[SB], Ch. 13, p. 273-299

1 Functions

A function (map, transformation) from the set X (domain) to the set Y (codomain, or target)

$$
f: X \rightarrow Y
$$

is a rule that assigns to each element $x \in X$ one element $f(x) \in Y$.
The image of f is the set of all elements $y \in Y$ that correspond to some x :

$$
\operatorname{Im} f=\{y \in Y, y=f(x)\}
$$

For an element $y \in Y$ its preimage $f^{-1}(y)$ is the set of all elements $x \in X$ such that $f(x)=y$.

More generally, let $V \subset Y$ be a subset of target. The preimage of V is defined as

$$
f^{-1}(V)=\{x \in X, f(x) \in V\} .
$$

Example. For the function $f: R \rightarrow R$ defined by $f(x)=x^{2}$

$$
\begin{gathered}
\operatorname{Im} f=[0,+\infty), \quad f^{-1}(4)=\{-2,2\}, \quad f^{-1}(0)=\{0\}, \quad f^{-1}(-9)=\emptyset \\
f^{-1}([0,9])=[-3,+3], \quad f^{-1}((2,9))=(-3,-\sqrt{2}) \cup(\sqrt{2}, 3) .
\end{gathered}
$$

1.0.1 Functions $R^{n} \rightarrow R$

In the first miniterm we studied elementary calculus which deals with functions of a single variable. However, most functions which arise in economics involve more than one variable.

Examples.

1. The area of a rectangle with dimensions x and y is a function of two variables $S: R^{2} \rightarrow R$ given by quadratic function

$$
S(x, y)=x y
$$

The perimeter of this rectangle is a linear function of two variables $P: R^{2} \rightarrow$ R given by

$$
P(x, y)=2 x+2 y .
$$

2. The volume of a box with dimensions x, y, z is a function of three variables $V: R^{3} \rightarrow R$ given by cubical function

$$
V(x, y, z)=x y z
$$

The area of the surface is a quadratic function of three variables

$$
S(x, y, z)=2 x y+2 x z+2 y z
$$

3. The amount A is a function of three variables: P-principal, r-annual rate, t-time in years. The function $A: R^{3} \rightarrow R$ is given by

$$
A(P, r, t)=P(1+r t) .
$$

4. For a demand functions $q=f(p)$ the quantity demanded q is a function of one variable: its own price p.

In reality the demanded quantity depends also on the prices of other goods in the market and on income y :

$$
q_{1}=f\left(p_{1}, p_{2}, y\right)
$$

A concrete example is the constant elasticity demand function

$$
q_{1}=f\left(p_{1}, p_{2}, y\right)=k_{1} p_{1}^{a_{11}} p_{2}^{a_{12}} y^{b_{1}}
$$

where a_{11}, a_{12}, b_{1} are elasticities.
5. Another example of multivariable function in economics is production function. Consider a firm which uses n inputs to produce a single output. For $i=1, \ldots, n$, let x_{i} denote the amount of input i. The vector $\left(x_{1}, \ldots, x_{n}\right)$ is called an input bundle. The firm's production function assigns to each input bundle $\left(x_{1}, \ldots, x_{n}\right)$ the amount of output $y=f\left(x_{1}, \ldots, x_{n}\right)$.
6. One more example is a utility function. Consider an economy with k commodities. Let x_{i} denote the amount of commodity i. The vector $\left(x_{1}, \ldots, x_{k}\right) \in R^{k}$ is called a commodity bundle.

Suppose two bundles $x=\left(x_{1}, \ldots, x_{k}\right)$ and $x^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$ are given.
Is it possible to say which from these two bundles is preferable?
There is clear ordering on R, we know that $5>3,7>1$. Also we can say $(5,3)>(2,1)$ in R^{2}, but what about $(5,3)$ and $(3,5)$? There is no canonical ordering (preference) on R^{n} for $n>1$. Often the preference depends on the context of the problem. Good way to introduce some preference relation on R^{n} is so called utility function.

A utility function is a function $u: R^{k} \rightarrow R$ which assigns to a commodity bundle $\left(x_{1}, \ldots, x_{k}\right)$ a number $u\left(x_{1}, \ldots, x_{k}\right)$ which measures the consumer's
degree of satisfaction or utility with the given commodity bundle. Utility function determines preferences: a commodity bundle $x=\left(x_{1}, \ldots, x_{k}\right)$ is preferred to another bundle $x^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$ if

$$
u\left(x_{1}, \ldots, x_{k}\right)>u\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)
$$

and x and x^{\prime} are called indifferent if $u\left(x_{1}, \ldots, x_{k}\right)=u\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$.

1.0.2 Functions $R^{m} \rightarrow R^{n}$

A function $F: R^{m} \rightarrow R^{n}$ in fact is a collection of n real valued functions $\left\{f_{i}: R^{m} \rightarrow R, i=1,2, \ldots, n\right\}:$

$$
F\left(x_{1}, \ldots, x_{m}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{m}\right)\right)
$$

Examples.

1. If the firm uses three inputs to produce two outputs, we need two separate production functions $q_{1}=f_{1}\left(x_{1}, x_{2}, x_{3}\right)$ and $q_{2}=f_{2}\left(x_{1}, x_{2}, x_{3}\right)$. In this case, we can write $q=\left(q_{1}, q_{2}\right) \in R^{2}$ as an output bundle for this firm and summarize the firm's activities by a function $F: R^{3} \rightarrow R^{2}$:

$$
F\left(x_{1}, x_{2}, x_{3}\right)=\left(f_{1}\left(x_{1}, x_{2}, x_{3}\right), f_{2}\left(x_{1}, x_{2}, x_{3}\right)\right) .
$$

2. The constant elasticity demand function for two goods looks as

$$
Q\left(p_{1}, p_{2}, y\right)=\left(k_{1} p_{1}^{a_{11}} p_{2}^{a_{12}} y^{b_{1}}, k_{2} p_{1}^{a_{21}} p_{2}^{a_{22}} y^{b_{2}}\right)
$$

1.1 Special Kinds of Functions

1.1.1 Linear Function $R^{k} \rightarrow R^{m}$

A linear function $f: R^{k} \rightarrow R^{m}$ is a function that preserves the vector space structure

$$
f(x+y)=f(x)+f(y), \quad f(k x)=k f(x) .
$$

Such a function is determined by a $m \times k$ matrix

$$
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 k} \\
\ldots & \ldots & \ldots \\
a_{m 1} & \ldots & a_{m k}
\end{array}\right)
$$

and $f(x)=A \cdot x$ where $x \in R^{k}$ and $f(x) \in R^{m}$ are written as column vectors. If you remember the i-th column of A is the column vector $f\left(e_{i}\right)$ where e_{i} is the i-th ort.

Examples.

1. A linear function $f: R \rightarrow R$ has the form

$$
f(x)=a x
$$

2. A linear function $f: R^{n} \rightarrow R$ has the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=a_{1} x_{1}+\ldots+a_{n} x_{n}
$$

in fact this is the inner product

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(a_{1}, \ldots, a_{n}\right) \cdot\left(x_{1}, \ldots, x_{n}\right)
$$

3. A linear function $f: R^{2} \rightarrow R^{2}$ is determined by a matrix $\left(\begin{array}{cc}a_{11} & a_{1,2} \\ a_{21} & a_{22}\end{array}\right)$,

$$
f\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}
a_{11} & a_{1,2} \\
a_{21} & a_{22}
\end{array}\right) \cdot\binom{x_{1}}{x_{2}} .
$$

From this expression easily follows that $f(1,0)=\left(a_{11}, a_{21}\right)$ and $f(0,1)=$ $\left(a_{12}, a_{22}\right)$, so the column vectors of the matrix are images of basis vectors $(1,0)$ and $(0,1)$ (orts).
4. Let $f: R^{2} \rightarrow R^{2}$ be the linear map which is rotation of the plane by 90° clockwise. Thus

$$
f(1,0)=(0,-1), \quad f(0,1)=(1,0)
$$

so the matrix of this linear map is $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.

1.1.2 Quadratic Forms

A quadratic function $f: R \rightarrow R$ has the form $f(x)=a \cdot x^{2}$. Generalization of this notion to two variables is the quadratic form

$$
Q\left(x_{1}, x_{2}\right)=a_{11} x_{1}^{2}+a_{12} x_{1} x_{2}+a_{21} x_{2} x_{1}+a_{22} x_{2}^{2} .
$$

Here each term has degree 2 (the sum of exponents is 2 for all summands).
A quadratic form of three variables looks as

$$
\begin{aligned}
f\left(x_{1}, x_{2}, x_{3}\right)= & \\
& a_{11} x_{1}^{2}+a_{12} x_{1} x_{2}+a_{13} x_{1} x_{3}+ \\
& a_{21} x_{2} x_{1}+a_{22} x_{2}^{2}+a_{23} x_{2} x_{3}+ \\
& a_{31} x_{1} x_{3}+a_{32} x_{3} x_{2}+a_{33} x_{3}^{3} .
\end{aligned}
$$

A general quadratic form of n variables is a real-valued function $Q: R^{n} \rightarrow$ R of the form

$$
Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\begin{array}{ccccccc}
a_{11} x_{1}^{2} & + & a_{12} x_{1} x_{2} & + & \ldots & + & a_{1 n} x_{1} x_{n}+ \\
a_{21} x_{2} x_{1} & + & a_{22} x_{2}^{2} & + & \ldots & + & a_{2 n} x_{2} x_{n}+ \\
\ldots & \ldots & \ldots & \ldots & & & \\
& a_{n 1} x_{n} x_{1} & + & a_{n 2} x_{n} x_{2} & + & \ldots & + \\
a_{n n} x_{n}^{2}
\end{array}
$$

In short $Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i, j}^{n} a_{i j} x_{i} x_{j}$.
As we see a quadratic form is determined by the matrix

$$
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\ldots \ldots \ldots \ldots . \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right) .
$$

1.1.3 Matrix Representation of Quadratic Forms

Let $Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i, j}^{n} a_{i j} x_{i} x_{j}$ be a quadratic form with matrix A. Easy to see that

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n}\right) \cdot\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\ldots \ldots \ldots \ldots . \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
. . \\
x_{n}
\end{array}\right) .
$$

Equivalently $Q(x)=x^{T} \cdot A \cdot x$.
Example. The quadratic form $Q\left(x_{1}, x_{2}, x_{3}\right)=5 x_{1}^{2}-10 x_{1} x_{2}+x_{2}^{2}$ whose symmetric matrix is $A=\left(\begin{array}{cc}5 & -5 \\ -5 & 1\end{array}\right)$ is the product of three matrices

$$
\left(x_{1}, x_{2}, x_{3}\right) \cdot\left(\begin{array}{cc}
5 & -5 \\
-5 & 1
\end{array}\right) \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

1.1.4 Symmetrization of matrix

The quadratic form $Q\left(x_{1}, x_{2}, x_{3}\right)=5 x_{1}^{2}-10 x_{1} x_{2}+x_{2}^{2}$ can be represented by each of following 2×2 matrix

$$
\left(\begin{array}{cc}
5 & -2 \\
-8 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
5 & -3 \\
-7 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
5 & -5 \\
-5 & 1
\end{array}\right)
$$

the last one is symmetric: $a_{i j}=a_{j i}$.
Theorem 1 Any quadratic form can be represented by symmetric matrix.
Indeed, if $a_{i j} \neq a_{j i}$ we replace them by new $a_{i j}^{\prime}=a_{j i}^{\prime}=\frac{a_{i j}+a_{j i}}{2}$, this does not change the corresponding quadratic form. Generally the symmetrized matrix A^{\prime} in fact is $A^{\prime}=\frac{A+A^{T}}{2}$.

1.1.5 Polynomials

A monomial is a function $f: R^{k} \rightarrow R$ of the form

$$
f\left(x_{1}, \ldots, x_{k}\right)=c x_{1}^{a_{1}} \cdot \ldots \cdot x_{k}^{a_{k}}
$$

the sum $a_{1}+\ldots+a_{k}$ is called the degree of monomial.
A polynomial is the finite sum of monomials. The degree of polynomial is the highest degree of it's monomials.

1.1.6 Continuous Functions

A function $F: R^{k} \rightarrow R^{M}$ is continuous at x_{0} if whenever a sequence $\left\{x_{n}\right\}$ converges to x_{0}, the sequence $\left\{F\left(x_{n}\right)\right\}$ converges to $F\left(x_{0}\right)$.

1.2 General Notions About Functions

1.2.1 Surjections, Injections, Bijections

A function $f: X \rightarrow Y$ is called surjective (onto) if for each $y \in Y$ there exists $x \in X$ such that $f(x)=y$.

A function $f: X \rightarrow Y$ is called injective (one-to-one) if

$$
f\left(x_{1}\right)=f\left(x_{2}\right) \quad \Rightarrow \quad x_{1}=x_{2} .
$$

A function is called bijection if it is a surjection and injection simultaneously.

In other words:
f is a surjection if the equation $f(x)=y$ has at least one solution;
f is an injection if the equation $f(x)=y$ has at most one solution.
f is bijection if the equation $f(x)=y$ has exactly one solution.

1.2.2 Composition of Functions

Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. The composition $g \circ f: X \rightarrow Z$ is defined by $g \circ f(x)=g(f(x)$.

Example
The function $h: R^{2} \rightarrow R, h(x, y)=\left(x^{2} y\right)^{3}+x^{2} y$ is the composition $h=f \circ g: R^{2} \xrightarrow{g} R \xrightarrow{f} R$ with $g(x, y)=x^{2} y$ and $f(z)=z^{3}+z$.

But not only: $h=F \circ G: R^{2} \xrightarrow{G} R^{2} \xrightarrow{F} R$ with $G(x, y)=\left(x^{2}, y\right)$ and $F(u, v)=(u v)^{3}+u v$.

1.2.3 Inverse Function

When $f: X \rightarrow Y$ is bijective, there is an inverse function $g: Y \rightarrow X$ which assigns to $y \in Y$ the unique element $g(y)=x$ such that $f(x)=y$.

It is clear that $g \cdot f(x)=x$ and $f \cdot g(y)=y$ for arbitrary x and y in this case.

More explicitly, let

$$
f: X \rightarrow Y \quad g: Y \rightarrow X
$$

g is left inverse of f iff $g \circ f=i d_{X}$.
g is right inverse of f iff $f \circ g=i d_{Y}$.
g is inverse of f iff $g \circ f=i d_{X}$ and $f \circ g=i d_{Y}$.
f is injective iff it has a left inverse.
f is surjective iff it has a right inverse.
f is bijective iff it has the inverse.

Example

Consider the function given by $f(x)=\sqrt{x-1}$.
Domain: $x-1 \geq 0, \quad x \geq 1, \quad x \in[1,+\infty]$.
Range: $y \geq 0, \quad y \in[0,+\infty)$.
So $f:[1,+\infty) \rightarrow[0,+\infty)$ is surjective. Is it injective? Yes:
Suppose $f\left(x_{1}\right)=f\left(x_{2}\right)$, i.e. $\sqrt{x_{1}-1}=\sqrt{x_{2}-1}$, then squaring both sides $x_{1}-1=x_{2}-1$ thus $x_{1}=x_{2}$.

Inverse: solve x from $y=f(x)$: $y=\sqrt{x-1}, \quad y^{2}=x-1, \quad x=y^{2}+1$ so the inverse function is $g(y)=y^{2}+1$.

Exercises

1. Draw a significant number of level curves and the graphs of the following functions:
a) $z=x^{2}+y^{2}$; b) $z=-y^{2}-x^{2}$;
c) $z=x^{2}-y^{2} ; \quad$ d) $z=x \cdot y$;
e) $z=y^{2}$;
f) $z=x^{2}$;
g) $\left.z=(y-x)^{2} ; \quad h\right) z=(x-y)^{2}$.
2. Sketch each of the following parameterized curves:
a) $f(t)=(4-2 t, 1+t)$;
b) $f(t)=\left(t^{2}, t^{2}+2\right)$;
c) $f(t)=(\sqrt{t}, 1-t)$.
3. Write the following linear functions in matrix form
(a) $f: R^{3} \rightarrow R$ given by $f\left(x_{1}, x_{2}, x_{3}\right)=2 x_{1}-3 x_{2}+5 x_{3}$.
(b) $f: R^{2} \rightarrow R^{\text {? }}$ given by $f\left(x_{1}, x_{2}\right)=\left(2 x_{1}-3 x_{2}, x_{1}-4 x_{2}, x_{1}\right)$.
(c) $f: R^{?} \rightarrow R^{?}$ given by $f\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}-x_{3}, 2 x_{1}+3 x_{2}-6 x_{3}, x_{3}-2 x_{2}\right)$.
4. Write the following quadratic functions in matrix form
(a) $x_{1}^{2}-2 x_{1} x_{2}+x_{2}^{2}$;
(b) $5 x_{1}^{2}-10 x_{1} x_{2}-x_{2}^{2}$
(c) $x_{1}^{2}+2 x_{2}^{2}+3 x_{3}^{2}+4 x_{1} x_{2}-6 x_{1} x_{3}+8 x 2 x_{3}$.
5. For each of the following functions, what is the domain and image of f ? Which of them are one-to-ones (injective)? For those that are one-to one, write the inverse function. Which of them are onto (surjective) on R ?
a) $f(x)=3 x-7$;
b) $f(x)=x^{2}-1$;
c) $f(x)=e^{x}$;
d) $f(x)=x^{3}-x$;
e) $f(x)=\frac{x}{x^{2}+1}$;
f) $f(x)=x^{3}$;
g) $f(x)=\frac{1}{x}$;
h) $f(x)=\sqrt{x-1}$;
i) $f(x)=\ln x$.
6. For each of the following function, write h as a composition of two functions f and g :
a) $h(x)=\log \left(x^{2}+1\right)$;
b) $h(x)=(\sin x)^{2}$;
c) $h(x)=\left(\cos x^{3}, \sin x^{3}\right)$;
d) $h(x, y)=\left(x^{2} y\right)^{3}+x^{2} y$.
7. Evaluate the integrals using two methods, that is $d x d y$ and $d y d x$
$\int_{y=1}^{2} \int_{x=0}^{3}(1-8 x y) d x d y$
$\iint_{R}(4-x-y) d x d y$ where $R=\{(x, y), x \in[0,1], y \in[0,2]\}$
$\iint_{R} y^{2} x d x d y$ where R is the area between the graphs of $y=x^{2}$ and $y=x$.

Homework

13.1(b), 13.11(c), 13.12(c), 13.23(i) from [SB],

Evaluate the integrals
$\iint_{R}(4-x-y) d x d y$ where $R=\{(x, y), x \in[-1,1], y \in[0,2]\}$
$\iint_{R} y^{2} x d x d y$ where R is the area between the graphs of $y=x^{2}$ and $y=2 x$.

Short Summary
 Maps

For a function (map) $f: X \rightarrow Y$:
Image $\operatorname{Im} f=\{y \in Y, y=f(x)\}$.
Preimage $f^{-1}(V)=\{x \in X, f(x) \in V\}$.
A Function $F: R^{m} \rightarrow R^{n}: F\left(x_{1}, \ldots, x_{m}\right)=\left(f_{1}\left(x_{1}, \ldots, x_{m}\right), \ldots, f_{n}\left(x_{1}, \ldots, x_{m}\right)\right)$.
A linear function $F: R^{k} \rightarrow R^{m}$:

$$
F(x)=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 k} \\
\ldots & \ldots & \ldots \\
a_{m 1} & \ldots & a_{m k}
\end{array}\right) \cdot\left(\begin{array}{c}
x_{1} \\
\ldots \\
x_{k}
\end{array}\right) . \operatorname{Here}\left(\begin{array}{c}
a_{1 i} \\
\ldots \\
a_{m i}
\end{array}\right)=F\left(e_{i}\right) .
$$

Quadratic Forms

$Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i, j}^{n} a_{i j} x_{i} x_{j}=\left(x_{1}, \ldots, x_{n}\right) \cdot\left(\begin{array}{ccc}a_{11} & \ldots & a_{1 n} \\ \ldots \ldots \ldots \ldots . \\ a_{n 1} & \ldots & a_{n n}\end{array}\right) \cdot\left(\begin{array}{c}x_{1} \\ . \\ x_{n}\end{array}\right)=x^{T} \cdot A \cdot x$
A is symmetric. If not, take its symmetrization $A^{\prime}=\frac{A+A^{T}}{2}$.
Monomial of degree $a_{1}+\ldots+a_{k}: f\left(x_{1}, \ldots, x_{k}\right)=c x_{1}^{a_{1}} \cdot \ldots \cdot x_{k}^{a_{k}}$.
A polynomial is the finite sum of monomials. The degree of polynomial is the highest degree of it's monomials.

A function $F: R^{k} \rightarrow R^{M}$ is continuous at x_{0} if $\lim _{n \rightarrow \infty} x_{n}=x_{0} \Rightarrow$ $\lim _{n \rightarrow \infty} F\left(x_{n}\right)=F\left(x_{0}\right)$.

Surjections, Injections, Bijections

A function $f: X \rightarrow Y$ is;
Surjective if $\forall y \in Y \exists x \in X$ s.t. $f(x)=y$.
Injective if $f\left(x_{1}\right)=f\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$.
Bijective if it is a surjection and injection simultaneously.
In other words:
f is a surjection if $f(x)=y$ has at least one solution;
f is an injection if $f(x)=y$ has at most one solution.
f is bijection if $f(x)=y$ has exactly one solution.

Composition of Functions

For $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ the composition $g f: X \rightarrow Z$ is defined by $g \cdot f(x)=g(f(x)$.

Inverse Function

Let $f: X \rightarrow Y \quad g: Y \rightarrow X$.
g is left inverse of f iff $g \circ f=i d_{X}$.
g is right inverse of f iff $f \circ g=i d_{Y}$.
g is inverse of f iff $g \circ f=i d_{X}$ and $f \circ g=i d_{Y}$.
f is injective iff it has a left inverse.
f is surjective iff it has a right inverse.
f is bijective iff it has the inverse.

