[SB], Ch. 13, p. 273-299

1 Functions

A function (map, transformation) from the set X (domain) to the set Y (codomain, or target)

 $f: X \to Y$

is a rule that assigns to each element $x \in X$ one element $f(x) \in Y$.

The image of f is the set of all elements $y \in Y$ that correspond to some x:

$$Im \ f = \{ y \in Y, y = f(x) \}.$$

For an element $y \in Y$ its preimage $f^{-1}(y)$ is the set of all elements $x \in X$ such that f(x) = y.

More generally, let $V \subset Y$ be a subset of target. The preimage of V is defined as

$$f^{-1}(V) = \{x \in X, f(x) \in V\}.$$

Example. For the function $f: R \to R$ defined by $f(x) = x^2$

$$Im \ f = [0, +\infty), \quad f^{-1}(4) = \{-2, 2\}, \quad f^{-1}(0) = \{0\}, \quad f^{-1}(-9) = \emptyset,$$
$$f^{-1}([0, 9]) = [-3, +3], \quad f^{-1}((2, 9)) = (-3, -\sqrt{2}) \cup (\sqrt{2}, 3).$$

1.0.1 Functions $R^n \to R$

In the first miniterm we studied elementary calculus which deals with functions of a single variable. However, most functions which arise in economics involve more than one variable.

Examples.

1. The area of a rectangle with dimensions x and y is a function of two variables $S: \mathbb{R}^2 \to \mathbb{R}$ given by *quadratic* function

$$S(x,y) = xy.$$

The perimeter of this rectangle is a *linear* function of two variables $P: \mathbb{R}^2 \to \mathbb{R}$ given by

$$P(x,y) = 2x + 2y.$$

2. The volume of a box with dimensions x, y, z is a function of three

variables $V: \mathbb{R}^3 \to \mathbb{R}$ given by *cubical* function

$$V(x, y, z) = xyz.$$

The area of the surface is a *quadratic* function of three variables

$$S(x, y, z) = 2xy + 2xz + 2yz.$$

3. The amount A is a function of three variables: P-principal, r-annual rate, t-time in years. The function $A: \mathbb{R}^3 \to \mathbb{R}$ is given by

$$A(P,r,t) = P(1+rt).$$

4. For a demand functions q = f(p) the quantity demanded q is a function of one variable: its own price p.

In reality the demanded quantity depends also on the prices of other goods in the market and on income y:

$$q_1 = f(p_1, p_2, y).$$

A concrete example is the constant elasticity demand function

$$q_1 = f(p_1, p_2, y) = k_1 p_1^{a_{11}} p_2^{a_{12}} y^{b_1},$$

where a_{11} , a_{12} , b_1 are elasticities.

5. Another example of multivariable function in economics is production function. Consider a firm which uses n inputs to produce a single output. For i = 1, ..., n, let x_i denote the amount of input i. The vector $(x_1, ..., x_n)$ is called an *input bundle*. The firm's production function assigns to each input bundle $(x_1, ..., x_n)$ the amount of output $y = f(x_1, ..., x_n)$.

6. One more example is a *utility function*. Consider an economy with k commodities. Let x_i denote the amount of commodity i. The vector $(x_1, ..., x_k) \in \mathbb{R}^k$ is called a *commodity bundle*.

Suppose two bundles $x = (x_1, ..., x_k)$ and $x' = (x'_1, ..., x'_k)$ are given.

Is it possible to say which from these two bundles is preferable?

There is clear ordering on R, we know that 5 > 3, 7 > 1. Also we can say (5,3) > (2,1) in R^2 , but what about (5,3) and (3,5)? There is no canonical ordering (preference) on R^n for n > 1. Often the preference depends on the context of the problem. Good way to introduce some preference relation on R^n is so called *utility function*.

A utility function is a function $u: \mathbb{R}^k \to \mathbb{R}$ which assigns to a commodity bundle $(x_1, ..., x_k)$ a number $u(x_1, ..., x_k)$ which measures the consumer's degree of satisfaction or utility with the given commodity bundle. Utility function determines preferences: a commodity bundle $x = (x_1, ..., x_k)$ is *pre-ferred* to another bundle $x' = (x'_1, ..., x'_k)$ if

$$u(x_1, ..., x_k) > u(x'_1, ..., x'_k),$$

and x and x' are called *indifferent* if $u(x_1, ..., x_k) = u(x'_1, ..., x'_k)$.

1.0.2 Functions $R^m \rightarrow R^n$

A function $F : \mathbb{R}^m \to \mathbb{R}^n$ in fact is a collection of n real valued functions $\{f_i : \mathbb{R}^m \to \mathbb{R}, i = 1, 2, ..., n\}$:

$$F(x_1, ..., x_m) = (f_1(x_1, ..., x_m), ..., f_n(x_1, ..., x_m)).$$

Examples.

1. If the firm uses three inputs to produce two outputs, we need two separate production functions $q_1 = f_1(x_1, x_2, x_3)$ and $q_2 = f_2(x_1, x_2, x_3)$. In this case, we can write $q = (q_1, q_2) \in \mathbb{R}^2$ as an output bundle for this firm and summarize the firm's activities by a function $F : \mathbb{R}^3 \to \mathbb{R}^2$:

$$F(x_1, x_2, x_3) = (f_1(x_1, x_2, x_3), f_2(x_1, x_2, x_3)).$$

2. The constant elasticity demand function for two goods looks as

$$Q(p_1, p_2, y) = (k_1 p_1^{a_{11}} p_2^{a_{12}} y^{b_1}, k_2 p_1^{a_{21}} p_2^{a_{22}} y^{b_2}).$$

1.1 Special Kinds of Functions

1.1.1 Linear Function $R^k \to R^m$

A linear function $f: R^k \to R^m$ is a function that preserves the vector space structure

$$f(x+y) = f(x) + f(y), \quad f(kx) = kf(x)$$

Such a function is determined by a $m \times k$ matrix

$$A = \left(\begin{array}{ccc} a_{11} & \dots & a_{1k} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mk} \end{array}\right)$$

and $f(x) = A \cdot x$ where $x \in \mathbb{R}^k$ and $f(x) \in \mathbb{R}^m$ are written as column vectors. If you remember the *i*-th column of A is the column vector $f(e_i)$ where e_i is the *i*-th ort.

Examples.

1. A linear function $f: R \to R$ has the form

$$f(x) = ax$$

2. A linear function $f: \mathbb{R}^n \to \mathbb{R}$ has the form

$$f(x_1, ..., x_n) = a_1 x_1 + ... + a_n x_n,$$

in fact this is the inner product

$$f(x_1, ..., x_n) = (a_1, ..., a_n) \cdot (x_1, ..., x_n).$$

3. A linear function $f: \mathbb{R}^2 \to \mathbb{R}^2$ is determined by a matrix $\begin{pmatrix} a_{11} & a_{1,2} \\ a_{21} & a_{22} \end{pmatrix}$, $f(x_1, x_2) = \begin{pmatrix} a_{11} & a_{1,2} \\ a_{21} & a_{22} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}.$

From this expression easily follows that $f(1,0) = (a_{11}, a_{21})$ and $f(0,1) = (a_{12}, a_{22})$, so the column vectors of the matrix are images of basis vectors (1,0) and (0,1) (orts).

4. Let $f:R^2\to R^2$ be the linear map which is rotation of the plane by 90° clockwise. Thus

$$f(1,0) = (0,-1), \quad f(0,1) = (1,0),$$

so the matrix of this linear map is $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

1.1.2 Quadratic Forms

A quadratic function $f: R \to R$ has the form $f(x) = a \cdot x^2$. Generalization of this notion to two variables is the quadratic form

$$Q(x_1, x_2) = a_{11}x_1^2 + a_{12}x_1x_2 + a_{21}x_2x_1 + a_{22}x_2^2.$$

Here each term has degree 2 (the sum of exponents is 2 for all summands).

A quadratic form of three variables looks as

$$f(x_1, x_2, x_3) = a_{11}x_1^2 + a_{12}x_1x_2 + a_{13}x_1x_3 + a_{21}x_2x_1 + a_{22}x_2^2 + a_{23}x_2x_3 + a_{31}x_1x_3 + a_{32}x_3x_2 + a_{33}x_3^3.$$

A general quadratic form of n variables is a real-valued function $Q:R^n\to R$ of the form

In short $Q(x_1, x_2, ..., x_n) = \sum_{i,j}^n a_{ij} x_i x_j$.

As we see a quadratic form is determined by the matrix

$$A = \left(\begin{array}{c} a_{11} \dots a_{1n} \\ \dots \\ a_{n1} \dots a_{nn} \end{array}\right).$$

1.1.3 Matrix Representation of Quadratic Forms

Let $Q(x_1, x_2, ..., x_n) = \sum_{i,j}^n a_{ij} x_i x_j$ be a quadratic form with matrix A. Easy to see that

$$Q(x_1, \dots, x_n) = (x_1, \dots, x_n) \cdot \begin{pmatrix} a_{11} \dots a_{1n} \\ \dots \\ a_{n1} \dots a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}.$$

Equivalently $Q(x) = x^T \cdot A \cdot x$.

Example. The quadratic form $Q(x_1, x_2, x_3) = 5x_1^2 - 10x_1x_2 + x_2^2$ whose symmetric matrix is $A = \begin{pmatrix} 5 & -5 \\ -5 & 1 \end{pmatrix}$ is the product of three matrices

$$(x_1, x_2, x_3) \cdot \begin{pmatrix} 5 & -5 \\ -5 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}.$$

1.1.4 Symmetrization of matrix

The quadratic form $Q(x_1, x_2, x_3) = 5x_1^2 - 10x_1x_2 + x_2^2$ can be represented by each of following 2×2 matrix

$$\left(\begin{array}{cc} 5 & -2 \\ -8 & 1 \end{array}\right), \quad \left(\begin{array}{cc} 5 & -3 \\ -7 & 1 \end{array}\right), \quad \left(\begin{array}{cc} 5 & -5 \\ -5 & 1 \end{array}\right)$$

the last one is symmetric: $a_{ij} = a_{ji}$.

Theorem 1 Any quadratic form can be represented by symmetric matrix.

Indeed, if $a_{ij} \neq a_{ji}$ we replace them by new $a'_{ij} = a'_{ji} = \frac{a_{ij} + a_{ji}}{2}$, this does not change the corresponding quadratic form. Generally the symmetrized matrix A' in fact is $A' = \frac{A+A^T}{2}$.

1.1.5 Polynomials

A monomial is a function $f: \mathbb{R}^k \to \mathbb{R}$ of the form

$$f(x_1, \dots, x_k) = cx_1^{a_1} \cdot \dots \cdot x_k^{a_k},$$

the sum $a_1 + \ldots + a_k$ is called the *degree* of monomial.

A *polynomial* is the finite sum of monomials. The degree of polynomial is the highest degree of it's monomials.

1.1.6 Continuous Functions

A function $F : \mathbb{R}^k \to \mathbb{R}^M$ is continuous at x_0 if whenever a sequence $\{x_n\}$ converges to x_0 , the sequence $\{F(x_n)\}$ converges to $F(x_0)$.

1.2 General Notions About Functions

1.2.1 Surjections, Injections, Bijections

A function $f : X \to Y$ is called *surjective* (onto) if for each $y \in Y$ there exists $x \in X$ such that f(x) = y.

A function $f: X \to Y$ is called *injective* (one-to-one) if

$$f(x_1) = f(x_2) \quad \Rightarrow \quad x_1 = x_2.$$

A function is called *bijection* if it is a surjection and injection simultaneously.

In other words:

f is a surjection if the equation f(x) = y has at least one solution; f is an injection if the equation f(x) = y has at most one solution. f is bijection if the equation f(x) = y has exactly one solution.

1.2.2 Composition of Functions

Suppose $f : X \to Y$ and $g : Y \to Z$. The composition $g \circ f : X \to Z$ is defined by $g \circ f(x) = g(f(x))$.

Example

The function $h : R^2 \to R$, $h(x,y) = (x^2y)^3 + x^2y$ is the composition $h = f \circ g : R^2 \xrightarrow{g} R \xrightarrow{f} R$ with $g(x,y) = x^2y$ and $f(z) = z^3 + z$.

But not only: $h = F \circ G : \mathbb{R}^2 \xrightarrow{G} \mathbb{R}^2 \xrightarrow{F} \mathbb{R}$ with $G(x, y) = (x^2, y)$ and $F(u, v) = (uv)^3 + uv$.

1.2.3 Inverse Function

When $f: X \to Y$ is *bijective*, there is an *inverse* function $g: Y \to X$ which assigns to $y \in Y$ the unique element g(y) = x such that f(x) = y.

It is clear that $g \cdot f(x) = x$ and $f \cdot g(y) = y$ for arbitrary x and y in this case.

More explicitly, let

$$f: X \to Y \quad g: Y \to X.$$

g is left inverse of f iff $g \circ f = id_X$. g is right inverse of f iff $f \circ g = id_Y$. g is inverse of f iff $g \circ f = id_X$ and $f \circ g = id_Y$.

f is injective iff it has a left inverse.

f is surjective iff it has a right inverse.

f is bijective iff it has the inverse.

Example

Consider the function given by $f(x) = \sqrt{x-1}$. Domain: $x - 1 \ge 0$, $x \ge 1$, $x \in [1, +\infty]$. Range: $y \ge 0$, $y \in [0, +\infty)$.

So $f: [1, +\infty) \to [0, +\infty)$ is surjective. Is it injective? Yes: Suppose $f(x_1) = f(x_2)$, i.e. $\sqrt{x_1 - 1} = \sqrt{x_2 - 1}$, then squaring both sides $x_1 - 1 = x_2 - 1$ thus $x_1 = x_2$.

Inverse: solve x from y = f(x): $y = \sqrt{x-1}, y^2 = x-1, x = y^2+1$ so the inverse function is $g(y) = y^2+1$.

Exercises

1. Draw a significant number of level curves and the graphs of the following functions:

a)
$$z = x^2 + y^2$$
; b) $z = -y^2 - x^2$; c) $z = x^2 - y^2$; d) $z = x \cdot y$;
e) $z = y^2$; f) $z = x^2$; g) $z = (y - x)^2$; h) $z = (x - y)^2$.

2. Sketch each of the following parameterized curves:

a)
$$f(t) = (4 - 2t, 1 + t);$$
 b) $f(t) = (t^2, t^2 + 2); c) f(t) = (\sqrt{t}, 1 - t).$

3. Write the following linear functions in matrix form (a) $f: R^3 \to R$ given by $f(x_1, x_2, x_3) = 2x_1 - 3x_2 + 5x_3$. (b) $f: R^2 \to R^2$ given by $f(x_1, x_2) = (2x_1 - 3x_2, x_1 - 4x_2, x_1)$. (c) $f: R^2 \to R^2$ given by $f(x_1, x_2, x_3) = (x_1 - x_3, 2x_1 + 3x_2 - 6x_3, x_3 - 2x_2)$. 4. Write the following quadratic functions in matrix form

(a) $x_1^2 - 2x_1x_2 + x_2^2$; (b) $5x_1^2 - 10x_1x_2 - x_2^2$ (c) $x_1^2 + 2x_2^2 + 3x_3^2 + 4x_1x_2 - 6x_1x_3 + 8x_2x_3$.

5. For each of the following functions, what is the domain and image of f? Which of them are one-to-ones (injective)? For those that are one-to one, write the inverse function. Which of them are onto (surjective) on R?

a)
$$f(x) = 3x - 7;$$
 b) $f(x) = x^2 - 1;$ c) $f(x) = e^x;$
d) $f(x) = x^3 - x;$ e) $f(x) = \frac{x}{x^2 + 1};$ f) $f(x) = x^3;$
g) $f(x) = \frac{1}{x};$ h) $f(x) = \sqrt{x - 1};$ i) $f(x) = \ln x.$

5. For each of the following function, write h as a composition of two functions f and g:

a)
$$h(x) = log(x^2 + 1);$$
 b) $h(x) = (sin x)^2;$
c) $h(x) = (cos x^3, sin x^3);$ d) $h(x, y) = (x^2y)^3 + x^2y.$

6. Evaluate the integrals using two methods, that is dxdy and dydx $\int_{y=1}^{2} \int_{x=0}^{3} (1-8xy) dxdy$ $\int \int_{R} (4-x-y) dxdy$ where $R = \{(x,y), x \in [0,1], y \in [0,2]\}$ $\int \int_{R} y^{2}x dxdy$ where R is the area between the graphs of $y = x^{2}$ and y = x. **Homework**

13.1(b), 13.11(c), 13.12(c), 13.23(i) from [SB], Evaluate the integrals $\int \int_R (4-x-y) dx dy \text{ where } R = \{(x,y), x \in [-1,1], y \in [0,2]\}$ $\int \int_R y^2 x dx dy \text{ where } R \text{ is the area between the graphs of } y = x^2 \text{ and } y = 2x.$

Short Summary Maps

For a function (map) $f: X \to Y$: **Image** $Im f = \{y \in Y, y = f(x)\}$. **Preimage** $f^{-1}(V) = \{x \in X, f(x) \in V\}$.

A Function $F: \mathbb{R}^m \to \mathbb{R}^n: F(x_1, ..., x_m) = (f_1(x_1, ..., x_m), ..., f_n(x_1, ..., x_m)).$

A linear function $F: \mathbb{R}^k \to \mathbb{R}^m$:

$$F(x) = \begin{pmatrix} a_{11} & \dots & a_{1k} \\ \dots & \dots & \dots \\ a_{m1} & \dots & a_{mk} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \dots \\ x_k \end{pmatrix}. Here \begin{pmatrix} a_{1i} \\ \dots \\ a_{mi} \end{pmatrix} = F(e_i).$$

Quadratic Forms

$$Q(x_1, x_2, ..., x_n) = \sum_{i,j}^n a_{ij} x_i x_j = (x_1, ..., x_n) \cdot \begin{pmatrix} a_{11} \dots a_{1n} \\ \dots \\ a_{n1} \dots a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix} = x^T \cdot A \cdot x$$

A is symmetric. If not, take its symmetrization $A' = \frac{A+A^T}{2}$.

Monomial of degree $a_1 + ... + a_k$: $f(x_1, ..., x_k) = cx_1^{a_1} \cdot ... \cdot x_k^{a_k}$.

A **polynomial** is the finite sum of monomials. The degree of polynomial is the highest degree of it's monomials.

A function $F : \mathbb{R}^k \to \mathbb{R}^M$ is **continuous** at x_0 if $\lim_{n\to\infty} x_n = x_0 \Rightarrow \lim_{n\to\infty} F(x_n) = F(x_0)$.

Surjections, Injections, Bijections

A function $f: X \to Y$ is; Surjective if $\forall y \in Y \ \exists x \in X \ s.t. \ f(x) = y$. Injective if $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$. Bijective if it is a surjection and injection simultaneously.

In other words: f is a surjection if f(x) = y has at least one solution; f is an injection if f(x) = y has at most one solution. f is bijection if f(x) = y has exactly one solution.

Composition of Functions

For $f: X \to Y$ and $g: Y \to Z$ the composition $gf: X \to Z$ is defined by $g \cdot f(x) = g(f(x))$.

Inverse Function

Let $f: X \to Y \quad g: Y \to X$. g is left inverse of f iff $g \circ f = id_X$. g is right inverse of f iff $f \circ g = id_Y$. g is inverse of f iff $g \circ f = id_X$ and $f \circ g = id_Y$.

f is injective iff it has a left inverse.

f is surjective iff it has a right inverse.

f is bijective iff it has the inverse.