ISET MATH III Midterm

Problem 1. Find all values of k for which the 2 variable quadratic form $x^2 + 2kxy + y^2$ is

(a) positive definite; (b) negative definite; (c) positive semidefinite; (d) negative semidefinite; (e) indefinite. For each of your answer write corresponding matrix and verify definiteness using minors.

Answer

pos. (-1,1), neg. no, pos. semi[-1,1], neg. semi no, indef. $(-\infty,-1) \bigcup (1,+\infty)$

Problem 2. Consider the following constrained quadratic

 $Q(x, y, z) = x^{2} - z^{2} + 4xy$ subject to $5x + k \cdot y - k \cdot z = 0$.

(a) For warming up: Determine the definiteness of this constrained quadratic for k = 1.

Find all values of k for which the constrained quadratic is

(b) negative definite;

(c) positive definite;

(d) indefinite.

Answer

$$B = \begin{pmatrix} 0 & 5 & k & -k \\ 5 & 1 & 2 & 0 \\ k & 2 & 0 & 0 \\ -k & 0 & 0 & -1 \end{pmatrix}.$$
$$D_3 = -t^2 + 20t, \quad D_4 = 5t^2 - 20t.$$

- (a) for k = 1 $D_3 = 19$, $D_4 = -15$ so negative definite.
- (b) Our quadratic is negative definite if

$$\left\{ \begin{array}{c|c|c} D_3 > 0 & -t^2 + 20t > 0 \\ D_4 < 0 & 5t^2 - 20t < 0 \\ \end{array} \right| \begin{array}{c|c|c|c|c|c|} 0 < k < 20 \\ 0 < k < 4 \\ \end{array} \right| \begin{array}{c|c|c|c|c|} 0 < k < 4. \end{array}$$

(c) Our quadratic is positive definite if

$$\begin{cases} D_3 < 0 & | -t^2 + 20t < 0 & | k < 0, 20 < k \\ D_4 < 0 & 5t^2 - 20t < 0 & 0 < k < 4 & | \emptyset. \end{cases}$$

(d) Our quadratic is indefinite if D4 > 0, $5k^2 - 20k > 0$, k < 0 and 4 < k.

Problem 3. Let Q(x, y) be a 2-variable quadratic form and Ax + By = 0 be a linear constraint.

(i) Show that if Q(x, y) is positive definite, then its restriction on any linear constraint Ax + By = 0 is also positive definite.

(ii) Show that for indefinite quadratic form Q(x, y) the restriction on a linear constraint Ax + By = 0 can be (a) positive, (b) negative, (c) semipositive, (d) seminegative. Namely give an example of one indefinite quadratic form Q(x, y) and indicate various linear constraints Ax + By = 0 which realize the possibilities (a), (b), (c), (d).

Answer

(i) Consider the problem

$$Q(x_1, x_2) = ax_1^2 + 2bx_1x_2 + cx_2^2 = (x_1, x_2) \begin{pmatrix} a & b \\ b & c \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

subject to the linear constraint

$$Ax_1 + Bx_2 = 0.$$

Assume Q > 0, this means a > 0, $ac - b^2 > 0$, i.e. $ac > b^2$, thus $\sqrt{ac} > b$.

The definiteness of constrained form depends only on the sign if determinant of the (unique minor) bordered matrix

$$det \begin{pmatrix} 0 & A & B \\ A & a & b \\ B & b & c \end{pmatrix} = -(aB^2 - 2bAB + cA^2).$$

Now look:

$$aB^{2} - 2bAB + cA^{2} > aB^{2} - 2\sqrt{ac}AB + cA^{2} = (\sqrt{a}B - \sqrt{c}A)^{2} > 0.$$

Thus detH is negative, i.e. it has sign of $(-1)^1 = (-1)^m$, this gives the positivity.

(ii) Take, for example $Q(x, y) = x^2 - y^2$ (indefinite).

(a) Its restriction on the constraint $0 \cdot x + 1 \cdot y = 0$, i.e. on *x*-axes is $Q(x, 0) = x^2$ positive definite.

(b) The restriction on the constraint $1 \cdot x + 0 \cdot y = 0$, i.e. on the *y*-axes is $Q(0, y) = -y^2$ negative definite.

(c and d) The restriction on the constraint $1 \cdot x + y \cdot y = 0$, as well as on the constraint $1 \cdot x - y \cdot y = 0$ is Q(0, y) = (x - y)(x + y) = 0 identically zero, thus it is simultaneously positive and negative definite. **Problem 4.** Formulate a criteria for positive definiteness and negative definiteness of a quadratic form with n variables and n - 1 constraints.

Answer Here m = n - 1, so the following minors

$$M_{2m+1=2(n-1)+1=2n-1}, \dots, M_{m+n=n-1+n=2n-1},$$

are essential. So only the last minor $H = M_{2n-1}$. Thus, if the sign of detH is $(-1)^n$ then the constrained form is negative definite, if the sign of detH is $(-1)^{m=n-1}$ then positive definite.

Problem 5.

(i) Consider the curve (t^3, t) in \mathbb{R}^2 . (a) Plot this curve for $-1 \leq t \leq 1$; (b) Identify all the points (if any) where the tangent vector is vertical; (c) Identify all the points (if any) where the tangent vector is horizontal.

(ii) Let $F : \mathbb{R}^3 \to \mathbb{R}$ be a function given by F(x, y, z) = xy + yz + xz and $\phi : \mathbb{R} \to \mathbb{R}^3$ be a curve given by $\phi(t) = (x(t) = t^2, y(t) = 1 - t^2, z(t) = 1 - t)$. Calculate $\frac{dF}{dt}$.

Answer

(i) Vertical at t = 0, horizontal - no. (ii) $2t - 4t^3 - 1$.

Problem 6.

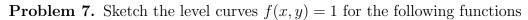
(i) Let $F: \mathbb{R}^2 \to \mathbb{R}^2$ be the function given by $F(x, y) = \begin{pmatrix} x^2y + y^2 \\ y^3x \end{pmatrix}$. Find the value of Jacobian DF at (1, 2).

(ii) Let $f(x,y) = \sqrt{x \cdot y}$. Use gradient to approximate f(1.01, 3.99).

(iii) Consider the function $f(x, y) = y^2 e^{3x}$. In which direction should one move from the point (0, 3) to increase most rapidly?

Answer
(i)
$$\begin{pmatrix} 4 & 5 \\ 8 & 12 \end{pmatrix}$$

(ii) 0.0075.
(iii) $Df(x,y) = (3y^2e^{3x}, 2ye^{3x}), Df(0,3) = (27,6).$



(a) f(x, y) = max(x, y)(b) f(x, y) = min(x, y)(c) $f(x, y) = x \cdot y + 1$ (d) $f(x, y) = x^2 - y^2 + 1$ (e) f(x, y) = xy - x - y + 2. **Problem 8.** A bat named Bob moves along a path such that his position at time t is $(2t, t^2, 1 + t^2)$ from t = 0 until time t = 2. At time t = 2, he leaves this pat and flies along the tangent line to this path, maintaining the speed he had at time t = 2. What will Bob's position be at time t = 5?

Answer

Position after t seconds $x(t) = (2t, t^2, 1 + t^2)$. Position after 2 seconds x(2) = (4, 4, 5). Speed at this point $x'(2) = (2, 2t, 2t)|_{t=2} = (2, 4, 4)$. Position after s seconds of free moving g(s) = (4, 4, 5) + s(2, 4, 4). Position after 3 seconds of free moving g(3) = (4, 4, 5) + 3(2, 4, 4) = (4, 4, 5) + (6, 12, 12) = (10, 16, 17).