, ... , hn) = F (x1, , ... , xn)+∑n
k=1

∑
i1+...+in=k

1
i1!·...·in!

∂kF

∂x
i1
1 ∂x

i2
2 ... ∂xin

n

(x1, , ... , xn)hi1
1 · ... · hin

n .

Example. Let f(x) = ax2 + bx + c be a 1-variable quadratic polynomial.
Let us show that the Taylor polynomial of f about the point x∗ = 0 (i.e. the
MacLaurin polynomial) of degree ≥ 2 is f itself.
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Indeed, let us calculate the coefficients of Taylor polynomial

Pn(x) = f(0) + f ′(0) · x +
1

2!
f ′′(0) · x2 +

1

3!
f ′′(0) · x3 + ... +

1

n!
f [n](0) · xn

of f :

f(0) = c;
f ′(0) = (2ax + b)x=0 = b;
f ′′(0) = 2a;
f ′′′′(0) = 0;
...
f [n](0) = 0.

Thus

P (x) = c + bx +
1

2
2ax2 + 0 + ... + 0 = f(x).

Try to prove* the same for a polynomial of degree 2 of two variables: If

F (x, y) = a11x
2 + 2a12xy + a22y

2 + b1x + b2y + c

then its Taylor polynomial about the point (0, 0) of degree n ≥ 2 is F itself.

Example. For a given function (enough differentiable) f(x) find a polyno-
mial P (x) of degree 3 such that

f(0) = P (0), f ′(0) = P ′(0), f ′′(0) = P ′′(0), f ′′′(0) = P ′′′(0).

Solution. Suppose this polynomial is

P (x) = d + cx + bx2 + ax3,

let us find the coefficients a, b, c, d.
P (0) = d, so P (0) = f(0) gives d = f(0).
P ′(0) = (c + 2bx + 3ax2)x=0 = c, so P ′(0) = f ′(0) gives c = f ′(0).
P ′′(0) = (2b + 6ax)x=0 = 2b, so P ′′(0) = f ′′(0) gives b = 1

2
f ′′(0).

P ′′′(0) = 6a, so P ′′′(0) = f ′′′(0) gives a = 1
6
f ′′′(0).

Finally we get

P (x) = f(0) + f ′(0)x +
1

2
f ′′(0)x2 +

1

6
f ′′′(0)x3.

Try to solve*: For a given function (enough differentiable) f(x) find a
polynomial P (x) of degree n such that f [k](0) = P [k](0) for k = 0, 1, 2, ... , n.

Good lack Mr MacLaurin!

Formulate* the similar statement for 2-variable functions, and prove it at
last for n = 2.
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Exercises

1. Sketch (well, first in positive orthant x ≥ 0, y ≥ 0) level curves for
the following functions

(a) f(x, y) = x2 + y2, (b) f(x, y) = |x|+ |y|, (c) f(x, y) = x · y,
(d)f(x, y) = max(x, y), (e) f(x, y) = min(x, y).

2. Let f(x1, x2) = 3x1x
2
2 + 2x1 and x(t) = (x1(t), x2(t)) be a curve given

by x1(t) = −3t2, x2(t) = 4t3 + t.
(a) Use the substitution and direct differentiation to compute the rate of

change of the composite f(x1(t), x2(t)).
(b) Use the chain rule to compute the same rate. Compare the answers

of (a) and (b).

3. Find a point on the curve x(t) = (et + 5t2, t4 − 4t) where the tangent
vector is parallel to x axis.

4. In what direction should one move from the point (2, 3) to increase
4x2y most rapidly? Present the answer as a vector of length 1.

5. Consider the function y2e3x. In which direction should one move from
the point (0,3) to increase most rapidly. Present the answer as a vector of
length 1.

6. Compute the directional derivative of f(x, y) = xy2 + x3y at the point
(4,−2) in the direction ( 1√

10
, 3√

10
).

7. A production function Q = F (K, L) obeys the law of diminishing
marginal productivity if ∂F

∂K
> 0 but ∂2F

∂K2 < 0 and ∂F
∂L

> 0 but ∂2F
∂L2 < 0.

For what values of parameters the Cobb-Douglas function AKαLβ obeys
this law?

8. Write third order Taylor polynomial of a function F (x, y, z).

9. Compute the Taylor approximation of order two of the Cobb-Douglas
function F (x, y) = x1/4y3/4 at (1, 1). Estimate the value F (1.1, 0.9) with
order one and order two Taylor approximations.

Exercises 14.11-14.17, 14.18-14.20, 14.23-14.27, 30.11-30.15.

Homework
Exercises 14.17, 14.19, 14.20, 14.27, 30.13 from [SB]
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Short Summary
Gradient

The tangent vector for a curve x(t) = (x1(t), ... , xn(t)) is the vector
(x′1(t), ... , x′n(t)).

Chain rule

df(x1(t), ... , xn(t))

dt
=

∂f

∂x1

dx1

dt
+ ... +

∂f

∂xn

dxn

dt
.

Gradient of a function F (x1, ... , xn):

∇F (x1, ... , xn) = (
∂F

∂x1

(x1, ... , xn), ... ,
∂F

∂x1

(x1, ... , xn)).

Directional derivative of F in direction of a unit vector v at a point
x∗

DvF (x∗) = ∇F (x∗) · v =
∂F

∂x1

(x∗) · v1 + ... +
∂F

∂xn

(x∗) · vn.

The gradient vector at x∗ points into the direction in which F increases
most rapidly, and is orthogonal to the (tangent of) level curve.

Jacobian of a function F : Rn → Rm: If F (x) =




f1(x1, ..., xn)
.................
fm(x1, ..., xn)


, its

Jacobian is

DF (x) = JF (x) =
∂(f1, ... , fm

x1, ... , xn

=
∂F

∂x
(x) =




∂f1

∂x1
(x) ... ∂f1

∂xn
(x)

... ... ...
∂fm

∂x1
(x) ... ∂fm

∂xn
(x)


 .

Second order Taylor

F (x1 + h1, ... , xn + hn) ≈ F (x1, , ... , xn) +
∑n

k=1
∂F
∂xk

(x1, , ... , xn) · hk+
1
2

∑n
k=1

∑n
s=1

∂2F
∂xk∂xs

(x1, , ... , xn) · hkhs.
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