ISET MATH II Term Final

Answers without work or justification will not receive credit.

1. Diagonalize $A = \begin{pmatrix} 1 & 4 \\ 4 & 1 \end{pmatrix}$, i.e. show that it is similar to a diagonal matrix, that is find a matrix S such that $S^{-1}AS$ is a diagonal matrix.

$$S = \left(\begin{array}{c} \\ \\ \end{array} \right), \qquad S^{-1}AS = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

2. Let
$$U = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $V = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ and $W = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. (2a) Are the U and W similar?

- (2b) Are U and V similar?

(write "yes" or "no" and justify your answer).

	3 to 12 g to 12	,	
(2a)			
(2b)			

3. Let $A = \begin{pmatrix} 2 & 3 \\ 1 & 2 \\ 2 & 5 \end{pmatrix}$. Find or show the nonexistence of a matrix B such that $B \cdot A$ is unit 2×2 matrix. 4. Let V and W be vectors in the plane \mathbb{R}^2 with lengths ||V||=3 and ||W|| = 5. (4a) What are the maxima and minima of ||V + W||? (4b) When do these occur? (4a)max(||V + W||) =(4b)5. Find a vector which (5a) does belong, and (5b) does not belong to L((1,3,4),(4,0,1),(3,1,2)). $\overline{(5a)}$ (5b)

	plane (through ad all vectors th			vector $Z = (2,$	1, 2
7. Let $S \in d v = (1, -1)$ ough the or	-1, 1). Write th	bspace spanne ne equation of	ed by the two value a line orthogor	vectors $u = (1, \cdot)$ and to S which p	-1, pas

$x_1 + x_2 + x_3 + x_4 = 0.$				
$\begin{array}{c} \text{near} \\ \text{nd } T \\ \text{b)} \end{array}$	map. If u , v and w are linearly dependent, is it true that $T(u)$, $T(v)$ are linearly dependent? Why?			
near nd <i>T</i> b) ne d	map. If u , v and w are linearly dependent, is it true that $T(u)$, $T(w)$ are linearly dependent? Why? If $T: R^6 \to R^4$ is a linear map, is it possible that the nullspace of T :			
near nd <i>T</i> b) ne d	map. If u , v and w are linearly dependent, is it true that $T(u)$, $T(w)$ are linearly dependent? Why? If $T: R^6 \to R^4$ is a linear map, is it possible that the nullspace of T :			
near nd <i>T</i> b) ne d	map. If u , v and w are linearly dependent, is it true that $T(u)$, $T(w)$ are linearly dependent? Why? If $T: R^6 \to R^4$ is a linear map, is it possible that the nullspace of T :			
near nd <i>T</i> b) ne d	map. If u , v and w are linearly dependent, is it true that $T(u)$, $T(w)$ are linearly dependent? Why? If $T: R^6 \to R^4$ is a linear map, is it possible that the nullspace of T			
near nd <i>T</i> b) ne d	map. If u , v and w are linearly dependent, is it true that $T(u)$, $T(w)$ are linearly dependent? Why? If $T: R^6 \to R^4$ is a linear map, is it possible that the nullspace of T			
near nd <i>T</i> b) ne d	map. If u , v and w are linearly dependent, is it true that $T(u)$, $T(w)$ are linearly dependent? Why? If $T: R^6 \to R^4$ is a linear map, is it possible that the nullspace of T			
near nd <i>T</i> b) ne d	map. If u , v and w are linearly dependent, is it true that $T(u)$, $T(w)$ are linearly dependent? Why? If $T: R^6 \to R^4$ is a linear map, is it possible that the nullspace of T :			
$\begin{array}{c} \text{near} \\ \text{nd } T \\ \text{b)} \end{array}$	If $T: \mathbb{R}^6 \to \mathbb{R}^4$ is a linear map, is it possible that the nullspace of T			
near nd T b) ne d $(9a)$	map. If u , v and w are linearly dependent, is it true that $T(u)$, $T(v)$ are linearly dependent? Why? If $T: R^6 \to R^4$ is a linear map, is it possible that the nullspace of T			
near nd T b) ne d $\overline{(9a)}$	map. If u , v and w are linearly dependent, is it true that $T(u)$, $T(w)$ are linearly dependent? Why? If $T: R^6 \to R^4$ is a linear map, is it possible that the nullspace of T :			
near nd T b) ne d $\overline{(9a)}$	map. If u , v and w are linearly dependent, is it true that $T(u)$, $T(w)$ are linearly dependent? Why? If $T: R^6 \to R^4$ is a linear map, is it possible that the nullspace of T			
near nd T b) ne d $\overline{(9a)}$	map. If u , v and w are linearly dependent, is it true that $T(u)$, $T(w)$ are linearly dependent? Why? If $T: R^6 \to R^4$ is a linear map, is it possible that the nullspace of T			

10. **Remainder.** Let $T: \mathbb{R}^n \to \mathbb{R}^k$ be a linear transformation determined by $T(X) = A \cdot X$.

Equation AX = Y has a solution iff $Y \in Im(T) = Col(A)$.

X is a solution of AX = 0 iff $X \in Ker(T) = Null(A)$.

Particularly, if rank(A) = r < k, then dimIm(T) = dimCol(A) = r < k thus Im(T) does not fulfill R^k , i.e. T is not surjective. Hence there exists $Y \in R^k$ which is not in Im(T), that is AX = Y does not have a solution.

Now the problem:

Say you have k linear algebraic equations in n variables; in matrix form AX = Y. For each of the following write "yes" and justify or write "no" and give a counterexample.

- (a) If n = k then for each Y the system AX = Y has at most one solution.
- (b) If n > k you can solve AX = Y for any Y.
- (c) If n > k then AX = 0 has nonzero solutions.
- (d) If n < k then for some Y there is no solution of AX = Y.
- (e) If n < k the only solution of AX = 0 is X = 0.

(10a)		
(10b)		
(10c)		
(100)		
(10d)		
(10a)		
(100)		
(10e)		

11. Each of three elementary row operations may be performed on a matrix A by multiplication from the left by certain elementary matrices. For example the elementary row operation

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \longrightarrow \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} + r \cdot a_{11} & a_{22} + r \cdot a_{12} & a_{23} + r \cdot a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

in fact is the matrix product $\begin{pmatrix} 1 & 0 & 0 \\ r & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$.

- (a) Write 3×3 elementary matrices for the following row operations
 - a1. Multiplication of each element of the third row by r.
 - a2. Interchanging of second and third rows.
 - a3. Adding to the third row the second row multiplied by k.
- (b) For $A=\begin{pmatrix}1&1&1\\2&2&4\\3&2&2\end{pmatrix}$, find a matrix B such that $B\cdot A$ will be in Gauss row echelon form;

(a1)(a2)(a3)(b)

- 12. (a) Find a 3×3 matrix that acts on R^3 as follows: it keeps the x_1 axis fixed but rotates the x_2 x_3 plane by 90 degrees (counterclockwise when you look from (1,0,0)).
- b) Find a 3×3 matrix A mapping $R^3 \to R^3$ that rotates the x_1 x_3 plane by 180 degrees and leaves the x_2 axis fixed.

ADDITIONAL PAPER

ADDITIONAL PAPER

Solutions

$$1. \left(\begin{array}{cc} -3 & 0 \\ 0 & -5 \end{array} \right) = \left(\begin{array}{cc} -0.5 & 0.5 \\ 0.5 & 0.5 \end{array} \right) \cdot \left(\begin{array}{cc} 1 & 4 \\ 4 & 1 \end{array} \right) \cdot \left(\begin{array}{cc} -1 & 1 \\ 1 & 1 \end{array} \right).$$

2. (a) No: $det(U) \neq det(W)$.

(b) Yes:
$$U = S^{-1}VS$$
 with $S = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

3.
$$B = \begin{pmatrix} 2+z & -3-4z & z \\ -1+t & 2-4t & t \end{pmatrix}$$
. Particularly
$$B = \begin{pmatrix} 2 & -3 & 0 \\ -1 & 2 & 0 \end{pmatrix}$$
.

4. max(||V+W|| = 8 when V and W are colinear and of same direction; min(||V+W|| = 2 when V and W are colinear and of opposite direction

5. (a) Say
$$(1,3,4)$$
. (b) Say $(0,0,1)$.

6. Solve
$$(\alpha \cdot V + \beta \cdot U) \cdot Z = 0$$
. Answer $(0, 2\alpha, -\alpha)$.

7.
$$(x = t, y = t, z = 0)$$
.

8. General solution
$$\begin{pmatrix} -x_1 - x_2 - x_3 - x_4 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}.$$

Basis
$$\begin{pmatrix} -1\\1\\0\\0 \end{pmatrix}$$
, $\begin{pmatrix} -1\\0\\1\\0 \end{pmatrix}$, $\begin{pmatrix} -1\\0\\0\\1 \end{pmatrix}$.

9. (a) Yes: if $\alpha u + \beta v + \gamma w = 0$, $(\alpha, \beta, \gamma) \neq 0$ then $0 = T(\alpha u + \beta v + \gamma w) = T(\alpha u) + T(\beta v) + T(\gamma w) = \alpha T(u) + \beta T(v) + \gamma T(w)$.

(b)No: It is clear that $r = rank(T) \le min(6, 4) = 4$, thus $dim\ Null(T) = 6 - r \ge 6 - 4 = 2$.

10. a) No, if det(A) = 0 and Y = 0 there are infinitely many solutions. Example: take $A = \begin{pmatrix} 1 & 1 \\ 2 & 2 \end{pmatrix}$ and $Y = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

b) No: Suppose rank(A) = r < k. Then for $T : \mathbb{R}^n \to \mathbb{R}^k$ given by T(X) = AX we have dimIm(T) = dimCol(A) = r < k thus Im(T) does not

fulfill R^k , i.e. T is not surjective. Hence there exists $Y \in R^k$ which is not in Im(T), that is AX = Y does not have a solution.

Example: take
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{pmatrix}$$
 and $Y = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$.

- c) Yes: dimNull(A) = n r > n k > 0 thus Null(A) contains nonzero vectors which are nonzero solutions of AX = 0.
- d) Yes: $T: \mathbb{R}^n \to \mathbb{R}^k$ can not be surjective since $\dim Im(A) = \dim Col(A) = r \leq n < k$, thus there exist Y which is not in Im(T) that is AX = Y does not have a solution.
- e) No: If r < n then $dim\ Null(A) = n r > 0$ so there exist nonzero vectors in Null(A), they are nonzero solutions of AX = 0. Example: take

$$A = \left(\begin{array}{cc} 1 & 1\\ 2 & 2\\ 3 & 3 \end{array}\right)$$

11. a1.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & r \end{pmatrix}$$

a2.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

a3.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & k & 1 \end{pmatrix}$$

b.
$$B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ -3 & 0 & 1 \\ -2 & 1 & 0 \end{pmatrix}$$
$$B \cdot A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 2 \end{pmatrix}$$

12. (a)
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$$
. (b) $\begin{pmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$.