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Tornike Kadeishvili

WEEK 3

1 Applications of Derivatives

1.1 Using the Derivative for Graphing

Theorem 1 (a) If f ′(x0) > 0, then there is an open interval containing x0

on which f is increasing.
(b) If f ′(x0) < 0, then there is an open interval containing x0 on which

f is decreasing.

Proof. (a) By definition

lim
h→0

f(x0 + h)− f(x0)

h
= f ′(x0) > 0.

Thus if h is small enough, since f ′(x0) > 0, we have

f(x0 + h)− f(x0)

h
> 0

too, and assuming h being positive we obtain

f(x0 + h)− f(x0) > 0

that is f(x0 + h) > f(x0), i.e. f is increasing near x0.
(b) Similarly, if f ′(x0) < 0 then f(x0+h)−f(x0) < 0, thus f is decreasing

near x0. Q.E.D. (quod erat demonstrandum).

Definition 1 A point x0 is called critical point of f if f ′(x0) = 0 or f ′(x0)
is not defined.

A critical point is potential local minimum or local maximum point of f .
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Examples
1. For f(x) = x2 the point x = 0 is critical: f ′(0) = 2x|x=0 = 0, and it is

a point of minimum.
2. For f(x) = −x2 the point x = 0 is critical: f ′(0) = −2x|x=0 = 0, and

it is a point of maximum.
3. For f(x) = x3 the point x = 0 is critical: f ′(0) = 3x2|x=0 = 0, but this

is neither minimum nor minimum.
4. For f(x) = |x| the point x = 0 is critical: the derivative f ′(0) does not

exist, and it is a point of minimum.
5. For f(x) = 1

x
the point x = 0 is ”critical”: the derivative f ′(0) does

not exist (as well as f(0)), but this is neither minimum nor maximum.

1.1.1 Graphing Algorithm ”Sign Chart”

1. Find all critical points, say x1, x2, ... , xn.
2. Find (if possible) f(x1), f(x2), ... , f(xn) and plot the corresponding
points of the graph.
3. Check the sign of f ′ on each of intervals

(−∞, x1), (x1, x2), ... , (xn−1, xn), (xn,+∞).

4. If f ′ > 0 on interval (xi, xi+1), draw the graph increasing connecting
f(xi) and f(xi+1). If f

′ < 0 on interval (xi, xi+1), draw the graph decreasing
connecting f(xi) and f(xi+1).

Example
Plot the graph of the function f(x) = 2x3 + 3x2 − 12x.

Solution.
1. Derivative f ′(x) = 3x2 + 6x− 12.
2. Critical points 6x2 + 6x− 12 = 0, x1 = −2, x2 = 1.
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3. Sign Chart

x −∞,−2) −2 (−2, 1) 1 (1,+∞)
f ′(x) − 0 + 0 −
f(x) ↘ 20 ↗ −7 ↘

4. y-intercept f(0) = 0.
5. x-intercept f(x) = 0, 2x3 + 3x2 − 12 ∗ x = 0, x(2x2 − 3x− 12) = 0

x1 =
−1−

√
105

4
≈ −3.3, x2 = 0, x3 =

−1+
√
105

4
≈ 1.8.

Now you are ready to plot the graph:
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1.1.2 Second Derivatives and Convexity
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Using calculus we can learn about the function more than where it is
increasing or decreasing. For example where a function is concave up or
concave down.
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decreasing, concave down
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A function f is called concave up or simply convex if the secant line lies
above the graph:
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A function f is called concave down or simply concave if the secant line
lies below the graph:
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Second derivative test for concavity: f is concave up if f ′′ > 0, and
f ′′ is concave down if f ′′ < 0.
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f(x) concave up ⇒ f ′(x) increases ⇒ f ′′(x) > 0
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f(x) concave down ⇒ f ′(x) decreases ⇒ f ′′(x) < 0

A second order critical point, or inflection point, is a point where
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f ′′(x) = 0:
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2 Graphing Rational Functions

2.1 Vertical Asymptotes

A rational function is a ratio of two polynomials

f(x) =
P (x)

Q(x)
.

Suppose x0 is a root of denominator, i.e. Q(x0) = 0. Then f(x) is not
defined for x0 (that is x0 is not in the domain of f), so the graph of f can
not intersect the vertical line that crosses the x-axes at x0. This vertical line
is called vertical asymptote of f . Its equation is x = x0.

On either side of vertical asymptote the graph goes to +∞ or −∞. The
sign chart clarifies to find out which, but do not forget to include that x0 (a
zero of the denominator) to the list of critical points. Namely,

(left+) If f ′ > 0 just to the left of the asymptote, then f must go to +∞ to
the left of asymptote.
(left-) If f ′ < 0 just to the left of the asymptote, then f must go to −∞ to
the left (right) of asymptote.
(right+) If f ′ < 0 just to the right of the asymptote, then f must go to +∞
to the right of asymptote.
(right-) If f ′ > 0 just to the right of the asymptote, then f must go to −∞
to the right of asymptote.

All four cases are demonstrated on this graph:

7



–20

–10

0

10

20

y

–6 –4 –2 2 4 6

x

f(x) = 8
x2−1

, f ′(x) = − 16x
(x2−1)2

Two more functions with vertical asymptotes:
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f(x) = x−2
(x−1)(x−3)

, f ′(x) = − x2−4x+5
(x−1)2(x−3)2
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f(x) = x−7
(x−1)(x−4)

f ′(x) = − x2−14x+31
(x−1)2(x−4)2

2.2 Tails and Horizontal Asymptotes

The ”tail” of the graph is the shape of the graph for large positive and large
negative values of x.

2.2.1 Tails of a monomial

For a monomial f(x) = axn with a > 0 we have:

When x → +∞ then f(x) → +∞, so the right tail goes to +∞;

If n is even, when x → −∞ then f(x) → +∞, so the left tail goes to +∞;

If n is odd, when x → −∞ then f(x) → −∞, so the left tail goes to −∞.
For a < 0 the situation is symmetric to the above (observe it!).
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f(x) = x4
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f(x) = x5

2.2.2 Tails of a polynomial

The shape of the tail of a polynomial

f(x) = a0 + a1x+ a2x
2 ... + anx

n,

is the same as the shape of the leading term anx
n.
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f(x) = x4 − 5x2 + 4
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f(x) = x5 − 5x3 + 4x

2.2.3 Horizontal Asymptotes

The line y = b is a horizontal asymptote of f if either of following condi-
tions hold:

lim
x→−∞

f(x) = b, lim
x→+∞

f(x) = b.

Examples

1. The function f(x) = 1
x
has horizontal asymptote y = 0, i.e. the x-axis:

lim
x→±∞

1

x
= 0.
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f(x) = 1
x

2. The function f(x) = 1+x
x

has horizontal asymptote y = 1. Indeed,
1+x
x

= 1
x
+ 1, so

lim
x→±∞

1 + x

x
= lim

x→±∞
(
1

x
+ 1) = lim

x→±∞

1

x
+ lim

x→±∞
1 = 0 + 1 = 1.
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f(x) = x+1
x

3. The function f(x) = x4−1
x6+1

has horizontal asymptote y = 0, i.e. the x-axis:

lim
x→±∞

x4 − 1

x6 + 1
= lim

x→±∞

x4

x6 − 1
x6

x6

x6 +
1
x6

= lim
x→±∞

1
x2 − 1

x6

1 + 1
x6

=
0

1
= 0.

Pay attention that this function intersects its horizontal asymptote y = 0:
x = −1 and x = 1 are the solutions of the equation f(x) = 0.
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f(x) = x4−1
x6+1

4. The function f(x) = 3x5−2x+1
2x5+7x2+1

has horizontal asymptote y = 3
2
:

lim
x→±∞

3x5 − 2x+ 1

2x5 + 7x2 + 1
= lim

x→±∞

3x5

x5 − 2x
x5 +

1
x5

2x5

x5 + 7x2

x5 + 1
x5

= lim
x→±∞

3− 2
x2 +

1
x5

2 + 7
x3 +

1
x4

=
3

2
.
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f(x) = 3x5−2x+1
2x5+7x2+1

5. The function y = 1
x
· sinx has a horizontal asymptote y = 0 and the graph

of the function intercepts his asymptote infinitely many times at the points
x = πk + π/2.
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f(x) = 1
x
· sinx

Generally, the behavior of a rational function

f(x) =
a0 + a1 · x+ ... + am · xm

b0 + b1 · x+ ... + bn · xn

”ad infinitum” mirrors the behavior of the quotient of leading terms

l(x) =
am · xm

bn · xn
=

am
bn

xm−n.

Case 1 m > n, in this case

limx→∞f(x) = limx→∞l(x) = limx→∞
am
bn

xm−n = +∞,

so no horizontal asymptote in this case.

Case 2 m = n, in this case

limx→∞f(x) = limx→∞l(x) = limx→∞
am
bm

xm−m =
am
bm

,

so the horizontal asymptote in this case is the line y = am
bm

.

Case 3 m < n, in this case

limx→∞f(x) = limx→∞l(x) = limx→∞
am
bn

1

xn−m
= 0,

so the horizontal asymptote in this case is the x-axes y = 0.
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2.2.4 Oblique Asymptotes

The line y = ax+ b is an oblique asymptote of f(x) = P (x)
Q(x)

if

lim
x→±∞

(f(x)− (ax+ b)) = 0.

Such asymptote exists if deg P (x) = deg Q(x)+1. This is the linear function
y = ax+ b which is the quotient of division P (x) : Q(x).

Reminder. The quotient of division of 14 : 4 is q = 3 and the reminder
is r = 2, that is

14

4
= 3 +

2

4
, or 14 = 3 · 4 + 2,

notice that r = 2 < 4.
Generally, The quotient of division of a : b is q and the reminder is r if

a

b
= q +

r

b
, a = b · q + r,

and 0 ≤ r < b.
If a and b are polynomials, then the quotient of division of a : b is q and

the reminder is r if a = b · q + r and 0 ≤ deg r < deg b.
For example for a = x3 + 2x2 + 3x and b = x2 − x+ 1 we have q = x+ 3

and r = 5x− 3, indeed

b · q + r = (x2 − x+ 1) · (x+ 3) + 5x− 3 =
x3 − x2 + x+ 3x2 − 3x+ 3 + 5x− 3 = x3 + 2x2 + 3x = a.

Division of polynomials by MAPLE:
> a := x3 + 2 ∗ x2 + 3 ∗ x;

a := x3 + 2 ∗ x2 + 3 ∗ x

> b := x2 − x+ 1;

b := x2 − x+ 1

> q := quo(a, b, x);

q = x+ 3

> r := rem(a, b, x);

r = 5x+ 3

> evala(b ∗ q + r);

x3 + 2 ∗ x2 + 3 ∗ x
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Examples
1. Find the oblique asymptote of x3+1

x2−1
.

Solution. Division gives

(x3 + 1) : (x2 − 1) = x rem(x+ 1),

that is
x3 + 1

x2 − 1
= x+

x+ 1

x2 − 1
or

x3 + 1 = (x2 − 1) · x+ (x+ 1),

so the quotient is x and the remainder is x − 1. The oblique asymptote is
y = x:
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2. Find the oblique asymptote of 2x3+4x2−9
−x2+3

.

Solution. Division gives

(2x3 + 4x2 − 9) : (−x2 + 3) = (−2x− 4) rem(6x+ 3),

that is
x3 + 1

x2 − 1
= −2x− 4 +

6x+ 3

−x2 + 1

so the quotient is −2x−4 and the remainder is 6x+3. The oblique asymptote
is y = −2x− 4.
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2.3 Summary: Asymptotes of rational Functions

A rational function

f(x) =
P (x)

Q(x)
=

a0 + a1 · x+ ...+ an · xn

b0 + b1 · x+ ...+ bm · xm

has:

(a) Vertical asymptotes at zeros of denominator.

(b) If deg P (x) > deg Q(x) then f has no Horizontal asymptotes.

(c) If deg P (x) = deg Q(x) + 1 then f has an oblique asymptote, which is
the linear function y = ax+ b, the quotient of division P (x) : Q(x).

(d) If deg P (x) = deg Q(x) then f has Horizontal asymptote y = an
bm
.

(e) If deg P (x) < deg Q(x) then f has Horizontal asymptote y = 0.

2.4 Examples of Graphing

Example 1. Sketch the graph of f(x) = 8
x2−4

.
Solution.

1. Intercepts. There are no x-intercepts, and the y-intercept is f(0) =
−2.

2. Asymptotes.
Vertical: x2 − 4 = 0, x = −2, x = 2. Horizontal: y = 0. Oblique: no.

3. Derivatives. f ′(x) = −16x
(x2−4)2

, f ′′(x) = 16(3x2+4
(x2−4)3)

.

4. Critical points. x = −2, x = 2, and f ′(x) = −16x
(x2−4)2

= 0, x = 0.
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5. Increasing and decreasing intervals of f .

x (−∞,−2) −2 (−2, 0) 0 (0, 2) 2 (2,+∞)
f ′(x) + no + 0 − no −
f(x) ↗ no ↗ −2 ↘ no ↘

6. Inflection points. x = −2, x = 2, and f ′′(x) = 16(3x2+4)
(x2−4)3

= 0 has no
solution.

7. Concavity.

x (−∞,−2) −2 (−2, 2) 2 (2,+∞)
f ′′(x) + no − no +
f(x) conc. up no conc. down no conc. up

8. Sketch the graph. Now you are ready to sketch the graph using
this information:
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Example 2. Sketch the graph of f(x) = x2+4
x

.
Solution.

1. Intercepts. There are no x-intercepts, and no y-intercept.
2. Asymptotes.
Vertical: x = 0. Horizontal: no. Oblique: yes, the division gives f(x) =

x+ 4
x
, f has the oblique asymptote y = x.

3. Derivatives. f ′(x) = x2−4
x2 , f ′′(x) = 8

x3)
.

4. Critical points. x = −2, x = 0 x = 2.
5. Increasing and decreasing intervals of f .

x (−∞,−2) −2 (−2, 0) 0 (0, 2) 2 (2,+∞)
f ′(x) + 0 − no − 0 +
f(x) ↗ −4 ↘ no ↘ 4 ↗
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6. Inflection points. f ′′(x) = 8
x3 = 0 has no solution, and f ′′(0) does

not exists, so x = 0 can be considered as an inflection point (where may be
concavity changes).

7. Concavity.

x (−∞, 0) 0 (0,+∞)
f ′′(x) − no +
f(x) conc. down no conc. up

8. Sketch the graph. Now you are ready to sketch the graph using
this information:
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3 Maxima and Minima

A function f has a local (or relative) interior maximum at x0 if f(x) ≤
f(x0) for all x in some open interval containing x0.

A function f has a global (or absolute) maximum at x0 if f(x) ≤ f(x0

for all x in the domain of f .
A function f has a local (or relative) interior minimum at x0 if

f(x) ≥ f(x0) for all x in some open interval containing x0.
A function f has a global (or absolute) minimum at x0 if f(x) ≥ f(x0 for

all x in the domain of f .
A max or min can also occur at a boundary point of the domain of f . In

this case it is called boundary max or boundary min.

3.1 First Order Conditions

Theorem 2 If x0 is an interior max or min of f then x0 is a critical point.
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This means that the criticality is a necessary condition for optimality
So we must seek interior min or max points among critical points. But if

x0 is a critical point, how can we decide wether it is min, max or neither?

3.2 Second Order Condition

Theorem 3 (a) If f ′(x0) = 0 and f ′′(x0) < 0, then x0 is a local max of f ;
(b) If f ′(x0) = 0 and f ′′(x0) > 0, then x0 is a local min of f ;
(c) If f ′(x0) = 0 and f ′′(x0) = 0, then the second derivative test fails.

So the second order condition is sufficient for optimality.

3.3 Global Maxima and Minima

What conditions guarantee that a given critical point x0 of f is a global
max or min?

3.3.1 Only One Critical Point Case

Suppose
(a) the domain of f is an open interval (finite or infinite) of R;
(b) x0 is a local max (min) of f ;
(c) x0 is the only critical point of f
Then x0 is the global max (min).

3.3.2 Nowhere Zero Second Derivative Case

If the domain of f is an open interval (finite or infinite) I of R and f ′′(x)
is newer zero on I, then f has at most one critical point in I. This critical
point is global maximum if f ′′ < 0 and global minimum if f ′′ > 0.

3.3.3 How to Find Global max and min

A function f defined on an open interval need not have a global min or max:
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f(x) = 1
x
does not have a global max on (0, 1)
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f(x) = 1
x
does not have a global min on (−1, 0)

However, a function f defined on a closed and bounded interval [a, b] must
have both a global min and global max.

How to find them?
(1) Find all critical points in (a, b);
(2) Evaluate f at these critical points and at the endpoints a and b;
(3) Choose the point from among these that gives the largest value of f

(max) and smallest value of f (min).

Example
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Find the global max and global min for f(x) = x3 − 3x on

(a) D = [−4,−2], (b) D2 = (0,∞).

Solution. Derivative f ′(x) = 3x2 − 3. Critical points

3x2 − 3x = 0, x2 − 1 = 0, (x− 1)(x+ 1) = 0, x1 = −1, x2 = 1.

D1 = [−4,−2]: No critical points in this interval, so check just the endpoints
f(−4) = −43 − 12 = −64 + 12 = −52, f(−2) = −23 + 6 = −2, so
xmin = −4, xmax = −2.
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D2 = (0,∞): The critical point x2 = 1 belongs to D2, and it is a local min
point: f ′′(1) = 6x|1 = 6 > 0, besides, since f ′′(x) = 6x > 0 in whole interval
(0,∞), it is global.
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