1 Determinants

[SB], Chapter 9, p.188-196. [SB], Chapter 26, p.719-739.
Bellow w'll study the central question: which additional conditions must satisfy a quadratic matrix A to be invertible, that is to have A^{-1} ? This question is DETERMINED by DETERMINANT.

1.1 Determinant

There is a function which assigns to an $n \times n$ matrix

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right)
$$

the real number denoted as

$$
|A|=\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|
$$

or $\operatorname{det} A$, called determinant of A which has the properties described bellow.

1.1.1 Properties of Determinant

1.

$$
\begin{aligned}
& \left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{i 1}+b_{i 1} & a_{i 2}+b_{i 2} & \ldots & a_{i n}+b_{i n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|= \\
& \left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{i 1} & a_{i 2} & \ldots & a_{i n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right|+\left|\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
\ldots & \ldots & \ldots & \ldots \\
b_{i 1} & b_{i 2} & \ldots & b_{i n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right| .
\end{aligned}
$$

2. If B is obtained from A by multiplying of each entry of row i by a scalar r then $|B|=r \cdot|A|$.
3. If a matrix B is obtained by interchanging two rows of A then $|B|=-|A|$.
4. $|I|=1$;
5. If two rows of A equal then $|A|=0$ (prove it using 3).
6. If a matrix A has an all-zero row then $|A|=0$ (prove it using 2).
7. Transform matrix A to matrix B by performing the elementary row operation of adding r times row i to row j of A to form row j of B (the other rows remain the same), then $|B|=|A|$ (prove it using 1,2,5).
8. $|A \cdot B|=|A| \cdot|B|$;
9. $\left|A^{-1}\right|=|A|^{-1}$ (prove it using 4,8).
10. $\left|A^{T}\right|=|A|$.

Remark 1. Since of the property 10 all the properties remain correct if we replace row by column.

Remark 2. The properties $1,2,3,4$ are very essential. They define determinant uniquely: using these properties, and their consequences $5,6,7$, we can transform a matrix to reduced row echelon form and trace the evolution of the determinant during this transformation, the final reduced row echelon
form is either identity matrix with determinant 1 , or a matrix with zero row, with determinant 0 .

The inductive definition of determinant will be given bellow.

1.2 Minors and Cofactors

For an $n \times n$ matrix A let $A_{i j}$ be the $(n-1) \times(n-1)$ submatrix obtained by deleting the i-th row and j -th column. The determinant of this matrix $M_{i j}=\left|a_{i j}\right|$ is called (i, j)-th minor of A.
$C_{i j}=(-1)^{i+j} M_{i j}$ is called (i, j)-th cofactor of A.
For example for $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right)$ we have

$$
\begin{gathered}
A_{21}=\left(\begin{array}{ll}
2 & 3 \\
8 & 9
\end{array}\right), \quad M_{21}=2 \cdot 9-8 \cdot 3=-6, \\
C_{21}=(-1)^{2+1}(-6)=(-1)^{3}(-6)=-(-6)=6 .
\end{gathered}
$$

1.3 Laplas Expansion - Inductive Definition of Determinant

For a matrix $A=\left(\begin{array}{ccccc}a_{11} & \ldots & a_{1 j} & \ldots & a_{1 n} \\ \ldots & \ldots & \ldots & \ldots & \\ a_{i 1} & \ldots & a_{i j} & \ldots & a_{i n} \\ \ldots & \ldots & \ldots & \ldots & \ldots \\ a_{n 1} & \ldots & a_{n j} & \ldots & a_{n n}\end{array}\right)$ the determinant $|A|$ can be calculated by i-th row expansion

$$
|A|=a_{i 1} \cdot C_{i 1}+a_{i 2} \cdot C_{i 2}+\ldots+a_{i n} \cdot C_{i n}=\sum_{k=1}^{n} a_{i k} \cdot C_{i k},
$$

or by j-th column expansion

$$
|A|=a_{1 j} \cdot C_{1 j}+a_{2 j} \cdot C_{2 j}+\ldots+a_{n j} \cdot C_{n j}=\sum_{k=1}^{n} a_{k j} \cdot C_{k j} .
$$

All row expansions as well as all column expansions give the same result, so Laplas expansion can be used as an inductive definition of determinant.

1.3.1 Expansion by Alien Cofactors

For a matrix

$$
A=\left(\begin{array}{cccc}
a_{11} & \ldots & \ldots & a_{1 n} \\
\ldots & \ldots & \ldots & \\
a_{i 1} & \ldots & \ldots & a_{i n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{k 1} & \ldots & \ldots & a_{k n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & \ldots & \ldots & a_{n n}
\end{array}\right)
$$

the i-th row expansion gives the determinant of A :

$$
|A|=a_{i 1} \cdot C_{i 1}+a_{i 2} \cdot C_{i 2}+\ldots+a_{i n} \cdot C_{i n}=\sum_{k=1}^{n} a_{i k} \cdot C_{i k}
$$

Here the entries of the i-th row

$$
a_{i 1}, a_{i 2}, \ldots, a_{i n}
$$

are multiplied by cofactors of the same i-th row

$$
C_{i 1}, C_{i 2}, \ldots, C_{i n}
$$

What happens if we multiply these cofactors by the entries of an alien, say k-th, row

$$
a_{k 1}, a_{k 2}, \ldots, a_{k n} ?
$$

Theorem. The expansion of a determinant by alien cofactors gives zero.
Proof. Consider the alien expansion which uses the entries of k-th row $a_{k 1}, \ldots, a_{k n}$ and cofactors of i-th row $C_{i 1}, \ldots, C_{i n}$

$$
a_{k 1} \cdot C_{i 1}+a_{k 2} \cdot C_{i 2}+\ldots+a_{i n} \cdot C_{i n}
$$

This is Laplas expansion of the matrix

$$
A^{\prime}=\left(\begin{array}{cccc}
a_{11} & \ldots & \ldots & a_{1 n} \\
\ldots & \ldots & \ldots & \\
a_{k 1} & \ldots & \ldots & a_{k n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{k 1} & \ldots & \ldots & a_{k n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & \ldots & \ldots & a_{n n}
\end{array}\right)
$$

with two equal rows, thus $\left|A^{\prime}\right|=0$.

1.3.2 Determinant of a 3×3 matrix

$$
\begin{gathered}
|A|=\left|\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right|= \\
a_{11} \cdot\left|\begin{array}{cc}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12} \cdot\left|\begin{array}{cc}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13} \cdot\left|\begin{array}{cc}
a_{21} & a_{22} \\
a_{31} & a_{33}
\end{array}\right|= \\
\left(a_{11} \cdot a_{22} \cdot a_{33}-a_{11} \cdot a_{23} \cdot a_{32}\right)- \\
\left(a_{12} \cdot a_{21} \cdot a_{33}-a_{12} \cdot a_{23} \cdot a_{31}\right)+ \\
\left(a_{13} \cdot a_{21} \cdot a_{33}-a_{13} \cdot a_{22} \cdot a_{31}\right)= \\
\left(a_{11} \cdot a_{22} \cdot a_{33}+a_{12} \cdot a_{23} \cdot a_{31}+a_{13} \cdot a_{21} \cdot a_{32}\right)- \\
\left(a_{13} \cdot a_{22} \cdot a_{31}+a_{11} \cdot a_{23} \cdot a_{32}+a_{12} \cdot a_{21} \cdot a_{33}\right) .
\end{gathered}
$$

1.4 Inverse Matrix

1.4.1 Adjoint Matrix

For a matrix

$$
A=\left(\begin{array}{cccc}
a_{11} & \ldots & \ldots & a_{1 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{i 1} & \ldots & \ldots & a_{i n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & \ldots & \ldots & a_{n n}
\end{array}\right)
$$

The adjoint matrix $a d j A$ is defined is the matrix

$$
\operatorname{adj} A=\left(\begin{array}{cccc}
C_{11} & \ldots & \ldots & C_{n 1} \\
\ldots & \ldots & \ldots & \ldots \\
C_{1 i} & \ldots & \ldots & C_{n i} \\
\ldots & \ldots & \ldots & \ldots \\
C_{1 n} & \ldots & \ldots & C_{n n}
\end{array}\right)
$$

This is the transpose of the matrix which consists of cofactors $C_{i j}$ of the elements $a_{i j}$ of A.

Theorem.

$$
A \cdot \operatorname{adj} A=\left(\begin{array}{cccc}
|A| & 0 & \ldots & 0 \\
0 & |A| & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots \\
0 & 0 & \ldots & |A|
\end{array}\right)
$$

Proof. Suppose $A \cdot a d j A=B=\left(b_{i j}\right)$. Let us calculate these $b_{i j}$-s. First calculate the diagonal elements $b_{i i}$:

$$
b_{i i}=\sum_{k+1}^{n} a_{i k} \cdot C_{i k},
$$

but this is the Laplas expansion by the i-th row, so $b_{i i}=|A|$.
Now calculate $b_{i j}$ for $i \neq j$:

$$
b_{i j}=\sum_{k+1}^{n} a_{i k} \cdot C_{j k},
$$

and this is the expansion by alien row, so $b_{i j}=0$. This completes the proof.

1.4.2 Inverse Matrix

From this theorem follows that the inverse A^{-1} of a matrix A exits if and only if A is nonsingular, that is $|A| \neq 0$, and it is defined as

$$
A^{-1}=\frac{1}{|A|} \cdot \operatorname{adj} A=\left(\begin{array}{ccccc}
\frac{C_{11}}{|A|} & \ldots & \ldots & \frac{C_{n 1}}{|A|} & \\
\ldots & \ldots & \ldots & & \\
\frac{C_{1 i}}{|A|} & \ldots & \ldots & \frac{C_{n i}}{|A|} & \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
\frac{C_{1 n}}{|A|} & \ldots & \ldots & \frac{C_{n n}}{|A|} &
\end{array}\right)
$$

1.5 Cramer's rule

For a system of n linear equations with n variables

$$
\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=c_{1} \\
\ldots \\
\ldots \\
\ldots \ldots \ldots \ldots \ldots \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=c_{n}
\end{array}\right.
$$

we define $n+1$ matrixes $A, A_{1}, A_{2}, \ldots, A_{n}$:

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right), \quad A_{k}=\left(\begin{array}{ccccc}
a_{11} & \ldots & c_{1} & \ldots & a_{1 n} \\
\ldots & \ldots & \ldots & \ldots & \ldots \\
a_{n 1} & \ldots & c_{n} & \ldots & a_{n n}
\end{array}\right)
$$

here A_{k} is obtained by replacing in A the k-th column by the column of constants c.

Bellow we'll use the k-th column expansion of $\left|A_{k}\right|$:

$$
\left|A_{k}\right|=c_{1} \cdot C_{1 k}+\ldots+c_{n} \cdot C_{n k} .
$$

Theorem. (Cramer's Rule) Let A be a nonsingular matrix i.e. $|A| \neq 0$. Then the system $A \cdot x=c$ has unique solution given by

$$
x_{k}=\frac{\left|A_{k}\right|}{|A|}, \quad k=1,2, \ldots, n
$$

Proof. The solution in vector form is given by $x=A^{-1} c$, that is

$$
\begin{gathered}
\left(\begin{array}{c}
x_{1} \\
\ldots \\
x_{n}
\end{array}\right)=\frac{1}{|A|} \cdot\left(\begin{array}{cccc}
C_{11} & C_{21} & \ldots & C_{n 1} \\
\ldots & \ldots & \ldots & \ldots \\
C_{1 n} & C_{2 n} & \ldots & C_{n n}
\end{array}\right) \cdot\left(\begin{array}{c}
c_{1} \\
\ldots \\
c_{n}
\end{array}\right)= \\
\frac{1}{|A|} \cdot\left(\begin{array}{c}
c_{1} \cdot C_{11}+c_{2} \cdot C_{21}+\ldots+c_{n} \cdot C_{n 1} \\
\ldots \\
c_{n} \cdot C_{1 n}+c_{2} \cdot C_{2 n}+\ldots+c_{n} \cdot C_{n n}
\end{array}\right)=\frac{1}{|A|} \cdot\left(\begin{array}{c}
\left|A_{1}\right| \\
\ldots \\
\left|A_{n}\right|
\end{array}\right)=\left(\begin{array}{c}
\frac{\left|A_{1}\right|}{|A|} \\
\ldots \\
\frac{\left|A_{n}\right|}{|A|}
\end{array}\right),
\end{gathered}
$$

this completes the proof.
What happens if the matrix A is singular that is if $|A|=0$? This will be answered latter.

1.5.1 Homogenous System

Homogenous system is a system with all $c_{i}=0$:

$$
\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=0 \\
a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=0 \\
\ldots . \\
a_{n 1} x_{1}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=0 .
\end{array},\right.
$$

in matrix form $A \cdot x=0$. Such a system is always consistent: $x_{1}=0, \ldots, x_{n}=$ 0 is a solution.

But are there nontrivial solutions too?
Theorem. A homogeneous system has nontrivial solution if and only if $\Delta=0$.

Now turn to the nonhomogenous system $A \cdot x=c$. If $|A| \neq 0$, then this system has unique solution given by Cramer formula.

If $|A|=0$, then, as we know, the system has no, or infinitely many solutions.

Theorem. Suppose \bar{x} is one particular solution of $A \cdot x=c$. Then any other solution looks as $\bar{x}+x_{0}$ where x is a solution of homogenous system $A \cdot x=0$.

2 Rank of a Matrix

2.1 Definition of the Rank

The rank of a matrix is maximum order of nonzero determinant that can be constructed from the rows and columns of that matrix.

2.2 How to Calculate the Rank

2.2.1 Calculating Minors

By definition the rank of a matrix A is r if there exists nonzero minor of degree r but all minors of higher degrees are zero.

In fact there is no need to check all higher minors:
Theorem. If in a matrix A there exists nonzero minor M of degree r and all minors bordering it (that is, minors of order $r+1$ and containing M) are equal to zero then $\operatorname{rank} \mathbf{A}=\mathbf{r}$.

2.2.2 Rank and Row Echelon Form

Theorem. If B is a row echelon form of a matrix A then $\operatorname{rank} A=\operatorname{rank} B$.
Theorem. The rank of a matrix in row echelon form coincides with the number of it's nonzero rows.

2.3 Solution of Systems of Linear Equations

2.3.1 Criterion of Consistence

Theorem. A linear system $A \cdot X=c$ is consistent if and only if the rank of the matrix A equals to the rank of augmented matrix $A \mid c$:

$$
\operatorname{rank}\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
a_{21} & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right)=\operatorname{rank}\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \mid c_{1} \\
a_{21} & \ldots & a_{2 n} \mid c_{2} \\
\ldots & \ldots & \ldots \\
a_{m 1} & \ldots & a_{m n} \mid c_{m}
\end{array}\right) .
$$

2.3.2 Solution of Consistent Systems

Suppose $\operatorname{rank}(A)=\operatorname{rank}(A \mid c)=r$. We can assume that the nonzero minor of degree r (the basic minor) is $M_{(1,2, \ldots, r) ;(1,2, \ldots, r)}$ (left upper corner).

In this case the $(r+1)$-th, $(r+2)$-th, \ldots, m-th equations are linear combinations of first r equations, so they can be ignored.

The first r equations we write in the form

$$
\left\{\begin{array}{l}
a_{11} x_{1}+\ldots+a_{1 r} x_{r}=c_{1}-\left(a_{1 r+1} x_{r+1}+\ldots+a_{1 n} x_{n}\right) \\
a_{21} x_{1}+\ldots+a_{2 r} x_{r}=c_{1}-\left(a_{2 r+1} x_{r+1}+\ldots+a_{2 n} x_{n}\right) \\
\ldots \\
a_{r 1} x_{1}+\ldots+a_{r r} x_{r}=c_{1}-\left(a_{r+1} x_{r+1}+\ldots+a_{n} x_{n}\right) .
\end{array}\right.
$$

The determinant of this system $M_{(1,2, \ldots, r) ;(1,2, \ldots, r)}$ is nonzero, thus for each values of free (or independent, or exogenous) variables $x_{r+1}, x_{r+2}, \ldots, x_{n}$ we can find by Cramer's rule unique basic (or dependent, or endogenous) variables $x_{1}, x_{2}, \ldots, x_{n}$.

Then $x_{1}, x_{2}, \ldots, x_{n}, x_{r+1}, x_{r+2}, \ldots, x_{n}$ is a solution of our system.

2.3.3 Example

We want to solve the system

$$
\left\{\begin{array}{c}
x+4 y+17 z+4 t=38 \\
2 x+12 y+46 z+10 t=98 \\
3 x+18 y+69 z+17 t=153
\end{array} .\right.
$$

Write the augmented matrix $(A \mid c)$ of this system

$$
\left(\begin{array}{cccc:c}
1 & 4 & 17 & 4 & 38 \\
2 & 12 & 46 & 10 & 98 \\
3 & 18 & 69 & 17 & 153
\end{array}\right)
$$

Let us start to calculate the rank of

$$
A=\left(\begin{array}{cccc}
1 & 4 & 17 & 4 \\
2 & 12 & 46 & 10 \\
3 & 18 & 69 & 17
\end{array}\right)
$$

The minor $\left|a_{11}\right|=1$ is nonzero, so the rank A is at last 1 . Now take the 2×2 minor
$\left|\begin{array}{cc}1 & 4 \\ 2 & 12\end{array}\right|$
bordering the previous nonzero minor. It is equal to $1 \cdot 12-2 \cdot 4=8 \neq 0$, so $\operatorname{rank} A$ is at last 2.

Next we take the 3×3 minor
$\left|\begin{array}{ccc}1 & 4 & 17 \\ 2 & 12 & 46 \\ 3 & 18 & 69\end{array}\right|$.
bordering the previous one. Calculation shows that it is zero, so this is bad choice. Let us try another 3×3 minor bordering previous nonzero 2×2 minor

$$
\left|\begin{array}{ccc}
1 & 4 & 4 \\
2 & 12 & 10 \\
3 & 18 & 17
\end{array}\right| .
$$

Calculation shows that this minor is equal to 8 . There are no larger minors in A, so this is a basic minor and $\operatorname{rank} A=3$.

Augmentation of A by c can not increase the rank, so the rank of $(A \mid c)$ is also 3 , thus the system is consistent.

So we have one free variable z and 3 basic variables x, y, t.
Next we rewrite the system so that the basic minor becomes the determinant of system

$$
\left\{\begin{aligned}
x+4 y+4 t & =38-17 z \\
2 x+12 y+10 t & =98-46 z \\
3 x+18 y+17 t & =153-69 z
\end{aligned}\right.
$$

and solve it by Cramer's rule:

$$
\begin{aligned}
& x=\frac{\Delta_{x}}{\Delta}=\frac{\left|\begin{array}{ccc}
38-17 z & 4 & 4 \\
98-46 z & 12 & 410 \\
153-69 z & 18 & 17
\end{array}\right|}{\left|\begin{array}{ccc}
1 & 4 & 4 \\
2 & 12 & 10 \\
3 & 18 & 17
\end{array}\right|}=\frac{80-40 z}{8}=10-5 z \\
& y=\frac{\Delta_{x}}{\Delta}=\frac{\left|\begin{array}{ccc}
1 & 38-17 z & 4 \\
2 & 98-46 z & 410 \\
3 & 153-69 z & 17
\end{array}\right|}{\left|\begin{array}{ccc}
1 & 4 & 4 \\
2 & 12 & 10 \\
3 & 18 & 17
\end{array}\right|}=\frac{32-24 z}{8}=4-3 z
\end{aligned}
$$

$$
t=\frac{\Delta_{x}}{\Delta}=\frac{\left|\begin{array}{ccc}
1 & 4 & 38-17 z \\
2 & 12 & 98-46 z \\
3 & 18 & 153-69 z
\end{array}\right|}{\left|\begin{array}{ccc}
1 & 4 & 4 \\
2 & 12 & 10 \\
3 & 18 & 17
\end{array}\right|}=\frac{24}{8}=3
$$

So the solution is

$$
x=15-5 z, \quad y=4-3 z, \quad z, \quad t=3 .
$$

Exercises

1. Evaluate the following determinants
(a) $\left(\begin{array}{lll}8 & 1 & 3 \\ 4 & 0 & 1 \\ 6 & 0 & 3\end{array}\right)$.
(b) $\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 7 & 5 \\ 3 & 6 & 9\end{array}\right)$.
(c) $\left(\begin{array}{lll}a & b & c \\ b & c & a \\ c & a & b\end{array}\right)$.
(d) $\left(\begin{array}{cccc}1 & 2 & 0 & 9 \\ 2 & 3 & 4 & 6 \\ 1 & 6 & 0 & -1 \\ 0 & -5 & 0 & 8\end{array}\right)$.
(e) $\left(\begin{array}{cccc}1 & 2 & 1 & 0 \\ 2 & 3 & 6 & -5 \\ 0 & 4 & 0 & 0 \\ 9 & 6 & -1 & 8\end{array}\right)$.
2. Calculate the determinant of lower-triangular 4×4 matrix

$$
\left(\begin{array}{cccc}
a_{11} & 0 & 0 & 0 \\
a_{21} & a_{22} & 0 & 0 \\
a_{31} & a_{32} & a_{33} & 0 \\
a_{41} & a_{42} & a_{43} & a_{44}
\end{array}\right) .
$$

3. Calculate the determinant of upper-triangular 4×4 matrix.
4. Check that $\left(\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right)^{-1}=\left(\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right)$.
5. Find A^{-1} for (a) $A=\left(\begin{array}{ll}4 & 5 \\ 4 & 2\end{array}\right)$. (b) $A=\left(\begin{array}{ccc}2 & 4 & 0 \\ 4 & 6 & 3 \\ -6 & -10 & 0\end{array}\right)$.
6. Invert the coefficient matrix to solve the following systems
7. What is the inverse of the 3×3 diagonal matrix $\left(\begin{array}{ccc}d_{1} & 0 & 0 \\ 0 & d_{2} & 0 \\ 0 & 0 & d_{3}\end{array}\right)$.
8. Show that the inverse of 2×2 upper-triangular matrix is uppertriangular.
9. Show that the inverse of 2×2 lower-triangular matrix is lowertriangular.
10. Show that the inverse of 2×2 symmetric matrix is symmetric.
11. Calculate the rank of each of the following matrixes
(a) $\left(\begin{array}{cc}2 & -4 \\ -1 & 2\end{array}\right)$.
(b) $\left(\begin{array}{ccc}2 & -4 & 2 \\ -1 & 2 & 1\end{array}\right)$.
(c) $\left(\begin{array}{rrrr}1 & 6 & -7 & 3 \\ 1 & 9 & -6 & 4 \\ 1 & 3 & -8 & 4\end{array}\right)$.
(d) $\left(\begin{array}{ccccc}1 & 6 & -7 & 3 & 5 \\ 1 & 9 & -6 & 4 & 9 \\ 1 & 3 & -8 & 4 & 2 \\ 2 & 15 & -13 & 11 & 16\end{array}\right)$.
(e) $\left(\begin{array}{lllll}1 & 6 & -7 & 3 & 1 \\ 1 & 9 & -6 & 4 & 2 \\ 1 & 3 & -8 & 4 & 5\end{array}\right)$.
12. Solve the system whose augmented matrix is $\left(\begin{array}{ccc}2 & -4 & 2 \\ -1 & 2 & 1\end{array}\right)$.
13. Solve the system whose augmented matrix is $\left(\begin{array}{ccccc}1 & 6 & -7 & 3 & 1 \\ 1 & 9 & -6 & 4 & 2 \\ 1 & 3 & -8 & 4 & 5\end{array}\right)$.
14. For the system

$$
\left\{\begin{array}{ccccc}
x+ & 2 y+ & z- & w=3 & 1 \\
3 x+ & 6 y- & z- & 3 w= & 2
\end{array}\right.
$$

(a) determine how many variables can be endogenous, (b) determine a successful separation into exogenous and endogenous variables, (c) find an explicit formula for the endogenous variables in terms of exogenous variables.
15. Find numbers a and b that make A the inverse of B when

$$
A=\left(\begin{array}{ccc}
2 & -1 & -1 \\
a & \frac{1}{4} & b \\
\frac{1}{8} & \frac{1}{8} & \frac{-1}{8}
\end{array}\right), \quad B=\left(\begin{array}{ccc}
1 & 2 & 4 \\
0 & 1 & 6 \\
1 & 3 & 2
\end{array}\right)
$$

Homework

1. For

$$
\left(\begin{array}{c}
w-x+3 y-z=0 \\
w+4 x-y+z=3 \\
3 w+7 x+y+z=6 \\
3 w+2 x+5 y-z=3
\end{array}\right.
$$

(a) Check the consistence;
(b) Separate free and basic variables;
(c) Solve the system.
2. Solve the system

$$
\left(\begin{array}{c}
2 x+3 y+3 z=2 \\
2 x+2 y+z=5 \\
x+y+z=14
\end{array}\right.
$$

inverting the coefficient matrix.
3. Compose a system with 3 variables and 4 equations with
(a) No solution;
(b) One solution;
(c) Infinitely many solutions depending on one free variable;
(d) Infinitely many solutions depending on two free variables.
4. (a) Suppose $|A|=a$. Find $|-A|$.
(b) Prove that if all entries of A are all integers and $\operatorname{det} A= \pm 1$ then the entries of A^{-1} are also integers.
(c) What can you say about the product of two symmetric matrices?
5. (a) There are only two 2×2 permutation matrices and both are symmetric. Is it true that any 3×3 permutation matrix is also symmetric?
(b) What can you say about the determinant of a permutation matrix?
(c) What can you say about the product of two permutation matrices?
(d) Find the inverse of various 2×2 and 3×3 permutation matrices. If you get some idea, prove the general theorem about the inverse of a permutation matrix.

