1 Linear Transformations

1.1 Linear Function $R \rightarrow R$

A linear function $f: R \rightarrow R$ is a function which satisfies two conditions

$$
\begin{aligned}
& f\left(x+x^{\prime}\right)=f(x)+f\left(x^{\prime}\right), \quad x, x^{\prime} \in R ; \\
& f(c \cdot x)=c \cdot f(x), \quad c, x \in R .
\end{aligned}
$$

Such a function has the form

$$
f(x)=k \cdot x,
$$

where $k \in R$ is some scalar.

1.2 Linear Function $R^{n} \rightarrow R$

A linear function $f: R^{n} \rightarrow R$ is a function which satisfies two conditions

$$
\begin{aligned}
& f(v+w)=f(v)+f(w), \quad v, \quad w \in R^{n} \\
& f(c \cdot v)=c \cdot f(v), \quad v \in R^{n}, \quad c \in R
\end{aligned}
$$

Such a function has the form

$$
f(v)=k_{1} \cdot x_{1}+\ldots+k_{n} \cdot x_{n}
$$

where $v=\left(x_{1}, \ldots, x_{n}\right), \quad k=\left(k_{1}, \ldots, k_{n}\right)$.
Thus any linear function $f: R^{n} \rightarrow R$ has the form

$$
f(v)=k \cdot v
$$

where $k \in R^{n}$ is considered as a vector.

1.3 Linear Function $R^{n} \rightarrow R^{m}$

A linear function $f: R^{n} \rightarrow R^{m}$ is a function which satisfies two conditions

$$
\begin{aligned}
& f(v+w)=f(v)+f(w), \quad v, w \in R^{n} \\
& f(c \cdot x)=c \cdot f(x) v \in R^{n}, \quad c \in R .
\end{aligned}
$$

Such a function has the form

$$
f(v)=\left(a_{11} \cdot x_{1}+\ldots+a_{1 n} \cdot x_{n}, \ldots, a_{m 1} \cdot x_{1}+\ldots+a_{m n} \cdot x_{n}\right) \in R^{m}
$$

Thus any linear function $f: R^{n} \rightarrow R^{m}$ has the form

$$
f(v)=A \cdot v
$$

where A is some matrix

$$
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\ldots & & \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right)
$$

A linear function $f: R^{2} \rightarrow R^{2}$ is determined by a matrix $A=\left(\begin{array}{cc}a_{11} & a_{1,2} \\ a_{21} & a_{22}\end{array}\right)$,

$$
f\left(x_{1}, x_{2}\right)=\left(\begin{array}{cc}
a_{11} & a_{1,2} \\
a_{21} & a_{22}
\end{array}\right) \cdot\binom{x_{1}}{x_{2}}=\binom{a_{11} \cdot x_{1}+a_{12} \cdot x_{2}}{a_{21} \cdot x_{1}+a_{22} \cdot x_{2}} .
$$

From this expression easily follows that

$$
f\binom{1}{0}=\binom{a_{11}}{a_{21}}, \quad f\binom{0}{1}=\binom{a_{12}}{a_{22}}
$$

so the column vectors of the matrix A are images of basis vectors $e_{1}=\binom{1}{0}$ and $e_{2}=\binom{0}{1}$.

Theorem 1 Suppose $f: R^{n} \rightarrow R^{m}$ is a linear map. Suppose also that the images of the basis vectors

$$
e_{1}=\left(\begin{array}{c}
1 \\
0 \\
\ldots \\
0
\end{array}\right), \quad e_{2}=\left(\begin{array}{c}
0 \\
1 \\
\ldots \\
0
\end{array}\right), \quad \ldots, \quad e_{n}=\left(\begin{array}{c}
0 \\
0 \\
\ldots \\
1
\end{array}\right)
$$

are the column vectors

$$
f\left(e_{1}\right)=\left(\begin{array}{c}
a_{11} \\
a_{21} \\
\ldots \\
a_{m 1}
\end{array}\right), \quad f\left(e_{2}\right)=\left(\begin{array}{c}
a_{12} \\
a_{22} \\
\ldots \\
a_{m 2}
\end{array}\right), \quad \ldots \quad, \quad f\left(e_{n}\right)=\left(\begin{array}{c}
a_{n 1} \\
a_{n 2} \\
\ldots \\
a_{n m}
\end{array}\right) .
$$

Then

$$
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\ldots & & \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right) .
$$

is the matrix of f.

Example 1. Let $f: R^{2} \rightarrow R^{2}$ be the linear map which is rotation of the plane by 90° clockwise. Find $f(2,3)$.

The values of basis vectors are

$$
f(1,0)=(0,-1), \quad f(0,1)=(1,0)
$$

so the matrix of this linear map is $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. Thus

$$
f(2,3)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \cdot\binom{2}{3}=\binom{3}{-2}
$$

Example 2. Let $g: R^{2} \rightarrow R^{2}$ be the linear map which is the expansion 2 times. Let us find it's matrix.

The values of basis vectors are

$$
g(1,0)=(2,0), \quad g(0,1)=(0,2)
$$

so the matrix of this linear map is $\left(\begin{array}{cc}2 & 0 \\ 0 & 2\end{array}\right)$.
Example 3. Let $g: R^{2} \rightarrow R^{2}$ be the linear map which is the unequal expansion in two perpendicular directions: 2 times in direction x and 3 times in direction y. Let us find it's matrix.

The values of basis vectors are

$$
g(1,0)=(2,0), \quad g(0,1)=(0,3)
$$

so the matrix of this linear map is $\left(\begin{array}{cc}2 & 0 \\ 0 & 3\end{array}\right)$.
Example 4. Let $p: R^{2} \rightarrow R^{2}$ be the projection on x axes: $f(x, y)=(x, 0)$. Let us find it's matrix.

The values of basis vectors are

$$
p(1,0)=(1,0), \quad p(0,1)=(0,0)
$$

so the matrix of this linear map is $\left(\begin{array}{cc}1 & 0 \\ 0 & 0\end{array}\right)$.
Example 5. Let $h: R^{2} \rightarrow R^{2}$ be the linear map which is the reflection with respect to y axes. Let us find it's matrix.

The values of basis vectors are

$$
g(1,0)=(-1,0), \quad g(0,1)=(0,1)
$$

so the matrix of this linear map is $\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$.

Theorem 2 A linear map $F: R^{n} \rightarrow R^{n}$ given by a matrix A is bijective if and only if $\operatorname{det}(A) \neq 0$.

Try to prove this!

2 Eigenvalues and Eigenvectors

Let

$$
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\ldots & \ldots & \ldots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right)
$$

be a matrix, which, as we know, defines a linear map $F: R^{n} \rightarrow R^{n}$ defined by $F(x)=A \cdot x$.

A scalar $\lambda \in R$ and a nonzero vector $x \in R^{n}$ are called respectively eigenvalue and eigenvector of A if

$$
A \cdot x=\lambda \cdot x
$$

This actually means that the linear map F changes the magnitude of x but not its direction,

Note that if x is an eigenvector corresponding to an eigenvalue λ then $k x$ is an eigenvector too: $A \cdot(k x)=k A \cdot x=k \lambda x=\lambda(k x)$.

The specter of A (denoted by $\operatorname{spec}(A))$ is defined as the set of all eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ of A.

Eigenspace corresponding to an eigenvalue λ is defined as the subspace spanned by all eigenvectors corresponding to this eigenvalue.

The geometric degree of an eigenvalue λ is defined as the dimension of its eigenspace.

Let us observe examples 1-6 from previous section.
Example 1. Rotation $A=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$. No eigenvalues and eigenvectors. Check!

Example 2. Expansion 2 times, $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right)$. Eigenvector $\lambda=2$, eigenvector - any nonzero vector, eigenspace - whole R^{2}. Check!

Example 3. Unequal expansion $A=\left(\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right)$. Eigenvalues $\lambda_{1}=2, \quad \lambda_{2}=$ 3 , corresponding eigenvectors $v_{1}=(1,0), \quad v_{2}=(0,1)$. Check!

Example 4. Projection on x-axes $A=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. Eigenvalues $\lambda_{1}=1, \quad \lambda_{2}=$ 0 , corresponding eigenvectors $v_{1}=(1,0), v_{2}=(0,1)$. Check!

Example 5. Reflection about the y-axes $A=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$. Eigenvalues $\lambda_{1}=-1, \quad \lambda_{2}=1$, corresponding eigenvectors $v_{1}=(1,0), \quad v_{2}=(0,1)$. Check!

Example 6. Horizontal shear $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$. Eigenvalue $\lambda=1$, corresponding eigenvector $v_{1}=(1,0)$. Check!

2.0.1 How to Find Eigenvalues and Eigenvectors

These can be found solving the matrix equation $A \cdot x=\lambda \cdot x$, equivalently $(A-\lambda I) x=0$, which in its turn is the system

$$
\left\{\begin{array}{cccccc}
\left(a_{11}-\lambda\right) x_{1} & + & a_{12} x_{2} & + & \ldots & + \\
a_{1 n} x_{n}=0 \\
a_{21} x_{1} & + & \left(a_{22}-\lambda\right) x_{2} & + & \ldots & + \\
a_{2 n} x_{n}=0 \\
\ldots & \ldots & \ldots & \ldots & & \\
a_{n 1} x_{1} & + & a_{n 2} x_{2} & + & \ldots & + \\
\left(a_{n n}-\lambda\right) x_{n}=0
\end{array} .\right.
$$

This is homogenous system so it has a nonzero solution if and only if its determinant $|A-\lambda I|$ (which is called characteristic polynomial of A) is zero, so $|A-\lambda I|=0$.

So, the eigenvalues can be found from the characteristic equation $\mid A-$ $\lambda I \mid=0$ that is

$$
\left|\begin{array}{cccc}
a_{11}-\lambda & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22}-\lambda & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}-\lambda
\end{array}\right|=0
$$

Algebraic degree of an eigenvalue $\lambda^{*} \in \operatorname{Spec}(A)$ is defined as its multiplicity in characteristic polynomial: $\operatorname{Alg} \operatorname{Deg}(\lambda)=k$ if $|A-\lambda I|=\left(\lambda-\lambda^{*}\right)^{k} \cdot Q(\lambda)$ where $Q(\lambda)$ is some polynomial.

The algebraic degree of an eigenvalue λ is more or equal to its geometric degree.
Example. Find the eigenvalues for the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

Solution. The characteristic equation looks as

$$
\left|\begin{array}{ccc}
1-\lambda & 1 & 1 \\
1 & 1-\lambda & 1 \\
1 & 1 & 1-\lambda
\end{array}\right|=0
$$

Calculating this determinant we obtain

$$
(1-\lambda)^{3}-3(1-\lambda)+2=0, \quad \lambda^{3}-3 \lambda^{2}=0, \quad \lambda^{2}(\lambda-3)=0
$$

thus $\lambda_{1}=0, \lambda_{2}=3$. The algebraic degree of $\lambda_{1}=0$ is 2 , and of $\lambda_{2}=3$ is 1 .

2.0.2 How to Find Eigenvectors

Eigenvectors corresponding to the eigenvalue λ can be found solving the matrix equation

$$
(A-\lambda I) x=0
$$

which is equivalent to the system

$$
\left\{\begin{array}{cccccc}
\left(a_{11}-\lambda\right) x_{1} & + & a_{12} x_{2} & + & \ldots & + \\
a_{21} x_{1} & + & \left(a_{22}-\lambda\right) x_{2} & + & \ldots & + \\
a_{1 n} x_{n}=0 \\
\ldots & \ldots & \ldots & \ldots & & \\
a_{n 1} x_{1} x_{n}=0 \\
& + & a_{n 2} x_{2} & + & \ldots & + \\
& \left(a_{n n}-\lambda\right) x_{n}=0
\end{array} .\right.
$$

Since λ is an eigenvalue the determinant of this system is zero. Thus this homogenous system has nonzero solutions.

2.1 Examples

Example. Find an eigenvector x corresponding to the eigenvalue $\lambda=3$ of the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

from the previous example.
Solution. We can find x from the matrix equation $(A-3 \cdot I) \cdot x=0$ which as a system of linear equations looks as

$$
\begin{gathered}
\left\{\left.\begin{array}{cccc}
(1-3) x_{1} & + & x_{2} & + \\
x_{1} & + & (1-3) x_{2} & + \\
x_{3}=0 \\
x_{1} & + & x_{2} & + \\
(1-3) x_{3}=0
\end{array} \right\rvert\,,\right. \\
\left\{\left.\begin{array}{cccc}
-2 x_{1} & + & x_{2} & + \\
x_{3}=0 \\
x_{1} & - & 2 x_{2} & + \\
x_{3}=0 \\
x_{1} & + & x_{2} & - \\
2 x_{3}=0
\end{array} \right\rvert\, .\right.
\end{gathered}
$$

Rank of the determinant of this system is 2 : a nonzero minor is

$$
\left|\begin{array}{cc}
-2 & 1 \\
1 & -2
\end{array}\right|=-5 .
$$

Thus we can ignore the third equation and the system is equivalent to

$$
\left\{\left.\begin{array}{ccc}
-2 x_{1} & +x_{2} & =-x_{3} \\
x_{1}+-2 x_{2} & =-x_{3}
\end{array} \right\rvert\, .\right.
$$

Here

$$
\Delta=3, \quad \Delta_{1}=\left|\begin{array}{cc}
-x_{3} & 1 \\
-x_{3} & -2
\end{array}\right|=3 x_{3}, \quad \Delta_{2}=\left|\begin{array}{cc}
-2 & -x_{3} \\
1 & -x_{3}
\end{array}\right|=3 x_{3},
$$

thus

$$
x_{1}=\frac{3 x_{3}}{3}=x_{3}, \quad x_{2}=\frac{3 x_{3}}{3}=x_{3} .
$$

So $\left(x_{3}, x_{3}, x_{3}\right)$ is a general solution of our system with exogenous variable x_{3}. Taking this variable $x_{3}=1$ we obtain the eigenvector $x=(1,1,1)$. As we see the geometric degree of eigenvalue $\lambda=3$ is 1 , as well as its algebraic degree.

Example. Find an eigenvector x corresponding to the eigenvalue $\lambda=0$ of the same matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

from the previous example.
Solution. We can find x from the matrix equation $(A-0 \cdot I) \cdot x=0$ which as a system of linear equations looks as

$$
\begin{gathered}
\left\{\begin{array}{cccc}
(1-0) x_{1} & + & x_{2} & + \\
x_{1} & + & (1-0) x_{2} & + \\
x_{1} & + & x_{2} & + \\
x_{3}=0 \\
x_{2} & (1-0) x_{3}=0
\end{array}\right. \\
\left\{\begin{array}{cccc}
x_{1} & + & x_{2} & + \\
x_{3}=0 \\
x_{1} & + & x_{2} & + \\
x_{3}=0 \\
x_{1} & + & x_{2} & + \\
x_{3}=0
\end{array}\right.
\end{gathered}
$$

Rank of the determinant of this system is 1 , and its general solution is

$$
\left(x_{1}=-x_{2}-x_{3}, x_{2}, x_{3}\right)
$$

with exogenous variable x_{2}, x_{3}. Taking this variables $x_{2}=1, x_{3}=0$ we obtain the eigenvector $v=(-1,1,0)$, and taking this variables $x_{2}=0, x_{3}=1$ we obtain the eigenvector $v=(-1,0,1)$. As we see the geometric degree of eigenvalue $\lambda=0$ is 2 , as well as its algebraic degree.

Example. Find the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\right)
$$

Solution. The characteristic equation of the matrix A looks as

$$
A=\left|\begin{array}{cc}
2-\lambda & 2 \\
1 & 3-\lambda
\end{array}\right|=0 \quad, \lambda^{2}-5 \lambda+4=0
$$

The roots of this equation, that is the eigenvalues are $\lambda_{1}=1, \quad \lambda_{2}=4$.
The eigenvectors can be found solving the system of equations

$$
\left\{\begin{array}{cc}
(2-\lambda) x_{1}+ & 2 x_{2}=0 \\
x_{1}+ & (3-\lambda) x_{2}=0
\end{array}\right.
$$

For $\lambda=1$:

$$
\left\{\begin{array}{c}
\left.\begin{array}{cc}
(2-1) x_{1}+ & 2 x_{2}=0 \\
x_{1}+ & (3-1) x_{2}=0
\end{array} \right\rvert\,, \begin{array}{l}
x_{1}+2 x_{2}=0 \\
x_{1}+2 x_{2}=0
\end{array} \\
x_{1}+2 x_{2}=0, x_{1}=2 x_{2},
\end{array}\right.
$$

thus the solution depending on the free parameter x_{2} is $\left(2 x_{2}, x_{2}\right)$. Taking, say, $x_{2}=1$ we obtain the eigenvector $v_{1}=(2,1)$.

For $\lambda=4$:

$$
\begin{gathered}
\left\{\begin{array}{cc}
(2-4) x_{1}+ & 2 x_{2}=0 \\
x_{1}+ & (3-4) x_{2}=0
\end{array}\left|, \begin{array}{cc}
-2 x_{1}+ & 2 x_{2}=0 \\
x_{1}- & x_{2}=0
\end{array}\right|\right. \\
x_{1}-x_{2}=0, \quad x_{1}=x_{2}
\end{gathered}
$$

thus the solution depending on the free parameter x_{2} is $\left(x_{2}, x_{2}\right)$. Taking, say, $x_{2}=1$ we obtain the eigenvector $v_{1}=(1,1)$.

Example. Let

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)
$$

(horizontal shear).
Then $|A-\lambda I|=(1-\lambda)^{2}$ thus there is one eigenvalue $\lambda=1$ of multiplicity
2. Eigenvectors are solutions of the system

$$
\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) \cdot\binom{x}{y}=\binom{0}{0}
$$

that is

$$
\left\{\begin{array}{l}
0 \cdot x+1 \cdot y=0 \\
0 \cdot x+0 \cdot y=0
\end{array} .\right.
$$

The solution of this system is $(x, 0)$, the x-axes, so the geometric multiplicity of $\lambda=1$ is 1 , so it is less then its algebraic multiplicity.

Example. Let

$$
A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Then $|A-\lambda I|=(1-\lambda)^{2}$ thus there is one eigenvalue $\lambda=1$ of multiplicity 2. Eigenvectors are solutions of the system

$$
\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) \cdot\binom{x}{y}=\binom{0}{0}
$$

that is

$$
\left\{\begin{array}{l}
0 \cdot x+0 \cdot y=0 \\
0 \cdot x+0 \cdot y=0
\end{array} .\right.
$$

The solution of this system is (x, y), the whole R^{2} so the geometric multiplicity of $\lambda=1$ is 2 , so it equals to its algebraic multiplicity.

2.1.1 Viett Theorem

Theorem 3 Suppose an $n \times n$ matrix A has n eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then
(i) The determinant of the matrix A equals to the product of eigenvalues

$$
|A|=\lambda_{1} \cdot \ldots \cdot \lambda_{n}
$$

(ii) The trace of a matrix A, i.e., the sum of the elements on the main diagonal, equals to the sum of eigenvalues of A

$$
\operatorname{tr}(A)=a_{11}+\ldots+a_{n n}=\lambda_{1}+\ldots+\lambda_{n}
$$

Example. Find the eigenvalues of the matrix $A=\left(\begin{array}{ll}2 & 4 \\ 1 & 2\end{array}\right)$.
Solution. The matrix is clearly singular (degenerate, $|A|=0$). Therefore $\lambda_{1}=0$ is an eigenvalue (why?). By the trace rule $\lambda_{1}+\lambda_{2}=2+2=4$, thus $\lambda_{2}=4$.

2.2 Linearly Independent Eigenvectors

Theorem 4 The eigenvectors of the matrix A corresponding to the different eigenvalues are linearly independent.

More precisely, suppose $\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}$ are eigenvalues of A and $\lambda_{i} \neq \lambda_{j}$ for all $i \neq j$, and suppose v_{1}, \ldots, v_{k} are corresponding eigenvectors, then they are linearly independent.

Let us check it for $k=2$. We assume $\lambda_{1} \neq \lambda_{2}$ and $A v_{1}=\lambda_{1} v_{1}, A v_{2}=$ $\lambda_{2} v_{2}$. Suppose v_{1}, v_{2} are linearly dependent, say $v_{2}=m v_{1}$, then $A \cdot v_{2}=$ $A \cdot k v_{1}=m A \cdot v_{1}=m \lambda_{1} v_{1}$, on the other hand side $A \cdot v_{2}=\lambda_{2} v_{2}=\lambda_{2} m v_{1}$, thus $m\left(\lambda_{1}-\lambda_{2}\right) v_{1}=0$, this contradicts to $\lambda_{1} \neq \lambda_{2}$.

Corollary 1 Suppose an $n \times n$ matrix A has n different eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$. Then the corresponding eigenvectors $x^{(1)}, \ldots, x^{(n)}$ form a (eigen)basis.

2.3 Representation of a Matrix in Terms of Eigenvalues and Eigenvectors

Suppose an $n \times n$ matrix A has n eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and

$$
x^{(1)}=\left(\begin{array}{c}
x_{1}^{(1)} \\
\ldots \\
x_{n}^{(1)}
\end{array}\right), \ldots, x^{(n)}=\left(\begin{array}{c}
x_{1}^{(n)} \\
\ldots \\
x_{n}^{(n)}
\end{array}\right)
$$

are the corresponding linearly independent eigenvectors. Form two matrixes, first the diagonal matrix whose diagonal elements are eigenvalues and the second the matrix whose columns are eigenvectors

$$
\Lambda=\left(\begin{array}{ccc}
\lambda_{1} & \ldots & 0 \\
\ldots & \ldots & \ldots \\
0 & \ldots & \lambda_{n}
\end{array}\right), \quad S=\left(\begin{array}{ccc}
x_{1}^{(1)} & \ldots & x_{1}^{(n)} \\
\ldots & \ldots & \ldots \\
x_{n}^{(1)} & \ldots & x_{n}^{(n)}
\end{array}\right) .
$$

Note that since of Theorem 4 the matrix S is invertible.
Theorem $5 A=S \cdot \Lambda \cdot S^{-1}$.

Example. Find a 3×3 matrix A which eigenvalues and eigenvectors are:

$$
\begin{array}{ll}
\lambda_{1}=3, & x^{(1)}=(-3,2,1)^{T} \\
\lambda_{2}=-2, & x^{(2)}=(-2,1,0)^{T} \\
\lambda_{3}=1, & x^{(3)}=(-6,3,1)^{T}
\end{array}
$$

Solution. $\Lambda=\left(\begin{array}{ccc}3 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1\end{array}\right) \quad S=\left(\begin{array}{ccc}-3 & -2 & -6 \\ 2 & 1 & 3 \\ 1 & 0 & 1\end{array}\right)$. Then

$$
A=S \cdot \Lambda \cdot S^{-1}=\left(\begin{array}{ccc}
-3 & -2 & -6 \\
2 & 1 & 3 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right) \cdot\left(\begin{array}{ccc}
-3 & -2 & -6 \\
2 & 1 & 3 \\
1 & 0 & 1
\end{array}\right)^{-1}
$$

which can be directly calculated.
Example. Find the matrix A^{100}, where $A=\left(\begin{array}{cc}41 & -30 \\ 56 & -41\end{array}\right)$.

Solution. First find eigenvalues and eigenvectors. The solution of the characteristic equation gives

$$
A=\left|\begin{array}{cc}
41-\lambda & -30 \\
56 & -41-\lambda
\end{array}\right|, \quad \lambda^{2}-1=0, \quad \lambda_{1}=1, \quad \lambda_{2}=-1
$$

Furthermore, solving the suitable systems we obtain corresponding eigenvectors $x^{(1)}=(3,4)^{T}, \quad x^{(2)}=(5,7)^{T}$. Thus $\Lambda=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \quad S=\left(\begin{array}{ll}3 & 5 \\ 4 & 7\end{array}\right)$. Then

$$
\begin{gathered}
A^{100}=\left(S \cdot \Lambda \cdot S^{-1}\right) \cdot\left(S \cdot \Lambda \cdot S^{-1}\right) \cdot \ldots \cdot\left(S \cdot \Lambda \cdot S^{-1}\right)=S \cdot \Lambda^{100} \cdot S^{-1}= \\
\left(\begin{array}{ll}
3 & 5 \\
4 & 7
\end{array}\right) \cdot\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)^{100} \cdot\left(\begin{array}{ll}
3 & 5 \\
4 & 7
\end{array}\right)^{-1}= \\
\left(\begin{array}{ll}
3 & 5 \\
4 & 7
\end{array}\right) \cdot\left(\begin{array}{cc}
1^{100} & 0 \\
0 & (-1)^{100}
\end{array}\right) \cdot\left(\begin{array}{cc}
7 & -5 \\
-4 & 3
\end{array}\right)= \\
\left(\begin{array}{ll}
3 & 5 \\
4 & 7
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \cdot\left(\begin{array}{cc}
7 & -5 \\
-4 & 3
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
\end{gathered}
$$

2.4 Similar Matrices

Two matrices A and B are called similar if there exists an invertible matrix S such that $B=S^{-1} \cdot A \cdot S$.

Theorem 6 Similarity of matrices is an equivalence relation.
Theorem 7 If A and B are similar, then
(i) $|A-\lambda I|=|B-\lambda I|$;
(ii) $\operatorname{spec}(A)=\operatorname{spec}(B)$;
(iii) $|A|=|B|$;
(iv) $\operatorname{rank}(A)=\operatorname{rank}(B)$;
(iii) $\operatorname{tr}(A)=\operatorname{tr}(B)$.

2.5 Diagonalization of a Matrix

A square matrix A is called diagonalizable if it is similar to a diagonal matrix, i.e. if there exists an invertible matrix S such that $S^{-1} \cdot A \cdot S$ is a diagonal matrix.

Theorem 8 If an $n \times n$ matrix A has n different eigenvalues then it is diagonalizable.

Indeed, as we already know in this case $A=S \cdot \Lambda \cdot S^{-1}$. Then, multiplying this equality by S^{-1} and S respectively from right and left we obtain

$$
S^{-1} \cdot A \cdot S=S^{-1} \cdot\left(S \cdot \Lambda \cdot S^{-1}\right) \cdot S=\Lambda
$$

which is diagonal matrix.
Thus the existence of n distinct eigenvalues is a sufficient condition for diagonalizability, but not necessary:
Example. The identity matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ is already diagonal, nevertheless it has two equal eigenvalues $\lambda_{1}=\lambda_{2}=1$. By the way, any vector $v \in R^{2}$ is an eigenvector.

Furthermore, there are nondiagonalizable matrixes:
Example. The matrix $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ has two equal eigenvalues $\lambda_{1}=\lambda_{2}=1$ and the corresponding eigenvector is $v=(1,0)$, so in this case the algebraic degree is 2 and the geometric degree is 1 (see above). This matrix is not diagonalizable.
Example. The matrix $\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$ has no real eigenvalues, consequently no eigenveqtors. This matrix is not diagonalizable.

Which $n \times n$ matrices are diagonlizable?

1. Matrices with n distinct eigenvalues.
2. Matrices with n linearly independent eigenvectors.
3. Symmetric matrices $\left(A=A^{t}\right)$.

Let us prove the last proposition for a 2×2 symmetric matrix

$$
A=\left(\begin{array}{ll}
a & b \\
b & d
\end{array}\right)
$$

First let us prove that A has only real eigenvalues:
$|A-\lambda I|=\left|\begin{array}{cc}a-\lambda & b \\ b & d-\lambda\end{array}\right|=(a-\lambda) \cdot(d-\lambda)-b^{2}=\lambda^{2}-(a+d) \cdot \lambda+a d-b^{2}=0$, the discriminant of this quadratic equation $D=(a-d)^{2}+4 b^{2} \geq 0$, thus the characteristic quadratic equation has only real roots.

Consider two cases.

1. Suppose we have a multiple root $\lambda_{1}=\lambda_{2}$, it happens when $D=0$, that is if $a=d, b=0$, in this case $A=\left(\begin{array}{cc}a & 0 \\ 0 & a\end{array}\right)$ is already a diagonal matrix.
2. Now assume that $\lambda_{1} \neq \lambda_{2}$. By Theorem above two distinct real eigenvalues guarantee the diagonalizability.

Exercises

1. Let $\left(\begin{array}{cc}-1 & 3 \\ 2 & 0\end{array}\right)$.
(a) Check that $\lambda=2$ is an eigenvalue of A.
(b) Check that $\binom{1}{1}$ is a corresponding eigenvector of A.
(c) Find all eigenvalues and corresponding eigenvectors of A.
2. Find the eigenvalues and eigenvectors for the matrix $\left(\begin{array}{ccc}1 & 0 & 2 \\ 0 & 5 & 0 \\ 3 & 0 & 2\end{array}\right)$.
3. Suppose $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is a Markov matrix, that is $a+c=1, b+d=1$. Show that $\lambda=1$ is it's eigenvector.
4. Find eigenvalues of an upper-triangular matrix $\left(\begin{array}{lll}a & b & c \\ 0 & d & e \\ 0 & 0 & f\end{array}\right)$.
5. For each of the following matrix A find diagonal matrix Λ and invertible matrix S so that $A=S \cdot \Lambda \cdot S^{-1}$

$$
\begin{array}{cll}
(a)\left(\begin{array}{cc}
3 & 0 \\
1 & 2
\end{array}\right) . & (b)\left(\begin{array}{cc}
1 & -1 \\
2 & 4
\end{array}\right) . \\
(c)\left(\begin{array}{ccc}
3 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right) . & (d)\left(\begin{array}{ccc}
4 & -2 & 2 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
\end{array}
$$

Exercises 23.1-23.7, 23.15.

Homework

1. Exercise 23.2
2. Show that a 2×2 symmetric matrix $\left(\begin{array}{cc}a & b \\ b & d\end{array}\right)$ has real eigenvalues. In which case it has just one eigenvalue?
3. Show that a 2×2 symmetric matrix $\left(\begin{array}{cc}a & b \\ b & d\end{array}\right)$ has two orthogonal eigenvectors (hint: in the case of two eigenvalues $\lambda_{1} \neq \lambda_{2}$ consider the inner product $A v_{1} \cdot v_{2}$ and use $A v_{1} \cdot v_{2}=v_{1} \cdot A^{T} v_{2}$, in the case $\lambda_{1}=\lambda_{2}$ characterize A).
4. Show that each symmetric 2×2 matrix $\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)$ can be diagonalized by an orthogonal matrix P.
5. Find a and b for which two vectors $v_{1}=\left(\frac{\sqrt{2}}{2}, a\right)$ and $v_{2}=\left(b, \frac{\sqrt{2}}{2}\right)$ form an orthnormal basis of R^{2}.

Summary

Linear map $f: R^{n} \rightarrow R^{m}: f(v+w)=f(v)+f(w), \quad f(c \cdot x)=c \cdot f(x)$. $f(v)=A \cdot v$ where A is a matrix whose columns are $f\left(e_{1}\right), \ldots, f\left(e_{n}\right) \in R^{m}$. $f: R^{n} \rightarrow R^{n}$ is bijective iff $\operatorname{det}(A) \neq 0$
$\lambda \in R$ and a nonzero vector $x \in R^{n}$ are called respectively eigenvalue and eigenvector of A if $A \cdot x=\lambda \cdot x$.
$\operatorname{spec}(\mathbf{A})$ is the set of all eigenvalues of A.
Eigenspace of λ : the subspace spanned by all its eigenvectors.
The geometric degree of λ is dim of its eigenspace.
Eigenvalues of A are solutions of characteristic equation $\operatorname{det}(A-\lambda I)=$ 0.

Eigenvectors of eigenvalue λ are solutions of $(A-\lambda I) v=0$.
Algebraic degree of $\lambda^{*} \in \operatorname{spec}(A)$ is its multiplicity in $\operatorname{det}(A-\lambda I)=0$.
Algebraic degree \geq geometric degree.
Viett Theorem: If A has n eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ then $|A|=\lambda_{1} \cdot \ldots \cdot \lambda_{n}$ and $\operatorname{tr}(A)=a_{11}+\ldots+a_{n n}=\lambda_{1}+\ldots+\lambda_{n}$.

If $\left\{\lambda_{1}, \lambda_{2}, \ldots \lambda_{k}\right\}=\operatorname{spec}(A)$ and $i \neq j \Rightarrow \lambda_{i} \neq \lambda_{j}$ then corresponding eigenvectors v_{1}, \ldots, v_{k} are lin. indep.

If A has n different eigenvalues, then corresponding eigenvectors form eigenbasis.

If A has n eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ and eigenbasis $\left(x^{(1)}, \ldots, x^{(n)}\right)$ then $A=$ $S \Lambda S^{-1}$ or $\Lambda=S^{-1} A S$ where $\Lambda=\left(\begin{array}{ccc}\lambda_{1} & \ldots & 0 \\ \ldots & \ldots & \ldots \\ 0 & \ldots & \lambda_{n}\end{array}\right) \quad S=\left(\begin{array}{ccc}x_{1}^{(1)} & \ldots & x_{1}^{(n)} \\ \ldots & \ldots & \ldots \\ x_{n}^{(1)} & \ldots & x_{n}^{(n)}\end{array}\right)$.
A and B are similar if $B=S^{-1} \cdot A \cdot S$. In this case $|A-\lambda I|=\mid B-$ $\lambda I|, \quad \operatorname{spec}(A)=\operatorname{spec}(B), \quad| A|=|B|, \quad \operatorname{rank}(A)=\operatorname{rank}(B), \quad \operatorname{tr}(A)=\operatorname{tr}(B)$.

