
Reading [SB] Ch. 10, pp. 199-236.

1 Vector Algebra

1.1 Euclidian Space Rn

R1 is the real line.
R2 = {(x1, x2), x1, x2 ∈ R} is the Euclidian 2-space.
Rn = {(x1, ..., xn), xi ∈ R} is the Euclidian n-space which consists of n-tuples
of real numbers.

1.1.1 Vectors

A vector is an object which has a magnitude (or length) and direction. Graph-
ically a vector is represented as an arrow, connecting an initial point P with
a terminal point Q, notation

−→
PQ.

Two arrows represent the same vector if they have the same magnitude
and direction.

Any two points P = (p1, ..., pn), Q = (q1, ..., qn) ∈ Rn determine the

vector
−→
PQ. This vector has coordinates and

−→
PQ can be written as row vector

(q1 − p1, ..., qn − pn)

or column vector 


q1 − p1

...
qn − pn


 .

Any vector is equivalent to the vector of the same magnitude and direction
whose initial point is the origin.

Any vector can be identified with its terminal point when as initial point
is assumed the origin.

1.1.2 The Algebra of Vectors

Vector addition: For x = (x1, ... , xn), y = (y1, ... , yn) ∈ Rn the sum is
defined by

x + y = (x1 + y1, ... , xn + yn).
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Scalar multiplication: for c ∈ R and x = (x1, ... , xn) ∈ Rn let

c · x = (c · x1, ... , c · xn).

These operations satisfy the following conditions:
(1) u + (v + w) = (u + v) + w,
(2) The zero vector O = (0, ... , 0) ∈ Rn is neutral with respect to summation
O + v = v + O = v,
(3) for each v = (x1, ... , xn) ∈ Rn there exists opposite vector (−v) =
(−x1, ..,−xn) ∈ Rn s.t. v + (−v) = O,
(4) v + w = w + v.
(5) r · (s · v) = (r · s) · v, 1 · v = v for each r, s ∈ R .
(6) (r + s) · v = r · v + s · v, r · (v + w) = r · v + r · w.

1.2 Inner Product

The inner product of two vectors x = (x1, ... , xn), y = (y1, ... , yn) ∈ Rn is
defined as the number

x · y = x1 · y1 + ... + xn · yn =
n∑

k=1

xk · yk.

Properties of inner product:
(1) u · v = v · u,
(2) u · (v + w) = u · v + u · w,
(3) u · rv = r(u · v) = ru · v,
(4) u · u ≥ 0,
(5) u · u = 0 ⇒ u = 0,

Some important concepts concerning vectors such as length, angle, dis-
tance can be expressed in terms of inner product.

1.2.1 Norm of a Vector

The Euclidian norm (length) of a vector x = (x1, ... , xn) ∈ Rn is given

by ||x|| =
√

x2
1 + ... + x2

n. It fact the norm can be expressed in terms of inner
product

||x|| =√x · x.

Generally, a norm on Rn is a function ||...|| : Rn → R which satisfies the
conditions

1. ||v|| > 0 if v 6= 0 and ||v|| = 0 if v = 0.

2. ||α · v|| = |α| · ||v||.
3. ||v + w|| ≤ ||v||+ ||v||.
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The above Euclidian norm

||x||E =
√

x2
1 + ... + x2

n

is a norm: it satisfies the above three conditions.

1.2.2 Some Exotic Norms*

There are other norms too:

Manhattan norm (Taxicab norm)

||x||1 = |x1|+ ... + |xn|.

p-norm

||x||p = (|x1|p + ... + |xn|p)
1
p .

Maximum norm

||x||∞ = max(|x1|, ... , |xn|).

Note that ||x||p for p = 1 coincides with Manhattan norm ||x||M and for
p = 2 coincides with Euclidian norm ||x||E. Besides the limit limp→∞||x||p
coincides with Maximum norm ||x||∞.

1.2.3 Metric in Rn

Metric (distance) is a function of two arguments d(x, y) which satisfies the
following axioms

1. d(a, b) ≥ 0, d(a, b) = 0 ⇔ a = b;
2. d(a, b) = d(b, a);
3. d(a, c) + d(c, b) ≥ d(a, b).

Any norm ||x|| determines a metric

d(x, y) = ||x− y||.

The Euclidian metric in Rn is given by

d(x, y) = ||(x1, ... , xn)− (y1, ... , yn)|| =
√

(x1 − y1)2 + ... + (xn − yn)2.
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1.2.4 Some Exotic Metrics*

The Manhattan norm induces the Manhattan metric

dM(x, y) = |x1 − y1|+ ... + |xn − yn|.

The Maximum norm induces the Chessboard metric: the minimal
number of moves of chess king to travel from x to y.

dMax(x, y) = max(|x1 − y1|, ... , |xn − yn|.

Any norm ||x|| induces the British rail metric

dBR(x, y) = ||x||+ ||y|| and dBR(x, x) = 0.

1.2.5 Angle Between Two Vectors

Any two vectors x, y ∈ Rn (with initial points at the origin) determine a
plane. In that plane we can measure the angle α between these two vectors.
In fact the inner product can be expressed in terms of the length and the
angle between them: if the angle between vectors x, y ∈ Rn is α, then

x · y = ||x|| · ||y|| · cos α.

Why? Because

||x− y||2 = ||x||2 + ||y||2 − 2||x|| · ||y|| · cos α

and
||x− y||2 = (x− y) · (x− y) = x · x + 2x · y + y · y =

||x||2 + ||y||2 − 2x · y,

that is it!

This formula can be used to find the angle between two vectors:

cos α =
x · y

||x|| · ||y|| =
x1 · y1 + ... + xn · yn√

x2
1 + ... + x2

n ·
√

y2
1 + ... + y2

n

.

The denominator of this expression is positive thus the sign of cos α coincides
with the sign of x · y. Consequently

α is acute if x · y > 0;

α is obtuse if x · y < 0;

α is right if x · y = 0.
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The last condition means that x and y are orthogonal if and only if

x · y = 0.

Example. Consider the rectangle determined by vectors (
√

3, 0) and (0, 1).
Find the angle between the diagonals of this rectangle.
Solution. The diagonals are the vectors d1 = (

√
3, 1) and d2 = (

√
3− 0, 0−

1) = (
√

3,−1), thus

cos α =
d1 · d2

||d1|| · ||d1|| =
3− 1

2 · 2 =
1

2
.

1.3 Convexity

1.3.1 Lines, Half-Lines, Segments

Let x, y be two points in Rn and s, t two real numbers such that s + t = 1.
The weighted average of x and y with weights s and t is defined as the point

s · x + t · y.

Note that if s = t = 1
2

this is the usual average, or the midpoint.
If s = 1, t = 0 then this is x.
If s = 0, t = 1 then this is y.

Generally, let x, y be two different points in Rn. The straight line x, y is
the subset of Rn consisting of points z = x + t(y − x), i.e.

{z = (1− t) · x + t · y, t ∈ R}.
The closed half-line x, y with the origin at x is defined as the subset of

Rn consisting of points

{z = (1− t) · x + t · y, t ∈ R, t ≥ 0}.
The open half-line x, y with the origin at x is defined as the subset of Rn

consisting of points

{z = (1− t) · x + t · y, t ∈ R, t > 0}.
The line segment x, y is defined as

[x, y] = {(1− t)x + ty, 0 ≤ t ≤ 1}.

1.3.2 Convex Sets

A subset X ⊂ Rn is called convex if, whenever it contains two points x, y ∈
X, it contains also the line segment

[x, y] = {(1− t)x + ty, 0 ≤ t ≤ 1}.
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1.3.3 Cone

A cone with vertex x is a subset C ⊂ Rn with the following property: if
y ∈ C then the whole closed half line

{(1− t)x + ty, t ≥ 0}

also belongs to C.

2 Economical Examples

2.1 Budget Sets in Commodity Space

2.1.1 Commodity Bundle

Assume an economy with l commodities. Let xi denote the amount of com-
modity i. A commodity bundle is defined as a vector with nonnegative coor-
dinates

x = (x1, ... , xl) ∈ Rl, xi ≥ 0.

The set of all commodity bundles is in the nonnegative orthant of Rl

{(xl, ..., xl), x1 ≥ 0, ... , xl ≥ 0}

and is called a commodity space.

2.1.2 Price System

Let pi > 0 denote the price of commodity i. The vector p = (p1, ... , pl) ∈ Rl

is called a price system.

2.1.3 The Value of an Action

The cost of purchasing commodity bundle x = (x1...., xl) ∈ Rl by the price
system p = (p1, ... , pl) ∈ Rl is

p1x1 + ... + plxl = p · x,

that is the inner product of vectors p · x.

2.1.4 Consumers Budget Set

A consumer with income I can purchase only bundles x such that

p · x = p1 · x1 + ... + pl · xl ≤ I

This subset of commodity space is called the consumer’s budget set.

It is interesting to observe the budget set for l = 2.
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In this case the budget set is the triangle with vertices

(0, 0), (
I

p1

, 0), (0,
I

p2

).

Note that the price vector p is orthogonal (normal) to the line ( I
p1

, 0), (0, I
p2

):
indeed, the direction vector of this line is

v = (0,
I

p2

)− (
I

p1

, 0) = (0− I

p1

,
I

p2

− 0) = (− I

p1

,
I

p2

),

then the inner product is

p · v = (p1, p2) · (− I

p1

,
I

p2

) = −I + I = 0.

2.2 Production Sets

2.2.1 Production Set for One Producer

Assume again that we have an economy with l commodities.
A production plan, or briefly a production, is a vector

y = (y1, ... , yl) ∈ Rl

where yi is the quantity of the commodity i which is produced by our pro-
ducer, in this case yi is positive; or the quantity of the commodity i which is
used in the production, in this case yi is negative. If a commodity i is neither
in the input, nor in the output of our production, then yi = 0.

The set of all possible productions (production plans) for our producer is
called production set and is denoted by Y . This is a subset of Rl.

2.2.2 Producer’s Total Profit

Given a price system p = (p1, ... , pl) ∈ Rl and a production (production
plan) y = (y1, ... , yl) ∈ Rl. Then the total profit of our producer is

p1 · y1 + ... + pl · yl = p · y.

2.2.3 Profit Maximization

Assuming a price system p is given (an action does not affect prices) a pro-
ducer chooses in his production set Y so as to maximize his profit. The
resulting action is called an equilibrium of the producer relative to p.

Depending on p and Y such an equilibrium y either exists and is unique,
or there are many equilibrium actions, or does not exists at all.

Mathematically this means the following problem: given a vector p ∈ Rl

and a subset Y ⊂ Rl. Find y ∈ Y which maximizes the inner product p · y.
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2.2.4 Assumptions on a Production Set*

A production set Y can satisfy some economically inspired assumptions.

1. 0 ∈ Y Possibility of inaction. This property means that it is possible
for a producer not to do anything: no input, no output.

2. Y
⋂

Ω ⊂ {0} Impossibility of free production. This property means
that a production with no negative coordinates ( no input!) is only zero
production (here Ω = {y = (y1, ... , yl), each yi ≥ 0} is the set of all vectors
with non-negative coordinates).

3. Y
⋂−Y ⊂ {0} Irreversibility. This property means that if a nonzero

production y is possible, then −y is not possible.

4. Y + Y ⊂ Y Additivity. This property means that if production plans y
and y′ both are possible, then their sum y+y′ is possible too, that is y, y′ ∈ Y
implies y + y′ ∈ Y .

5. Y is convex set. This property means that if production plans y and y′

both are possible, then their weighted average (1− t)y + ty′ is also possible,
that is y, y′ ∈ Y implies (1− t)y + ty′ ∈ Y .

6. Y is a cone with vertex 0 (constant return to scale). This property
means that if a production plan y is possible, then t·y for t ≥ 0 is also possible,
that is y ∈ Y implies ty ∈ Y, t ≥ 0.

3 Lines and Planes

3.1 Lines in Rn

In Rn a line is completely determined by two things: a point p = (p1, ... , pn)
on the line and a direction vector v = (v1, ... , vn) from the point p. The
parametric representation of this line is

x(t) = p + tv, t ∈ R.

In coordinates

(x1(t), ... , xn(t)) = (p1 + tv1, ... , pn + tvn),

or
x1(t) = p1 + tv1,
x2(t) = p2 + tv2,
... ... ...
xn(t) = pn + tvn.
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Another way to determine a line is to identify two points on the line.
Suppose a line goes trough the points p and q. Then this is a line which
passes trough p in the direction of the vector v = q − p, thus

x(t) = p + tv = p + t(q − p) = (1− t)p + tq.

Equivalently, the equation of this line is

x(t1, t2) = t1p + t2q, t1 + t2 = 0.

Line segment joining p to q:

{(1− t)p + tq, 0 ≤ t ≤ 1},

indeed, for t = 0 we have x(0) = p and for t = 1 we have x(t) = q.
The midpoint between p and q corresponds to t = 1

2
thus this is the point

1
2
p + 1

2
q.

Example. Is the point x = (0.5, 1, 1) on the line which goes trough p =
(1, 0, 0) and q = (0, 2, 2)?
Solution. The parameterized equation of this line is x(t) = (1− t)p + tq =
(1 − t)(1, 0, 0) + t(0, 2, 2) = (1 − t, 2t, 2t). The coordinates (0.5, 1, 1) of the
point x satisfy this equation for t = 0.5, so x is on this line. Moreover, since
t = 0.5, then x is the midpoint of the [p, q] segment.

3.2 Lines in R2

In R2 a line can be determined also by non-parameterized equation

ax1 + bx2 + c = 0.

For example x2 = 2x1 + 3 and x1 = 5 are non-parameterized equations of
lines.

3.2.1 From Non-Parametric to Parametric

If a line is given by an non-parameterized equation

ax1 + bx2 + c = 0,

then it is very easy to turn it to parameterized equation

(x1(t) = p1 + v1t, x2(t) = p2 + v2t) :

just take x1(t) = t and solve x2 from the given non-parameterized equation
x2 = −a

b
x1 − c

b
, thus x2(t) = −a

b
t − c

b
. So the corresponding parametric

equation is

(x1(t) = t, x2(t) = −a

b
t− c

b
).
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3.2.2 From Parametric to Non-Parametric

Conversely, if a line is given by a parameterized equation

(x1(t) = p1 + v1t, x2(t) = p2 + v2t)

then to turn it to non-parameterized one just solve these two equations for
t:

t =
x1 − p1

v1

, t =
x2 − p2

v2

and set the equation
x1 − p1

v1

=
x2 − p2

v2

.

Try to prove the following
Theorem. Suppose a line l is given by a parametric equation

(x1(t) = p1 + v1t, x2(t) = p2 + v2t),

and by a non-parametric equation

ax1 + bx2 + c = 0.

Then the vector (a, b) is a normal (orthogonal) to the line l, that is

(a, b) · (v1, v2) = 0.

Proof. The parametric form of ax1 + bx2 + c = 0 is (x1(t) = t, (x1(t) =
−c
b
− a

b
t), so the direction vector is (v1, v2) = (1,−a

b
). Then (a, b) · (v1, v2) =

a− b · a
b

= a− a = 0.

Example. Find the parameterized and non-parameterized equations of the
line which passes the points p = (0, 2), q = (4, 0) ∈ R2.
Solution. The parameterized equation of this line is

x(t) = (1− t)p + tq = (1− t)(0, 2) + t(4, 0) = (4t, 2− 2t),

or
x1(t) = 4t,
x2(t) = 2− 2t.

It is easy to turn this parameterized equation to non-parameterized one:
solve t from both equations t = x1

4
, t = 2−x2

2
, then the non-parameterized

equation is

x1

4
=

2− x2

2
, x1 = 4− 2x2, x1 + 2x2 − 4 = 0.

Example. Let p1 = (0, 2), q1 = (4, 0), p2 = (0, 4), q2 = (2, 0). Find the
intersection of lines p1q1 and p2q2.
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Solution. The equation of the p1q1 line is

x(t) = (1− t)p1 + tq1 = (1− t)(0, 2) + t(4, 0) = (4t, 2− 2t).

The equation of the p2q2 line is

y(s) = (1− s)p2 + sq2 = (1− 4)(0, 2) + s(2, 0) = (2s, 4− 4s).

The intersection point is a point p such that

x(t) = p = y(s)

for some t and s. So in order to find the intersection of these two lines, we
solve the system

{
4t = 2s

2− 2t = 4− 4s

∣∣∣∣∣
4t− 2s = 0
−2t + 4s = 2

,

whose solution is t = 1
3
, s = 2

3
. Thus the intersection point is x(1

3
) = (4

3
, 4

3
),

or y(2
3
) = (4

3
, 4

3
) which of course is the same point.

3.3 Planes in Rn

A plane in Rn is completely determined by three things: a point p = (p1, ... , pn)
on the plane and two linearly independent direction vectors v = (v1, ... , vn)
and w = (w1, ... , wn) from the point p. The parametric representation of
this plane is

x(s, t) = p + sv + tw, s, t ∈ R.

In coordinates

(x1(s, t), ... , xn(s, t)) = (p1 + sv1 + tw1, ... , pn + svn + twn),

or
x1(s, t) = p1 + sv1 + tw1,
x2(s, t) = p2 + sv2 + tw2,
... ... ...
xn(s, t) = pn + svn + twn.

Another way to determine a plane is to identify three points on it. Sup-
pose a plane goes trough the points p, q and r. Then this is a plane which
passes trough p in the direction of the vectors v = q− p and w = r− p, thus

x(s, t) = p + sv + tw = p + s(q − p) + t(r − p) = (1− s− t)p + sq + tr.

Equivalently, the equation of this plane is

x(t1, t2, t3) = t1p + t2q + t3r, t1 + t2 + t3 = 0.

If we assume ti ≥ 0, then this describes a point from the triangle on the
plane with vertices p, q, r. The numbers (t1, t2, t3) are called barycentric
coordinates of this point.

What are brycentric coordinates of vertices p, q, r? What are the barycen-
tric coordinates of the barycenter of triangle?
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3.4 Planes in R3

A plane in R3 is determined by the following two things: by a point p =
(x0, y0, z0) on it and by a normal - a vector n = (a, b, c) orthogonal to the
plane. So a point x = (x, y, z) belongs to plane iff x− p is orthogonal to n:

0 = n · (x− p) = (a, b, c) · (x− x0, y − y0, z − z0) =

a(x− x0) + b(y − y0) + c(z − z0).

So the nonparametric equation of a plane in R3 is

ax + by + cz = d,

here d = ax0 + by0 + cz0.

3.4.1 From Non-Parametric to Parametric

How to go from non-parametric equation

ax + by + cz = d,

to parametric one?
Just find three point on the plane, say

p = (
d

a
, 0, 0), q = (0,

d

b
, 0), r = (0, 0,

d

c
)

and then write the parametric equation determined by these three points.

3.4.2 From Parametric to Non-Parametric

How to go from parametric equation

(x0 + sv1 + tw1, y0 + sv2 + tw2 , z0 + sv3 + tw3)

to a nonparametric one ax + by + cz = d?
Just find a normal - a vector n = (a, b, c) orthogonal to v and w, that is

solve the system {
n · v = 0
n · w = 0

and then find d substituting (x0, y0, z0).

Example. Suppose a plane is given by

x(s, t) = s, y(s, t) = t, z(s, t) = s.

Write for this plane p, v, w, a normal vector n and the nonparametric
equation.
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Solution. p = (0, 0, 0), v = (1, 0, 1), w = (0, 1, 0). Let n = (a, b, c), then
n · v = 0 and n · w = 0 give the system

{
a + c = 0
b = 0

whose solution is, for example, a = 1, b = 0, c = −1, so the nonparametric
equation looks as

x− z = d.

To find d let us substitute p = (0, 0, 0):

0 + 0 = d ⇒ d = 0.

Finally the nonparametric equation is x− z = 0. Try to draw this plane.
Here is the MAPLE command to plot this plane given by parametric

equation
> plot3d([s,t,s],s=-3..3,t=-3..3);
and here when it is given by nonparametric one
> plot3d(x,x=-3..3,y=-3..3);

Example. Suppose a plane is given by

x + y − z = 0.

Write the parametric equation for this plane. Plot this plane.

Solution. Let us find first three (noncolinear) points on this plane.
First substitute x = 0, y = 0, then z = 0, so one point is p = (0, 0, 0),

the origin.
Now substitute x = 1, y = 0, then z = 1, so the second point is q =

(1, 0, 1).
Finally, take x = 0, y = 1, then z = 1, so the third point is r = (0, 1, 1).
Thus the parametric equation of this plane is

p + s(q − p) + t(r − p) = (0, 0, 0) + s(1, 0, 1) + t(0, 1, 1) = (s, t, s + t).

Here is the MAPLE command to plot this plane given by parametric
equation

> plot3d([s,t,s+t],s=-3..3,t=-3..3);
and here when it is given by nonparametric one
> plot3d(x+y,x=-3..3,y=-3..3);

Example. Let l be the line of intersection of the planes

x + y − z = 4, and x + 2y + z = 3.
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Write the parametric equation of this line. At which point intersects this line
the plane x0y?

Solution. First find the equation of l: solve the system

{
x + y − z = 4
x + 2y + z = 3

> solve({x + y − z = 4, x + 2 ∗ y + z = 3});

y = -1 - 2 z, x = 5 + 3 z, z = z

so the equation of this intersection line is




x
y
z


 =




5 + 3t
−1− 2t

t


 .

At which point intersect this line the plane x0y? Just substitute z = t = 0,
then x = 5, y = −1.

Just recheck the solution using maple
> solve({x + y − z = 4, x + 2 ∗ y + z = 3, z = 0});

z = 0, y = -1, x = 5

> plot3d({4− x− y, 3− x− 2 ∗ y}, x = −6..6, y = −6..6);
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Exercises

1. Find the lengths of the vectors (i) (3, 4), (ii) (1, 2, 3).

2. Find the distances (i) d((0, 0), (3, 4)), (ii) d((5, 2), (1, 2)).

3. Find the lengths of the vectors (i) (3, 0, 0, 0), (ii) (1, 1, 1, 1).

4. Find the distances
(i) d((1, 2, 3, 4), (1, 0,−1, 0)), (ii) d((1, 2, 1, 2), (2, 1, 2, 1)).

5. Find the angle between the vectors u and v if (i) u = (1, 0), v = (−1, 1);
(ii) u = (1, 0, 0), v = (0, 0, 1).

6. Find the angle between the vectors u and v if (i) u = (1, 0), v = (2, 2);
(ii) u = (

√
3, 0), v = (0, 1).

7. Find a vector of length 1 which points in the same direction as (i)
(3,4); (ii) (6,0); (iii) (1,1,1); (iv) (-1,2,-3).

8. Find a vector of length 2 which points in the opposite direction to (i)
(3,4); (ii) (6,0); (iii) (1,1,1); (iv) (-1,2,-3).

9. Consider the parallelogram determined by vectors (1, 0) and (1, 1).
Find the angle between the diagonals of this parallelogram.

12. Derive parametric and nonparametric equations for the lines which
pass through each of the following pairs of points in R2:

a) (1,2) and (3, 6); b) (1,1) and (4,10); c) (3, 0) and (0, 4).

13. Write the parametric equations for each of the following lines:

a) x2 = 3x1 − 7;
b) 3x1 + 4x2 = 12.

12. Write nonparametric equations for each of the following lines:

a) x1(t) = 3− 4t, x2(t) = 1 + 2t;
b) x1(t) = 2t, x2(t) = 1 + t.

13. For which value of k the lines given by nonparameteric equations
x2 = 3x1 − 7 and 3x1 + kx2 = 12 does not intersect each other.

14. For which value of k the lines given by parameteric equations (x1(t), x2(t)) =
(3, 2) + t(−4, 2) and (x1(s), x2(s)) = (1, 2) + s(k, 2) does not intersect each
other.
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15. For which value of k the lines given by parameteric equations

(x1(t), x2(t), x3(t)) = (3, 2, 1) + t(−4, 2, 1)

and
(x1(s), x2(s), x3(s)) = (1, 2, 3) + s(k, 2, 1)

does intersect each other.

16. Let p1 = (0, 0, 4), q1 = (2
√

2, 2
√

2, 0), p2 = (0, 0, 4), q2 = (
√

2,
√

2, 0).
Find the intersection of lines p1q1 and p2q2.

17. Explain why the probability of intersection of randomly taken lines
in R2 is high and in R3 is very low.

18. Write equations of two lines whose intersection point is (i) (1, 2) ∈ R2,
(ii) (1, 2, 1) ∈ R3.

Exercises 10.1-10.41 from [SB].

Homework:
10.19, 10.20, 10.29, 10.36, 10.39 from [SB].
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Summary

For x = (x1, ... , xn), y = (y1, ... , yn) ∈ Rn:
Vector addition: x + y = (x1 + y1, ... , xn + yn).
Scalar multiplication: c · x = (c · x1, ... , c · xn).
Inner Product: x · y = x1 · y1 + ... + xn · yn =

∑n
k=1 xk · yk.

x · y = ||x|| · ||y|| · cos α.

Euclidian norm: ||x|| =√x · x.
Euclidian metric: d(x, y) = ||(x1, ... , xn)− (y1, ... , yn)||.
Angle Between Two Vectors:

cos α =
x · y

||x|| · ||y|| =
x1 · y1 + ... + xn · yn√

x2
1 + ... + x2

n ·
√

y2
1 + ... + y2

n

.

α is acute if x · y > 0; α is obtuse if x · y < 0; α is right if x · y = 0.
Convex Set: x, y ∈ X implies [x, y] = {(1− t)x + ty, 0 ≤ t ≤ 1} ⊂ X.
Cone: x, y ∈ X implies {(1− t)x + ty, 0 ≤ t} ⊂ X.

Parametric equation of a line in Rn:
By point and direction vector x(t) = p + tv, t ∈ R. In coordinates

(x1(t), ... , xn(t)) = (p1 + tv1, ... , pn + tvn).
By two points x(t) = (1− t)p + tq.
Nonparametric equation of a line in R2: ax1 + bx2 + c = 0
From non-parametric to parametric:

ax1 + bx2 + c = 0 −→ (x1(t) = t, x2(t) = −a

b
t− c

b
).

From parametric to non-parametric:

(x1(t) = p1 + v1t, x2(t) = p2 + v2t) −→ x1 − p1

v1

=
x2 − p2

v2

.

If a line l is given by ax1+bx2+c = 0 and (x1(t) = p1+tv1, x2(t) = p2+tv2)
then (a, b) · (v1, v2) = 0.

Parametric equation of a plane in Rn:
By point and two direction vectors x(s, t) = p + sv + tw, s, t ∈ R. In

coordinates (x1(s, t), ... , xn(s, t)) = (p1 + sv1 + tw1, ... , pn + svn + twn).
By three points x(s, t) = (1− s− t)p + sq + tr.
Nonparametric equation of a plane in R3: ax + by + cz = d
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