1 Distance

Reading
[SB], Ch. 29.4, p. 811-816
A metric space is a set S with a given distance (or metric) function $d(x, y)$ which satisfies the conditions
(a) Positive definiteness $d(x, y) \geq 0, \quad d(x, y)=0 \Leftrightarrow x=y$;
(b) Symmetry $d(x, y)=d(y, x)$;
(c) Triangle inequality $d(x, y)+d(y, z) \geq d(x, z)$.

For a given metric function $d(x, y)$:
A closed ball of radius r and center $x \in S$ is defined as

$$
\bar{B}_{r}(x)=\{y \in R, d(x, y) \leq r\} .
$$

An open ball of radius r and center $x \in S$ is defined as

$$
\bar{B}_{r}(x)=\{y \in R, d(x, y)<r\} .
$$

A sphere of radius r and center $x \in S$ is defined as

$$
S_{r}(x)=\{y \in R, d(x, y)=r\} .
$$

Example. Metrics on R^{n} :

1. Euclidian metric $d_{E}(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\ldots+\left(x_{n}-y_{n}\right)^{2}}$.
2. Manhattan metric (or Taxi Cab metric) $d_{M}(x, y)=\left|x_{1}-y_{1}\right|+\ldots+$ $\left|x_{n}-y_{n}\right|$.
3. Maximum metric $d_{\max }(x, y)=\max \left(\left|x_{1}-y_{1}\right|, \ldots,\left|x_{n}-y_{n}\right|\right)$.

Some exotic metrics:
4. Discrete metric $d_{\text {disc }}(x, y)=0$ if $x=y$ and $d_{\text {disc }}(x, y)=1$ if $x \neq y$
5. British Rail metric $d_{B R}(x, y)=\|x\|+\|y\|$ if $x \neq y$ and $d_{B R}(x, x)=0$.
6. Hamming distance. Let S be the set of all 8 vertices of a cube, in coordinates

$$
S=\{(0,0,0),(0,0,1),(0,1,0),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)\}
$$

Hamming distance between two vertices is defined as the number of positions for which the corresponding symbols are different.

2 Norm

Let V be a vector space, say R^{n}. A norm is defined as a real valued function $\|-\|: V \rightarrow R, v \rightarrow\|v\|$, which satisfies the following conditions:
(i) positive definiteness $\|v\| \geq 0, \quad\|v\|=0 \Leftrightarrow v=0$;
(ii) positive homogeneity or positive scalability $\|r \cdot v||=|r| \cdot\|v\|$;
(iii) triangle inequality or subadditivity $\|v+w\| \leq\|v\|+\|w\|$.

Note that from (ii) follows that $\|O\|=0$ (here $O=(0, \ldots, 0)$), indeed, $\|O\|=\|0 \cdot x\|=|0| \cdot\|x\|=0$.

There is the following general weighted Euclidian norm on R^{n} which depends on parameters a_{1}, \ldots, a_{n} :

$$
\|x\|_{a_{1}, \ldots, a_{n}}=\sqrt{a_{1} \cdot x_{1}^{2}+\ldots+a_{n} \cdot x_{n}^{2}} .
$$

If each $a_{i}=1$, then this norm coincides with ordinary Euclidian norm

$$
\|x\|=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}}
$$

There is s series of norms which depend on parameter k :

$$
\|x\|_{k}=\sqrt[k]{\left|x_{1}\right|^{k}+\ldots+\left|x_{n}\right|^{k}}
$$

The norm $\|x\|_{2}$ coincides with Euclidian norm.

2.0.1 From Norm to Metric

Theorem 1 Any norm $\|x\|$ induces a metric by $d(x, y)=\|x-y\|$.
Proof. The condition (i) implies the condition (a): $d(x, y)=\|x-y\| \geq 0$; besides, if $x=y$ then $x-y=O$, thus $d(x, y)=$ $\|x-y\|=\|O\|=0$; conversely, suppose $d(x, y)=0$, thus $\|x-y\|=0$, then, according to (i) we obtain $x-y=O$, so $x=y$.

The condition (ii) implies (b):
$d(y, x)=\|y-x\|=\|(-1) \cdot(x-y)\|=|(-1)| \cdot\|x-y\|=\|x-y\|=d(x, y)$.
The condition(iii) implies (c):
$d(x, y)+d(y, z)=\|x-y\|+\|y-z\| \geq\|x-y+y-z\|=\|x-z\|=d(x, z)$.

2.0.2 From Metric to Norm

Conversely, some metrics on R^{n}, which fit with the vector space structure determine a norm.

Theorem 2 Suppose a metric $d(u, v)$ is given on a vector space V, and assume that the following two additional conditions are satisfied
(d) translation invariance $d(u, v)=d(u+w, v+w)$,
and
(e) homogeneity $d(k u, k v)=|k| \cdot d(u, v)$.

Then $\|v\|:=d(v, O)$ is a norm.
Proof. The condition (a) implies the condition (i): $\|v\|=d(v, O) \geq 0$; besides, suppose $\|v\|=0$, then $d(v, O)=0$, thus, according to (i) we obtain $v=O$.

The condition (e) implies the condition (ii):

$$
\|k \cdot v\|=d(k \cdot v, O)=d(k \cdot v, k \cdot O)=|k| \cdot d(v, O)=|k| \cdot\|v\| .
$$

The condition (d) implies the condition (iii):

$$
\begin{gathered}
\|v\|+\|w\|=d(v, O)+d(w, O)=d(v+w, O+w)+d(w, O)= \\
d(v+w, w)+d(w, O) \geq d(v+w, O)=\|v+w\|
\end{gathered}
$$

Examples.

The above metrics $1,2,3$ satisfy the properties (d) and (e) (prove this!), thus they determine the following norms on R^{n} : for a vector $x=\left(x_{1}, \ldots, x_{n}\right)$

1'. Euclidian norm $\|x\|_{E}=\sqrt{\left(x_{1}\right)^{2}+\ldots+\left(x_{n}\right)^{2}}$.
2'. Manhattan norm $\|x\|_{M}=\left|x_{1}\right|+\ldots+\left|x_{n}\right|$.
3'. Maximum norm $\|x\|_{\max }=\max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)$.
Note that $\|x\|_{E}=\|x\|_{2},\|x\|_{M}=\|x\|_{1}$ and in some sense $\|x\|_{\max }=$ $\|x\|_{\infty}$.

4'. The discrete metric $d_{\text {disc }}$ does not induce a norm.
Indeed, take $v \neq O$, then $\|2 \cdot v\|=d(2 \cdot v, O)=1 \neq 2=2 \cdot d(v, O)=2 \cdot\|v\|$.

2.1 Metric and Norm Induce Topology*

Any metric produces the notion of open ball. In its turn a notion of open ball produces the notion of open set, i.e.induces a topology.

Since any norm determines a metric, so it induces a topology too.

2.1.1 Equivalence of Norms*

Two norms $\|x\|$ and $\|x\|^{\prime}$ are called equivalent if there exist two positive scalars a and b such that

$$
a \cdot\|x\| \leq\|x\|^{\prime} \leq b \cdot\|x\|
$$

This is an equivalence relation on the set of all possible norms on R^{n}.
If two norms are equivalent, then they induce the same notions of open sets (same topology). In particular, if a sequence $\left\{a_{n}\right\}$ converges to the limit a with respect to the norm $\|-\|$ then this sequence converges to the same limit with respect to the equivalent norm $\|-\|^{\prime}$.

The three metrics $\|v\|_{\max },\|v\|_{E},\|v\|_{M}$ are equivalent. This is a result of following geometrical inequalities

$$
\begin{aligned}
& \|v\|_{\max } \leq\|v\|_{E} \leq\|v\|_{M} ; \\
& \|v\|_{E} \leq \sqrt{2}\|v\|_{\max } \\
& \|v\|_{M} \leq 2\|v\|_{\max } \\
& \|v\|_{M} \leq 2\|v\|_{E} .
\end{aligned}
$$

So all these three metrics induce the same topology.

3 Ordering

Reading
[Debreu], Ch.1.4, p.7-9
The set of real numbers R is ordered: $x>y$ if the difference $x-y$ is positive.

But what about the ordering on the plane R^{2} ? Well, we can say that the vector $(5,7) \in R^{n}$ is "bigger" than the vector $(1,2)$, but how can we compare the vectors $(1,2)$ and $(2,1)$?

Unfortunately (or fortunately) we do not have a canonical ordering on R^{n} for $n>1$. It is possible to consider various notions of ordering suitable for each particular problem.

3.1 Preorderings and Orderings

A partial preordering on a set X is a relation $x \geq y$ which satisfies the following conditions
(i) reflexivity: $\forall x \in X, x \geq x$;
(ii) transitivity: $\forall x, y, z \in X, x \geq y, y \geq z \Rightarrow x \geq z$.

A preordering is called total if additionally it satisfies
(iii) totality: $\forall x, y \in X$ either $x \geq y$ or $y \geq x$.

A (total) preordering is called (total) ordering if it satisfies additionally the condition
(iv) antisymmetricity: $x \geq y, \quad y \geq x \Rightarrow x=y$.

The above defined four notions: partial (total) (pre)ordering can be observed by the following diagram

where an arrow indicates implication.
Partially ordered sets are called posets.

3.1.1 Preorderings on R^{2}

1. Norm preordering:

$$
v=(x, y) \geq v^{\prime}=\left(x^{\prime}, y^{\prime}\right) \quad \text { if } \quad\|v\|=\sqrt{x^{2}+y^{2}} \geq\left\|v^{\prime}\right\|=\sqrt{x^{\prime 2}+y^{\prime 2}} .
$$

This is a total preordering. Why "pre"?
2. Product ordering: $(a, b) \leq(c, d)$ if $a \leq c$ and $b \leq d$. This is a partial ordering. Why "partial"?
3. Lexicographical ordering: $(a, b) \leq(c, d)$ if and only if $a<c$, but if $a=c$ then $b \leq d$. This is a total ordering. Why "total"?

3.1.2 Other Examples

1. The set of natural numbers N of course is ordered by the usual ordering " $m \geq n$ if $m-n$ is nonnegative".
2. There exists on N also the following partial ordering " $m \geq n$ if m is divisible by n " (" n divides m ", notation $n \mid b)$. For example $6 \geq 2,6 \geq 3$, but 6 and 4 are not comparable (thus "partial").
3. Let S be a set, the set of all its subsets is denoted by 2^{S}. Let us introduce on 2^{S} the following relation: for arbitrary subsets $A \subseteq S, B \subseteq S$ we say $B \leq A$ if $B \subseteq A$. This is a partial ordering. Why "partial"?
4. Consider on R^{3} the following relation:

$$
(x, y, z) \geq(a, b, c)
$$

if $x \geq a$ and $y \geq b$. This is partial preordering. Why "partial" and why "pre"?

3.1.3 Indifference Relation

Each preordering \geq defines indifference relation:

$$
x \sim y \text { if } x \geq y \text { and } y \geq x
$$

Theorem 3 The relation $x \sim y$ is an equivalence relation.
Proof. We show that the relation $x \sim y$ satisfies the axioms of equivalence:
(1) Reflexivity $x \sim x$;
(2) Symmetricity $x \sim y \Rightarrow y \sim x$;
(3) Transitivity $x \sim y, y \sim z \Rightarrow x \sim z$.

Indeed,
(1) Since of (i) $x \geq x$, thus $x \sim x$.
(2) Suppose $x \sim y$, then $x \geq y$ and $y \geq x$, thus $y \sim x$.
(3) Suppose $x \sim y$, this implies $x \geq y$ and $y \geq x$, and suppose $y \sim z$, this implies $y \geq z$ and $z \geq y$. Then since of (ii) we have

$$
x \geq y, y \geq z \Rightarrow x \geq z
$$

and

$$
z \geq y, y \geq x \Rightarrow z \geq x
$$

thus $x \sim z$.
The indifference set (or orbit) of an element $x \in X$ is defined as

$$
I(x)=\{y \in X, x \sim y\} .
$$

Since indifference relation is an equivalence, the indifference sets form a partition of X.

Examples.

1. If the starting relation \geq is an ordering then $x \sim y$ if and only if $x=y$. So the indifference sets are one point sets: $I(x)=\{x\}$.
2. For the norm preordering indifference sets are spheres centered at the origin: $I(x)=S_{|x|}(O)$.

3.1.4 Strict Preordering

Each preoredering \geq induces the strict preordering $>$ defined by: $x>y$ if $x \geq y$ but not $y \geq x$. Equivalently $x>y$ if $x \geq y$ and not $x \sim y$.

If a starting preoredering \geq is an ordering, then $x>y$ is defined as $x \geq y$ and $x \neq y$.

3.2 Maximal and Greatest

Let S be a partially preordered set.
An element $x \in S$ is called maximal if there exists no $y \in S$ such that $y>x$.

An element $x \in S$ is called minimal if there exists no $y \in S$ such that $y<x$.

An element $x \in S$ is called greatest if $x \geq y$ for all $y \in S$.
An element $x \in S$ is called least if $x \leq y$ for all $y \in S$.
Theorem 4 If S is an ordered set, then a greatest (least) element is unique.
Proof. Suppose x and x^{\prime} are greatest elements. Then $x \geq x^{\prime}$ since x is greatest, and $x^{\prime} \geq x$ since x^{\prime} is greatest. Thus, since S is an ordered set, we get $x=x^{\prime}$.

Theorem 5 A greatest element is maximal.
Proof. Suppose $x \in S$ is greatest, that is $x \geq y$ for all $y \in S$, but not maximal, that is $\exists y$ s.t. $y>x$. By definition of $>$ this means that $y \geq x$ but not $x \geq y$. The last contradicts to $x \geq y$.

Theorem 6 If a preordering is total, then a maximal element is greatest.
Proof. Suppose $x \in S$ is maximal, that is there exists no $y \in S$ such that $y>x$. Let us show that x is greatest, that is $x \geq z$ for each z. Indeed, since of totality ether $x \geq z$ or $z \geq x$. Suppose that x is not greatest, that is $x \geq z$ is not correct. Then $z \geq x$, but this, together with negation of $x \geq z$, implies $z>x$, which contradicts to maximality of x.

So when the preordering is total, there is no difference between maximal and greatest. Similarly for minimal and least.

Examples.

1. The set $\{1,2,3,4,5,6\}$ ordered by the partial ordering "divisible by" has three maximal elements $4,5,6$, no greatest element, one minimal element 1 and one least element 1 :

2. Let S be the set of all 8 vertices of a cube, in coordinates

$$
S=\{(0,0,0),(0,0,1),(0,1,0),(1,0,0),(0,1,1),(1,0,1),(1,1,0),(1,1,1)\} .
$$

Hamming ordering on S is defined as follows: $v \geq w$ if v contains more 1-s than w.

The least (minimal) element here is $(0,0,0)$ and greatest (maximal) element is $(1,1,1)$.
3. In the partially ordered set 2^{S} the least (minimal) element his the empty set and greatest (maximal) element is S.

3.3 Utility Function

A real valued function $U: X \rightarrow R$ is said to represent a preordering \geq if

$$
\forall x, y \in X, x \geq y \Leftrightarrow U(x) \geq U(y)
$$

In economics a preordering \geq is called preference preordering and a representing function U is called utility function.

The norm preordering:

$$
v=(x, y) \geq v^{\prime}=\left(x^{\prime}, y^{\prime}\right) \quad \text { if } \quad\|v\|=\sqrt{x^{2}+y^{2}} \geq\left\|v^{\prime}\right\|=\sqrt{x^{\prime 2}+y^{\prime 2}} .
$$

is represented by the utility function

$$
U(x, y)=\sqrt{x^{2}+y^{2}}
$$

or by the function $2 U(x, y)=2 \sqrt{x^{2}+y^{2}}$, or by $U^{2}(x, y)=x^{2}+y^{2}$, etc. These functions differ but all of them have the same indifference sets.

3.3.1 Equivalent Utility Functions

A given preordering can be represented by various functions. Two utility functions are called equivalent if they have same indifferent sets.

A monotonic transformation of an utility function U is the composition $g \circ U(x)=g(U(x))$ where g is a strictly monotonic function.

It is clear that an utility function U and any its monotonic transformation $g \circ U$ represent the same or opposite preordering, so they are equivalent.

Example. The functions

$$
3 x y+2, \quad(x y)^{3}, \quad(x y)^{3}+x y, \quad e^{x y}, \quad \ln x+\ln y
$$

all are monotonic transformations of the function $x y$: the corresponding monotonic transformations are respectively

$$
3 z+2, \quad z^{3}, \quad z^{3}+z, \quad e^{z}, \quad \ln z
$$

Exercises

1. Draw the balls $\bar{B}_{1}((0,0)), \bar{B}_{1}(1,1), \bar{B}_{2}(1,1)$ and $\bar{B}_{3}(1,1)$ for each of the following metrics

Euclidian metric $d_{E}(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}}$.
Manhattan metric $d_{M}(x, y)=\left|x_{1}-y_{1}\right|+\left|x_{2}-y_{2}\right|$.
Maximum metric $d_{\text {max }}(x, y)=\max \left(\left|x_{1}-y_{1}\right|,\left|x_{2}-y_{2}\right|\right)$.
British Rail metric $d_{B R}(x, y)=\|x\|+\|y\|$.
Discrete metric $d_{\text {disc }}(x, y)=0$ if $x=y$ and $d(x, y)=1$ if $x \neq y$
2. Show that the discrete metric $d_{\text {disc }}$ does not induce a norm.
3. For a vector $v=(x, y) \in R^{2}$ let us define $\|v\|_{\text {min }}=\min (|x|,|y|)$. Is this a norm?
4. Does the British rail metric $d_{B R}(x, y)$ satisfy the conditions
(d) translation invariance $d(u, v)=d(u+w, v+w)$, and
(e) homogeneity $d(k u, k v)=|k| \cdot d(u, v)$?

Does $d_{B R}$ induce a norm $\|x\|_{B R}=d_{B R}(x, O)$?
5. Give examples of (a) partial preordering, (b) total preordering, (c) partial ordering, (d) total ordering.
6. Is the relation defined on R^{2} by

$$
(x, y) \geq\left(x^{\prime}, y^{\prime}\right) \Leftrightarrow x \geq x^{\prime}, y \geq y^{\prime}
$$

a (a) partial preordering? (b) total preordering? (c) partial ordering? (d) total ordering?
7. What can you say about indifference sets of an ordering?
8. Draw indifference sets $I(0,0,0), I(1,1,1), I(2,2,2)$ in R^{3} for the preordering

$$
(x, y, z) \geq\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \Leftrightarrow\|(x, y, z)\|_{E} \geq\left\|\left(x^{\prime}, y^{\prime}, z^{\prime}\right)\right\|_{E}
$$

9. Draw indifference sets $I(0,0), I(1,1), I(2,2)$ in R^{2} for the preordering defined by Manhattan norm

$$
(x, y) \geq\left(x^{\prime}, y^{\prime}\right) \Leftrightarrow\|(x, y)\|_{M} \geq\left\|\left(x^{\prime}, y^{\prime}\right)\right\|_{M}
$$

10. Draw indifference sets $I(0,0), I(1,1), I(2,2)$ in R^{2} for the preordering defined by maximum norm

$$
(x, y) \geq\left(x^{\prime}, y^{\prime}\right) \Leftrightarrow\|(x, y)\|_{\max } \geq\left\|\left(x^{\prime}, y^{\prime}\right)\right\|_{\max }
$$

11. Suppose a set S has two greatest elements x and x^{\prime}. Show that $x \sim x^{\prime}$.
12. Find (draw) two sets

$$
S=\left\{(x, y) \in R^{2},(x, y) \leq(1,1)\right\}, \quad T=\left\{(x, y) \in R^{2},(1,1) \leq(x, y)\right\}
$$

where \leq assumes the product ordering of $R^{2}:(x, y) \leq\left(x^{\prime}, y^{\prime}\right)$ if $x \leq x^{\prime}, y \leq$ y^{\prime}.
13. Find (draw) two sets

$$
S=\left\{(x, y) \in R^{2},(x, y) \leq(1,1)\right\}, \quad T=\left\{(x, y) \in R^{2},(1,1) \leq(x, y)\right\}
$$

where \leq assumes the lexicographical ordering of R^{2}.
14. Find maximal, minimal, greatest, least elements of the set $S=$ $\{2,3,4,5,6,12\}$ with respect of the ordering " $a \leq b$ if $a \mid b "$ (a divides b).
15. Find maximal, minimal, greatest, least elements of the set $S=$ $\{(x, y), 0 \leq x \leq 1,0 \leq y \leq 1\}$ with respect to the product ordering of R^{2}.
16. Find maximal, minimal, greatest, least elements of the set $S=$ $\left\{(x, y), x^{2}+y^{2} \leq 1\right\}$ with respect to the product ordering of R^{2}.
17. Find maximal, minimal, greatest, least elements of the set $S=$ $\left\{(x, y), x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0\right\}$ with respect to the product ordering of R^{2}.
18. For each of the functions
(a) $3 x y+2$,
(b) $(x y)^{2}$,
(c) $(x y)^{3}+x y$,
(d) $e^{x y}$,
(e) $\ln x+\ln y$
(which are equivalent to $x y$) identify the level sets which correspond to the level sets $x y=1$ and $x y=4$. For example to the level set $x y=1$ corresponds the level set $3 x y+2=5$ for the function (a).
19. Which of the following functions are equivalent to $x y$? For those which are, what monotonic transformation provides this equivalence?
(a) $7 x^{2} y^{2}+2$, (b) $\ln x+\ln y+1$, (c) $x^{2} y$, (d) $x^{\frac{1}{3}} y^{\frac{1}{3}}$.

Homework

Exercises 3, 10, 13, 17, 19.

Short Summary

Metric and Norm

Axioms

	Metric		Norm						
a	$d(x, y) \geq 0$	i	$\\|v\\| \geq 0$						
	$d(x, y)=0$								
b	$d(x, y)=d(y, x) ;$		$\\|v\\|=0 \Leftrightarrow v=0 ;$						
c	$d(x, y)+d(y, z) \geq d(x, z) ;$	ii	$\\|r \cdot v\\|=\|r\| \cdot\\|v\\| ;$						
	iii	$\\|v+w\\| \leq\\|v\\|+\\|w\\|$.							

From Norm to Metric: $\quad d(x, y)=\|x-y\|$.
From Metric to Norm: $\|v\|:=d(v, O)$ if $d(x, y)$ additionally satisfies $d(u, v)=d(u+w, v+w)$ and $d(k u, k v)=|k| \cdot d(u, v)$.
Examples of Metrics.

1. Euclidian metric $d_{E}(x, y)=\sqrt{\left(x_{1}-y_{1}\right)^{2}+\ldots+\left(x_{n}-y_{n}\right)^{2}}$.
2. Manhattan metric (or Taxi Cab metric) $d_{M}(x, y)=\left|x_{1}-y_{1}\right|+\ldots+$ $\left|x_{n}-y_{n}\right|$.
3. Maximum metric $d_{\max }(x, y)=\max \left(\left|x_{1}-y_{1}\right|, \ldots,\left|x_{n}-y_{n}\right|\right)$.
4. Discrete metric $d_{\text {disc }}(x, y)=0$ if $x=y$ and $d_{\text {disc }}(x, y)=1$ if $x \neq y$
5. British Rail metric $d_{B R}(x, y)=\|x\|+\|y\|$ if $x \neq y$ and $d_{B R}(x, x)=0$.

Examples of Norms

1. $\|x\|_{a_{1}, \ldots, a_{n}}=\sqrt{a_{1} \cdot x_{1}^{2}+\ldots+a_{n} \cdot x_{n}^{2}}$.

If each $a_{i}=1$ this norm coincides with Euclidian norm

$$
\|x\|_{E}=\sqrt{x_{1}^{2}+\ldots+x_{n}^{2}} .
$$

2. Manhattan norm $\|\left. x\right|_{M}=\left|x_{1}\right|+\ldots+\left|x_{n}\right|$.
3. Maximum norm $\|x\|_{\max }=\max \left(\left|x_{1}\right|, \ldots,\left|x_{n}\right|\right)$.
 $\|x\|_{1}$ and in some sense $\|x\|_{\max }=\|x\|_{\infty}$.

Short Summary

Orderings

Axioms

(i) reflexivity: $\forall x \in X, x \geq x$;
(ii) transitivity: $\forall x, y, z \in X, x \geq y, y \geq z \Rightarrow x \geq z$.
(iii) totality: $\forall x, y \in X$ either $x \geq y$ or $y \geq x$.
(iv) antisymmetricity: $x \geq y, \quad y \geq x \Rightarrow x=y$.

Examples

1. Norm total preordering on R^{2} :

$$
v=(x, y) \geq v^{\prime}=\left(x^{\prime}, y^{\prime}\right) \quad \text { if } \quad\|v\|=\sqrt{x^{2}+y^{2}} \geq\left\|v^{\prime}\right\|=\sqrt{x^{\prime 2}+y^{\prime 2}} .
$$

2. Product partial ordering on $R^{2}:(a, b) \leq(c, d)$ if $a \leq c$ and $b \leq d$.
3. Lexicographical total ordering on $R^{2}:(a, b) \leq(c, d)$ if and only if $a<c$, but if $a=c$ then $b \leq d$.
4. Standard total ordering on $N: " m \geq n$ if $m-n$ is nonnegative".
5. Divisibility partial ordering on $N: m \geq n$ if $n \mid b$.
6. Standard partial ordering on $2^{S}: B \leq A$ if $B \subseteq A$.
7. Partial preordering on $R^{3}:(x, y, z) \geq(a, b, c)$ if $x \geq a$ and $y \geq b$.

Indifference Relation: $x \sim y$ if $x \geq y$ and $y \geq x$. The indifference set (orbit) of $x: I(x)=\{y \in X, x \sim y\}$. For an ordering $x \sim y$ iff $x=y$ and $I(x)=\{x\}$.

Strict Preordering: $x>y$ if $x \geq y$ but not $y \geq x$.
Greatest and Maximal.
$x \in S$ is maximal if there exists no $y \in S$ s.t. $y>x$.
$x \in S$ is greatest if $x \geq y$ for all $y \in S$.
Greatest is always maximal.
If a preordering is total, then maximal is greatest.
If S is an ordered set, then a greatest element is unique.
A utility function $f: S \rightarrow R$ determines a total (pre) ordering $x \leq y$ if $f(x) \leq f(y)$.

