ISET MATH II Term Midterm Exam Name

Answers without work or justification will not receive credit.
Problem 1. $(1 \times 8 \mathrm{pt})$ Let $C=\left(\begin{array}{cccc}3 & 7 & 10 & 2 \\ 9 & 5 & 1 & 3 \\ 0 & 2 & 4 & 6\end{array}\right)$ and $D=\left(\begin{array}{cc}8 & 3 \\ 1 & 5 \\ 2 & 0 \\ k & 11\end{array}\right)$.
Suppose the a_{11} entry of $C \cdot D$ is 51 .
Find each of following values. If the value does not exist write "DNE".

		Answer
(a)	The a_{21} entry of $C \cdot D$	
(b)	The a_{43} entry of $C \cdot D$	
(c)	The value of k	
(d)	The a_{23} entry of $(D \cdot C)^{T}$	
(e)	The a_{23} entry of $(C \cdot D)^{T}$	
(f)	The size of the matrix product $C \cdot C^{T}$	
(g)	The a a_{21} entry of $D^{T} \cdot D$	
(h)	The a_{12} entry of $D^{T} \cdot D$	

Solution

Problem 2. In a two-industry economy, it is known that industry I uses 50 cents of its own product and 3 dollar's of commodity II to produce a 5 dollar's worth of commodity I; industry II uses non of its own product but uses 50 cents of commodity I in producing a dollar's worth of commodity II.
(a) Write the input-output matrix and the Leontief matrix of this economy.
(b) If the economy produces $\$ 2000$ of commodity I and $\$ 1000$ of commodity II, how much of this production is internally consumed by the economy?
(c) If the economy consumes internally $\$ 4000$ of commodity I and $\$ 3000$ of commodity II, how much of external demand can be fulfilled in this case?
(d) Suppose the external demands are $\$ 3000$ of commodity I and $\$ 6000$ of commodity II. Find total production which fulfils this demand.

Answer

Solution

Problem 3. (From the exam of University of Pennsylvania) Let A and B be square matrices with $A B=0$. Give a proof or counterexample for each of the following.
a) $B A=0$.
b) Either $A=0$ or $B=0$ (or both).
c) If $\operatorname{det}(A)=-3$, then $B=0$.
d) If B is invertible then $A=0$.
e) There is a vector $v \neq 0$ such that $B A v=0$.

Answer

(a)	
(b)	
(c)	
(d)	
(e)	

Solution

Problem 4. (From the exam of University of Pennsylvania) Consider the system of equations

$$
\left\{\begin{array}{cc}
x+y-z & =a \\
x-y+2 z & =b
\end{array}\right.
$$

a) Find the general solution of the homogeneous system.
b) A particular solution of the non-homogeneous system when $a=1$ and $b=2$ is $x=1, y=1, z=1$. Find the general solution of the given system in this case.
c) Find the solution of the non-homogeneous system when $a=-1$ and $b=-2$.
d) Find the solution of the non-homogeneous system when $a=3$ and $b=6$.
[Remark: After you have done part (a), it is possible immediately to write the solutions to the remaining parts.]

Answer

Solution

Problem 5.

(a) Show that if M is a 2×2 Markov matrix, so is M^{2}.
(b) Fill in the matrix $A=\left(\begin{array}{rr}\frac{1}{2} & a_{12} \\ a_{21} & a_{22}\end{array}\right)$ so that A is a positive Markov matrix with the steady vector $v=\binom{0.25}{0.75}$.
(c) Find a steady vector of A^{2}.

Answer

Solution

ADDITIONAL PAPER

ADDITIONAL PAPER

