ISET MATH III Midterm

Problem 1. Find all values of k (if any) for which the 2 variable quadratic form $x^{2}+2 k x y+y^{2}$ is
(a) positive definite; (b) negative definite; (c) positive semidefinite; (d) negative semidefinite; (e) indefinite.

Problem 2. Consider the following constrained quadratic form

$$
Q(x, y, z)=x^{2}-z^{2}+4 x y \text { subject to } 5 x+k \cdot y-k \cdot z=0 .
$$

(a) For warming up: Determine the definiteness of this constrained quadratic for $k=1$.

Find all values of k for which the constrained quadratic is
(b) negative definite;
(c) positive definite;
(d) indefinite.

Problem 3. Let $Q(x, y)$ be a 2 -variable quadratic form and $A x+B y=0$ be a linear constraint.
(i) Show that if $Q(x, y)$ is positive definite, then its restriction on any linear constraint $A x+B y=0$ is also positive definite.
(ii) Show that for indefinite quadratic form $Q(x, y)$ the restriction on a linear constraint $A x+B y=0$ can be (a) positive, (b) negative, (c) semipositive, (d) seminegative. Namely give an example of one indefinite quadratic form $Q(x, y)$ and indicate various linear constraints $A x+B y=0$ which realize the possibilities (a), (b), (c), (d).

Problem 4. Formulate a criteria for positive definiteness and for negative definiteness of a quadratic form with n variables and $n-1$ constraints.

Problem 5.

(i) Consider the curve $\left(t^{3}, t\right)$ in R^{2}. (a) Plot this curve for $-1 \leq t \leq 1$; (b) Identify all the points (if any) where the tangent vector is vertical; (c) Identify all the points (if any) where the tangent vector is horizontal.
(ii) Let $F: R^{3} \rightarrow R$ be a function given by $F(x, y, z)=x y+y z+x z$ and $\phi: R \rightarrow R^{3}$ be a curve given by $\phi(t)=\left(x(t)=t^{2}, y(t)=1-t^{2}, z(t)=1-t\right)$. Calculate $\frac{d F}{d t}$.

Problem 6.

(i) Let $F: R^{2} \rightarrow R^{2}$ be the function given by $F(x, y)=\binom{x^{2} y+y^{2}}{y^{3} x}$. Find the value of Jacobian $D F$ at $(1,2)$.
(ii) Let $f(x, y)=\sqrt{x \cdot y}$. Use gradient to approximate $f(1.01,3.99)$.
(iii) Consider the function $f(x, y)=y^{2} e^{3 x}$. In which direction should one move from the point $(0,3)$ to increase most rapidly? Express your answer as a vector of length 1 .

Problem 7. Sketch the level curves $f(x, y)=1$ for the following functions
(a) $f(x, y)=\max (x, y)$
(b) $f(x, y)=\min (x, y)$
(c) $f(x, y)=x \cdot y+1$
(d) $f(x, y)=x^{2}-y^{2}+1$
(e) $f(x, y)=x y-x-y+2$.

Problem 8. A bat named Bob moves along a path such that his position at time t is $\left(2 t, t^{2}, 1+t^{2}\right)$ from $t=0$ until time $t=2$. At time $t=2$, he leaves this pat and flies along the tangent line to this path, maintaining the speed he had at time $t=2$. What will Bob's position be at time $t=5$?

ADDITIONAL PAPER

ADDITIONAL PAPER

Solutions

