
1 Linear Transformations

1.1 Linear Function R → R

A linear function f : R → R is a function which satisfies two conditions

f(x + x′) = f(x) + f(x′), x, x′ ∈ R;
f(c · x) = c · f(x), c, x ∈ R.

Such a function has the form

f(x) = k · x,

where k ∈ R is some scalar.

1.2 Linear Function Rn → R

A linear function f : Rn → R is a function which satisfies two conditions

f(v + w) = f(v) + f(w), v, w ∈ Rn;
f(c · v) = c · f(v), v ∈ Rn, c ∈ R.

Such a function has the form

f(v) = k1 · x1 + ... + kn · xn,

where v = (x1, ... , xn), k = (k1, ... , kn).
Thus any linear function f : Rn → R has the form

f(v) = k · v

where k ∈ Rn is considered as a vector.

1.3 Linear Function Rn → Rm

A linear function f : Rn → Rm is a function which satisfies two conditions

f(v + w) = f(v) + f(w), v, w ∈ Rn;
f(c · x) = c · f(x) v ∈ Rn, c ∈ R.

Such a function has the form

f(v) = (a11 · x1 + ... + a1n · xn, ... , am1 · x1 + ... + amn · xn) ∈ Rm.

Thus any linear function f : Rn → Rm has the form

f(v) = A · v
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where A is some matrix

A =




a11 ... a1n

...
am1 ... amn


 .

A linear function f : R2 → R2 is determined by a matrix A =

(
a11 a1,2

a21 a22

)
,

f(x1, x2) =

(
a11 a1,2

a21 a22

)
·
(

x1

x2

)
=

(
a11 · x1 + a12 · x2

a21 · x1 + a22 · x2

)
.

From this expression easily follows that

f

(
1
0

)
=

(
a11

a21

)
, f

(
0
1

)
=

(
a12

a22

)
,

so the column vectors of the matrix A are images of basis vectors e1 =

(
1
0

)

and e2 =

(
0
1

)
.

Theorem 1 Suppose f : Rn → Rm is a linear map. Suppose also that the
images of the basis vectors

e1 =




1
0
...
0


 , e2 =




0
1
...
0


 , ... , en =




0
0
...
1




are the column vectors

f(e1) =




a11

a21

...
am1


 , f(e2) =




a12

a22

...
am2


 , ... , f(en) =




an1

an2

...
anm


 .

Then

A =




a11 ... a1n

...
am1 ... amn


 .

is the matrix of f .

Example 1. Let f : R2 → R2 be the linear map which is rotation of the
plane by 90◦ clockwise. Find f(2, 3).
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The values of basis vectors are

f(1, 0) = (0,−1), f(0, 1) = (1, 0),

so the matrix of this linear map is

(
0 1
−1 0

)
. Thus

f(2, 3) =

(
0 1
−1 0

)
·
(

2
3

)
=

(
3
−2

)
.

Example 2. Let g : R2 → R2 be the linear map which is the expansion 2
times. Let us find it’s matrix.

The values of basis vectors are

g(1, 0) = (2, 0), g(0, 1) = (0, 2),

so the matrix of this linear map is

(
2 0
0 2

)
.

Example 3. Let g : R2 → R2 be the linear map which is the unequal
expansion in two perpendicular directions: 2 times in direction x and 3 times
in direction y. Let us find it’s matrix.

The values of basis vectors are

g(1, 0) = (2, 0), g(0, 1) = (0, 3),

so the matrix of this linear map is

(
2 0
0 3

)
.

Example 4. Let p : R2 → R2 be the projection on x axes: f(x, y) = (x, 0).
Let us find it’s matrix.

The values of basis vectors are

p(1, 0) = (1, 0), p(0, 1) = (0, 0),

so the matrix of this linear map is

(
1 0
0 0

)
.

Example 5. Let h : R2 → R2 be the linear map which is the reflection with
respect to y axes. Let us find it’s matrix.

The values of basis vectors are

g(1, 0) = (−1, 0), g(0, 1) = (0, 1),

so the matrix of this linear map is

(
−1 0
0 1

)
.
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Theorem 2 A linear map F : Rn → Rn given by a matrix A is bijective if
and only if det(A) 6= 0.

Try to prove this!

2 Eigenvalues and Eigenvectors

Let

A =




a11 ... a1n

... ... ...
an1 ... ann




be a matrix, which, as we know, defines a linear map F : Rn → Rn defined
by F (x) = A · x.

A scalar λ ∈ R and a nonzero vector x ∈ Rn are called respectively
eigenvalue and eigenvector of A if

A · x = λ · x.

This actually means that the linear map F changes the magnitude of x
but not its direction,

Note that if x is an eigenvector corresponding to an eigenvalue λ then kx
is an eigenvector too: A · (kx) = kA · x = kλx = λ(kx).

The specter of A (denoted by spec(A)) is defined as the set of all eigen-
values λ1, ..., λk of A.

Eigenspace corresponding to an eigenvalue λ is defined as the subspace
spanned by all eigenvectors corresponding to this eigenvalue.

The geometric degree of an eigenvalue λ is defined as the dimension of its
eigenspace.

Let us observe examples 1-6 from previous section.

Example 1. Rotation A =

(
0 1
−1 0

)
. No eigenvalues and eigenvectors.

Check!

Example 2. Expansion 2 times, A =

(
2 0
0 2

)
. Eigenvector λ = 2, eigen-

vector - any nonzero vector, eigenspace - whole R2. Check!

Example 3. Unequal expansion A =

(
2 0
0 3

)
. Eigenvalues λ1 = 2, λ2 =

3, corresponding eigenvectors v1 = (1, 0), v2 = (0, 1). Check!
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Example 4. Projection on x-axes A =

(
1 0
0 0

)
. Eigenvalues λ1 = 1, λ2 =

0, corresponding eigenvectors v1 = (1, 0), v2 = (0, 1). Check!

Example 5. Reflection about the y-axes A =

(
−1 0
0 1

)
. Eigenvalues

λ1 = −1, λ2 = 1, corresponding eigenvectors v1 = (1, 0), v2 = (0, 1).
Check!

Example 6. Horizontal shear A =

(
1 1
0 1

)
. Eigenvalue λ = 1, correspond-

ing eigenvector v1 = (1, 0). Check!

2.0.1 How to Find Eigenvalues and Eigenvectors

These can be found solving the matrix equation A · x = λ · x, equivalently
(A− λI)x = 0, which in its turn is the system





(a11 − λ)x1 + a12x2 + ... + a1nxn = 0
a21x1 + (a22 − λ)x2 + ... + a2nxn = 0

... ... ... ...
an1x1 + an2x2 + ... + (ann − λ)xn = 0

.

This is homogenous system so it has a nonzero solution if and only if its
determinant |A−λI| (which is called characteristic polynomial of A) is zero,
so |A− λI| = 0.

So, the eigenvalues can be found from the characteristic equation |A −
λI| = 0 that is

∣∣∣∣∣∣∣∣∣

a11 − λ a12 ... a1n

a21 a22 − λ ... a2n

... ... ... ...
an1 an2 ... ann − λ

∣∣∣∣∣∣∣∣∣
= 0.

Algebraic degree of an eigenvalue λ∗ ∈ Spec(A) is defined as its multiplic-
ity in characteristic polynomial: AlgDeg(λ) = k if |A−λI| = (λ−λ∗)k ·Q(λ)
where Q(λ) is some polynomial.

The algebraic degree of an eigenvalue λ is more or equal to its geometric
degree.
Example. Find the eigenvalues for the matrix

A =




1 1 1
1 1 1
1 1 1


 .
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Solution. The characteristic equation looks as

∣∣∣∣∣∣∣

1− λ 1 1
1 1− λ 1
1 1 1− λ

∣∣∣∣∣∣∣
= 0.

Calculating this determinant we obtain

(1− λ)3 − 3(1− λ) + 2 = 0, λ3 − 3λ2 = 0, λ2(λ− 3) = 0,

thus λ1 = 0, λ2 = 3. The algebraic degree of λ1 = 0 is 2, and of λ2 = 3 is 1.

2.0.2 How to Find Eigenvectors

Eigenvectors corresponding to the eigenvalue λ can be found solving the
matrix equation

(A− λI)x = 0

which is equivalent to the system





(a11 − λ)x1 + a12x2 + ... + a1nxn = 0
a21x1 + (a22 − λ)x2 + ... + a2nxn = 0

... ... ... ...
an1x1 + an2x2 + ... + (ann − λ)xn = 0

.

Since λ is an eigenvalue the determinant of this system is zero. Thus this
homogenous system has nonzero solutions.

2.1 Examples

Example. Find an eigenvector x corresponding to the eigenvalue λ = 3 of
the matrix

A =




1 1 1
1 1 1
1 1 1


 .

from the previous example.
Solution. We can find x from the matrix equation (A− 3 · I) · x = 0 which
as a system of linear equations looks as





(1− 3)x1 + x2 + x3 = 0
x1 + (1− 3)x2 + x3 = 0
x1 + x2 + (1− 3)x3 = 0

∣∣∣∣∣∣∣
,





−2x1 + x2 + x3 = 0
x1 − 2x2 + x3 = 0
x1 + x2 − 2x3 = 0

∣∣∣∣∣∣∣
.
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Rank of the determinant of this system is 2: a nonzero minor is

∣∣∣∣∣
−2 1
1 −2

∣∣∣∣∣ = −5.

Thus we can ignore the third equation and the system is equivalent to

{
−2x1 + x2 = −x3

x1 + −2x2 = −x3

∣∣∣∣∣ .

Here

∆ = 3, ∆1 =

∣∣∣∣∣
−x3 1
−x3 −2

∣∣∣∣∣ = 3x3, ∆2 =

∣∣∣∣∣
−2 −x3

1 −x3

∣∣∣∣∣ = 3x3,

thus

x1 =
3x3

3
= x3, x2 =

3x3

3
= x3.

So (x3, x3, x3) is a general solution of our system with exogenous variable x3.
Taking this variable x3 = 1 we obtain the eigenvector x = (1, 1, 1). As we see
the geometric degree of eigenvalue λ = 3 is 1, as well as its algebraic degree.

Example. Find an eigenvector x corresponding to the eigenvalue λ = 0 of
the same matrix

A =




1 1 1
1 1 1
1 1 1


 .

from the previous example.
Solution. We can find x from the matrix equation (A− 0 · I) · x = 0 which
as a system of linear equations looks as





(1− 0)x1 + x2 + x3 = 0
x1 + (1− 0)x2 + x3 = 0
x1 + x2 + (1− 0)x3 = 0

∣∣∣∣∣∣∣
,





x1 + x2 + x3 = 0
x1 + x2 + x3 = 0
x1 + x2 + x3 = 0

∣∣∣∣∣∣∣
.

Rank of the determinant of this system is 1, and its general solution is

(x1 = −x2 − x3, x2, x3)

with exogenous variable x2, x3. Taking this variables x2 = 1, x3 = 0 we
obtain the eigenvector v = (−1, 1, 0), and taking this variables x2 = 0, x3 = 1
we obtain the eigenvector v = (−1, 0, 1). As we see the geometric degree of
eigenvalue λ = 0 is 2, as well as its algebraic degree.
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Example. Find the eigenvalues and eigenvectors of the matrix

A =

(
2 2
1 3

)
.

Solution. The characteristic equation of the matrix A looks as

A =

∣∣∣∣∣
2− λ 2

1 3− λ

∣∣∣∣∣ = 0 , λ2 − 5λ + 4 = 0.

The roots of this equation, that is the eigenvalues are λ1 = 1, λ2 = 4.
The eigenvectors can be found solving the system of equations

{
(2− λ)x1+ 2x2 = 0

x1+ (3− λ)x2 = 0

For λ = 1:
{

(2− 1)x1+ 2x2 = 0
x1+ (3− 1)x2 = 0

∣∣∣∣∣ ,
x1+ 2x2 = 0
x1+ 2x2 = 0

∣∣∣∣∣

x1 + 2x2 = 0, x1 = 2x2,

thus the solution depending on the free parameter x2 is (2x2, x2). Taking,
say, x2 = 1 we obtain the eigenvector v1 = (2, 1).

For λ = 4:
{

(2− 4)x1+ 2x2 = 0
x1+ (3− 4)x2 = 0

∣∣∣∣∣ ,
−2x1+ 2x2 = 0
x1− x2 = 0

∣∣∣∣∣

x1 − x2 = 0, x1 = x2,

thus the solution depending on the free parameter x2 is (x2, x2). Taking, say,
x2 = 1 we obtain the eigenvector v1 = (1, 1).

Example. Let

A =

(
1 1
0 1

)
.

(horizontal shear).
Then |A−λI| = (1−λ)2 thus there is one eigenvalue λ = 1 of multiplicity

2. Eigenvectors are solutions of the system

(
0 1
0 0

)
·
(

x
y

)
=

(
0
0

)

that is {
0 · x + 1 · y = 0
0 · x + 0 · y = 0

.
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The solution of this system is (x, 0), the x-axes, so the geometric multiplicity
of λ = 1 is 1, so it is less then its algebraic multiplicity.

Example. Let

A =

(
1 0
0 1

)
.

Then |A − λI| = (1 − λ)2 thus there is one eigenvalue λ = 1 of multiplicity
2. Eigenvectors are solutions of the system

(
0 0
0 0

)
·
(

x
y

)
=

(
0
0

)

that is {
0 · x + 0 · y = 0
0 · x + 0 · y = 0

.

The solution of this system is (x, y), the whole R2 so the geometric multi-
plicity of λ = 1 is 2, so it equals to its algebraic multiplicity.

2.1.1 Viett Theorem

Theorem 3 Suppose an n× n matrix A has n eigenvalues λ1, ..., λn. Then
(i) The determinant of the matrix A equals to the product of eigenvalues

|A| = λ1 · ... · λn;

(ii) The trace of a matrix A, i.e., the sum of the elements on the main
diagonal, equals to the sum of eigenvalues of A

tr(A) = a11 + ... + ann = λ1 + ... + λn.

Example. Find the eigenvalues of the matrix A =

(
2 4
1 2

)
.

Solution. The matrix is clearly singular (degenerate, |A| = 0). Therefore
λ1 = 0 is an eigenvalue (why?). By the trace rule λ1 + λ2 = 2 + 2 = 4, thus
λ2 = 4.

2.2 Linearly Independent Eigenvectors

Theorem 4 The eigenvectors of the matrix A corresponding to the different
eigenvalues are linearly independent.

More precisely, suppose λ1, λ2, ... λk are eigenvalues of A and λi 6= λj for
all i 6= j, and suppose v1, ... , vk are corresponding eigenvectors, then they
are linearly independent.
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Let us check it for k = 2. We assume λ1 6= λ2 and Av1 = λ1v1, Av2 =
λ2v2. Suppose v1, v2 are linearly dependent, say v2 = mv1, then A · v2 =
A · kv1 = mA · v1 = mλ1v1, on the other hand side A · v2 = λ2v2 = λ2mv1,
thus m(λ1 − λ2)v1 = 0, this contradicts to λ1 6= λ2.

Corollary 1 Suppose an n × n matrix A has n different eigenvalues
λ1, ... , λn. Then the corresponding eigenvectors x(1), ... , x(n) form a (eigen)basis.

2.3 Representation of a Matrix in Terms of Eigenval-
ues and Eigenvectors

Suppose an n× n matrix A has n eigenvalues λ1, ... , λn and

x(1) =




x
(1)
1

...
x(1)

n


 , ... , x(n) =




x
(n)
1

...
x(n)

n




are the corresponding linearly independent eigenvectors. Form two matrixes,
first the diagonal matrix whose diagonal elements are eigenvalues and the
second the matrix whose columns are eigenvectors

Λ =




λ1 ... 0
... ... ...
0 ... λn


 , S =




x
(1)
1 ... x

(n)
1

... ... ...
x(1)

n ... x(n)
n


 .

Note that since of Theorem 4 the matrix S is invertible.

Theorem 5 A = S · Λ · S−1.

Example. Find a 3× 3 matrix A which eigenvalues and eigenvectors are:

λ1 = 3, x(1) = (−3, 2, 1)T ,
λ2 = −2, x(2) = (−2, 1, 0)T

λ3 = 1, x(3) = (−6, 3, 1)T .

Solution. Λ =




3 0 0
0 −2 0
0 0 1


 S =



−3 −2 −6
2 1 3
1 0 1


 . Then

A = S · Λ · S−1 =



−3 −2 −6
2 1 3
1 0 1







3 0 0
0 −2 0
0 0 1


 ·



−3 −2 −6
2 1 3
1 0 1




−1

,

which can be directly calculated.

Example. Find the matrix A100, where A =

(
41 −30
56 −41

)
.
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Solution. First find eigenvalues and eigenvectors. The solution of the char-
acteristic equation gives

A =

∣∣∣∣∣
41− λ −30

56 −41− λ

∣∣∣∣∣ , λ2 − 1 = 0, λ1 = 1, λ2 = −1.

Furthermore, solving the suitable systems we obtain corresponding eigenvec-

tors x(1) = (3, 4)T , x(2) = (5, 7)T . Thus Λ =

(
1 0
0 −1

)
, S =

(
3 5
4 7

)
.

Then

A100 = (S · Λ · S−1) · (S · Λ · S−1) · ... · (S · Λ · S−1) = S · Λ100 · S−1 =(
3 5
4 7

)
·
(

1 0
0 −1

)100

·
(

3 5
4 7

)−1

=
(

3 5
4 7

)
·
(

1100 0
0 (−1)100

)
·
(

7 −5
−4 3

)
=

(
3 5
4 7

)
·
(

1 0
0 1

)
·
(

7 −5
−4 3

)
=

(
1 0
0 1

)
.

2.4 Similar Matrices

Two matrices A and B are called similar if there exists an invertible matrix
S such that B = S−1 · A · S.

Theorem 6 Similarity of matrices is an equivalence relation.

Theorem 7 If A and B are similar, then
(i) |A− λI| = |B − λI|;
(ii) spec(A) = spec(B);
(iii) |A| = |B|;
(iv) rank(A) = rank(B);
(iii) tr(A) = tr(B).

2.5 Diagonalization of a Matrix

A square matrix A is called diagonalizable if it is similar to a diagonal matrix,
i.e. if there exists an invertible matrix S such that S−1 · A · S is a diagonal
matrix.

Theorem 8 If an n × n matrix A has n different eigenvalues then it is
diagonalizable.

Indeed, as we already know in this case A = S · Λ · S−1. Then, multiplying
this equality by S−1 and S respectively from right and left we obtain

S−1 · A · S = S−1 · (S · Λ · S−1) · S = Λ,
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which is diagonal matrix.
Thus the existence of n distinct eigenvalues is a sufficient condition for

diagonalizability, but not necessary:

Example. The identity matrix

(
1 0
0 1

)
is already diagonal, nevertheless it

has two equal eigenvalues λ1 = λ2 = 1. By the way, any vector v ∈ R2 is an
eigenvector.

Furthermore, there are nondiagonalizable matrixes:

Example. The matrix

(
1 1
0 1

)
has two equal eigenvalues λ1 = λ2 = 1

and the corresponding eigenvector is v = (1, 0), so in this case the algebraic
degree is 2 and the geometric degree is 1 (see above). This matrix is not
diagonalizable.

Example. The matrix

(
0 −1
1 0

)
has no real eigenvalues, consequently no

eigenveqtors. This matrix is not diagonalizable.

Which n× n matrices are diagonlizable?
1. Matrices with n distinct eigenvalues.
2. Matrices with n linearly independent eigenvectors.
3. Symmetric matrices (A = At).
Let us prove the last proposition for a 2× 2 symmetric matrix

A =

(
a b
b d

)
.

First let us prove that A has only real eigenvalues:

|A−λI| =
∣∣∣∣∣

a− λ b
b d− λ

∣∣∣∣∣ = (a−λ)·(d−λ)−b2 = λ2−(a+d)·λ+ad−b2 = 0,

the discriminant of this quadratic equation D = (a− d)2 + 4b2 ≥ 0, thus the
characteristic quadratic equation has only real roots.

Consider two cases.
1. Suppose we have a multiple root λ1 = λ2, it happens when D = 0, that is

if a = d, b = 0, in this case A =

(
a 0
0 a

)
is already a diagonal matrix.

2. Now assume that λ1 6= λ2. By Theorem above two distinct real eigenvalues
guarantee the diagonalizability.
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Exercises

1. Let

(
−1 3
2 0

)
.

(a) Check that λ = 2 is an eigenvalue of A.

(b) Check that

(
1
1

)
is a corresponding eigenvector of A.

(c) Find all eigenvalues and corresponding eigenvectors of A.

2. Find the eigenvalues and eigenvectors for the matrix




1 0 2
0 5 0
3 0 2


 .

3. Suppose

(
a b
c d

)
is a Markov matrix, that is a + c = 1, b + d = 1.

Show that λ = 1 is it’s eigenvector.

4. Find eigenvalues of an upper-triangular matrix




a b c
0 d e
0 0 f


 .

5. For each of the following matrix A find diagonal matrix Λ and invertible
matrix S so that A = S · Λ · S−1

(a)

(
3 0
1 2

)
. (b)

(
1 −1
2 4

)
.

(c)




3 −1 0
−1 2 −1
0 −1 3


 . (d)




4 −2 2
0 1 0
1 0 1


 .

Exercises 23.1-23.7, 23.15.

Homework

1. Exercise 23.2

2. Show that a 2×2 symmetric matrix

(
a b
b d

)
has real eigenvalues. In

which case it has just one eigenvalue?

3. Show that a 2 × 2 symmetric matrix

(
a b
b d

)
has two orthogonal

eigenvectors (hint: in the case of two eigenvalues λ1 6= λ2 consider the inner
product Av1 · v2 and use Av1 · v2 = v1 ·AT v2, in the case λ1 = λ2 characterize
A).

4. Show that each symmetric 2× 2 matrix

(
a b
b d

)
can be diagonalized

by an orthogonal matrix P .

5. Find a and b for which two vectors v1 = (
√

2
2

, a) and v2 = (b,
√

2
2

) form
an orthnormal basis of R2.
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Summary

Linear map f : Rn → Rm: f(v + w) = f(v) + f(w), f(c · x) = c · f(x).
f(v) = A·v where A is a matrix whose columns are f(e1), ... , f(en) ∈ Rm.
f : Rn → Rn is bijective iff det(A) 6= 0
λ ∈ R and a nonzero vector x ∈ Rn are called respectively eigenvalue

and eigenvector of A if A · x = λ · x.
spec(A) is the set of all eigenvalues of A.
Eigenspace of λ: the subspace spanned by all its eigenvectors.
The geometric degree of λ is dim of its eigenspace.
Eigenvalues of A are solutions of characteristic equation det(A−λI) =

0.
Eigenvectors of eigenvalue λ are solutions of (A− λI)v = 0.
Algebraic degree of λ∗ ∈ spec(A) is its multiplicity in det(A−λI) = 0.
Algebraic degree ≥ geometric degree.
Viett Theorem: If A has n eigenvalues λ1, ... , λn then |A| = λ1 · ... ·λn

and tr(A) = a11 + ... + ann = λ1 + ... + λn.
If {λ1, λ2, ... λk} = spec(A) and i 6= j ⇒ λi 6= λj then corresponding

eigenvectors v1, ... , vk are lin. indep.
If A has n different eigenvalues, then corresponding eigenvectors form

eigenbasis.
If A has n eigenvalues λ1, ... , λn and eigenbasis (x(1), ... , x(n)) then A =

SΛS−1 or Λ = S−1AS where Λ =




λ1 ... 0
... ... ...
0 ... λn


 S =




x
(1)
1 ... x

(n)
1

... ... ...
x(1)

n ... x(n)
n


 .

A and B are similar if B = S−1 · A · S. In this case |A − λI| = |B −
λI|, spec(A) = spec(B), |A| = |B|, rank(A) = rank(B), tr(A) = tr(B).
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