Math for Economists, Calculus 1

Tornike Kadeishvili

WEEK 3

1 Applications of Derivatives

1.1 Using the Derivative for Graphing

Theorem 1 (a) If $f^{\prime}\left(x_{0}\right)>0$, then there is an open interval containing x_{0} on which f is increasing.
(b) If $f^{\prime}\left(x_{0}\right)<0$, then there is an open interval containing x_{0} on which f is decreasing.

Proof. (a) By definition

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=f^{\prime}\left(x_{0}\right)>0 .
$$

Thus if h is small enough, since $f^{\prime}\left(x_{0}\right)>0$, we have

$$
\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}>0
$$

too, and assuming h being positive we obtain

$$
f\left(x_{0}+h\right)-f\left(x_{0}\right)>0
$$

that is $f\left(x_{0}+h\right)>f\left(x_{0}\right)$, i.e. f is increasing near x_{0}.
(b) Similarly, if $f^{\prime}\left(x_{0}\right)<0$ then $f\left(x_{0}+h\right)-f\left(x_{0}\right)<0$, thus f is decreasing near x_{0}. Q.E.D. (quod erat demonstrandum).

Definition 1 A point x_{0} is called critical point of f if $f^{\prime}\left(x_{0}\right)=0$ or $f^{\prime}\left(x_{0}\right)$ is not defined.

A critical point is potential local minimum or local maximum point of f.

Examples

1. For $f(x)=x^{2}$ the point $x=0$ is critical: $f^{\prime}(0)=\left.2 x\right|_{x=0}=0$, and it is a point of minimum.
2. For $f(x)=-x^{2}$ the point $x=0$ is critical: $f^{\prime}(0)=-\left.2 x\right|_{x=0}=0$, and it is a point of maximum.
3. For $f(x)=x^{3}$ the point $x=0$ is critical: $f^{\prime}(0)=\left.3 x^{2}\right|_{x=0}=0$, but this is neither minimum nor minimum.
4. For $f(x)=|x|$ the point $x=0$ is critical: the derivative $f^{\prime}(0)$ does not exist, and it is a point of minimum.
5. For $f(x)=\frac{1}{x}$ the point $x=0$ is "critical": the derivative $f^{\prime}(0)$ does not exist (as well as $f(0)$), but this is neither minimum nor maximum.

1.1.1 Graphing Algorithm "Sign Chart"

1. Find all critical points, say $x_{1}, x_{2}, \ldots, x_{n}$.
2. Find (if possible) $f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right)$ and plot the corresponding points of the graph.
3. Check the sign of f^{\prime} on each of intervals

$$
\left(-\infty, x_{1}\right),\left(x_{1}, x_{2}\right), \ldots,\left(x_{n-1}, x_{n}\right),\left(x_{n},+\infty\right) .
$$

4. If $f^{\prime}>0$ on interval $\left(x_{i}, x_{i+1}\right)$, draw the graph increasing connecting $f\left(x_{i}\right)$ and $f\left(x_{i+1}\right)$. If $f^{\prime}<0$ on interval (x_{i}, x_{i+1}), draw the graph decreasing connecting $f\left(x_{i}\right)$ and $f\left(x_{i+1}\right)$.

Example

Plot the graph of the function $f(x)=2 x^{3}+3 x^{2}-12 x$.
Solution.

1. Derivative $f^{\prime}(x)=3 x^{2}+6 x-12$.
2. Critical points $6 x^{2}+6 x-12=0, x_{1}=-2, x_{2}=1$.
3. Sign Chart

x	$-\infty,-2)$	-2	$(-2,1)$	1	$(1,+\infty)$
$f^{\prime}(x)$	-	0	+	0	-
$f(x)$	\searrow	20	\nearrow	-7	\searrow

4. y-intercept $f(0)=0$.
5. x-intercept $f(x)=0,2 x^{3}+3 x^{2}-12 * x=0, x\left(2 x^{2}-3 x-12\right)=0$
$x_{1}=\frac{-1-\sqrt{105}}{4} \approx-3.3, x_{2}=0, x_{3}=\frac{-1+\sqrt{105}}{4} \approx 1.8$.
Now you are ready to plot the graph:

1.1.2 Second Derivatives and Convexity

Using calculus we can learn about the function more than where it is increasing or decreasing. For example where a function is concave up or concave down.

A function f is called concave up or simply convex if the secant line lies above the graph:

A function f is called concave down or simply concave if the secant line lies belpw the graph:

Second derivative test for concavity: f is concave up if $f^{\prime \prime}>0$, and $f^{\prime \prime}$ is concave down if $f^{\prime \prime}<0$.

$f(x)$ concave up $\Rightarrow f^{\prime}(x)$ increases $\Rightarrow f^{\prime \prime}(x)>0$

$$
f(x) \text { concave down } \Rightarrow f^{\prime}(x) \text { decreases } \Rightarrow f^{\prime \prime}(x)<0
$$

A second order critical point, or inflection point, is a point where

2 Graphing Rational Functions

2.1 Vertical Asymptotes

A rational function is a ratio of two polynomials

$$
f(x)=\frac{P(x)}{Q(x)} .
$$

Suppose x_{0} is a root of denominator, i.e. $Q\left(x_{0}\right)=0$. Then $f(x)$ is not defined for x_{0} (that is x_{0} is not in the domain of f), so the graph of f can not intersect the vertical line that crosses the x-axes at x_{0}. This vertical line is called vertical asymptote of f. Its equation is $x=x_{0}$.

On either side of vertical asymptote the graph goes to $+\infty$ or $-\infty$. The sign chart clarifies to find out which, but do not forget to include that x_{0} (a zero of the denominator) to the list of critical points. Namely,
(left+) If $f^{\prime}>0$ just to the left of the asymptote, then f must go to $+\infty$ to the left of asymptote.
(left-) If $f^{\prime}<0$ just to the left of the asymptote, then f must go to $-\infty$ to the left (right) of asymptote.
(right+) If $f^{\prime}<0$ just to the right of the asymptote, then f must go to $+\infty$ to the right of asymptote.
(right-) If $f^{\prime}>0$ just to the right of the asymptote, then f must go to $-\infty$ to the right of asymptote.

All four cases are demonstrated on this graph:

$$
f(x)=\frac{8}{x^{2}-1}, \quad f^{\prime}(x)=-\frac{16 x}{\left(x^{2}-1\right)^{2}}
$$

Two more functions with vertical asymptotes:

$$
f(x)=\frac{x-7}{(x-1)(x-4)} \quad f^{\prime}(x)=-\frac{x^{2}-14 x+31}{(x-1)^{2}(x-4)^{2}}
$$

2.2 Tails and Horizontal Asymptotes

The "tail" of the graph is the shape of the graph for large positive and large negative values of x.

2.2.1 Tails of a monomial

For a monomial $f(x)=a x^{n}$ with $a>0$ we have:
When $x \rightarrow+\infty$ then $f(x) \rightarrow+\infty$, so the right tail goes to $+\infty$;
If n is even, when $x \rightarrow-\infty$ then $f(x) \rightarrow+\infty$, so the left tail goes to $+\infty$;
If n is odd, when $x \rightarrow-\infty$ then $f(x) \rightarrow-\infty$, so the left tail goes to $-\infty$.
For $a<0$ the situation is symmetric to the above (observe it!).

$$
f(x)=x^{4}
$$

$$
f(x)=x^{5}
$$

2.2.2 Tails of a polynomial

The shape of the tail of a polynomial

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2} \ldots+a_{n} x^{n}
$$

is the same as the shape of the leading term $a_{n} x^{n}$.

$$
f(x)=x^{5}-5 x^{3}+4 x
$$

2.2.3 Horizontal Asymptotes

The line $y=b$ is a horizontal asymptote of f if either of following conditions hold:

$$
\lim _{x \rightarrow-\infty} f(x)=b, \quad \lim _{x \rightarrow+\infty} f(x)=b
$$

Examples

1. The function $f(x)=\frac{1}{x}$ has horizontal asymptote $y=0$, i.e. the x-axis:

$$
\lim _{x \rightarrow \pm \infty} \frac{1}{x}=0
$$

$$
f(x)=\frac{1}{x}
$$

2. The function $f(x)=\frac{1+x}{x}$ has horizontal asymptote $y=1$. Indeed, $\frac{1+x}{x}=\frac{1}{x}+1$, so

$$
f(x)=\frac{x+1}{x}
$$

3. The function $f(x)=\frac{x^{4}-1}{x^{6}+1}$ has horizontal asymptote $y=0$, i.e. the x-axis:

$$
\lim _{x \rightarrow \pm \infty} \frac{x^{4}-1}{x^{6}+1}=\lim _{x \rightarrow \pm \infty} \frac{\frac{x^{4}}{x^{6}}-\frac{1}{x^{6}}}{\frac{x^{6}}{x^{6}}+\frac{1}{x^{6}}}=\lim _{x \rightarrow \pm \infty} \frac{\frac{1}{x^{2}}-\frac{1}{x^{6}}}{1+\frac{1}{x^{6}}}=\frac{0}{1}=0 .
$$

Pay attention that this function intersects its horizontal asymptote $y=0$: $x=-1$ and $x=1$ are the solutions of the equation $f(x)=0$.

$$
f(x)=\frac{x^{4}-1}{x^{6}+1}
$$

4. The function $f(x)=\frac{3 x^{5}-2 x+1}{2 x^{5}+7 x^{2}+1}$ has horizontal asymptote $y=\frac{3}{2}$:

$$
f(x)=\frac{3 x^{5}-2 x+1}{2 x^{5}+7 x^{2}+1}
$$

5. The function $y=\frac{1}{x} \cdot \sin x$ has a horizontal asymptote $y=0$ and the graph of the function intercepts his asymptote infinitely many times at the points $x=\pi k+\pi / 2$.

$$
f(x)=\frac{1}{x} \cdot \sin x
$$

Generally, the behavior of a rational function

$$
f(x)=\frac{a_{0}+a_{1} \cdot x+\ldots+a_{m} \cdot x^{m}}{b_{0}+b_{1} \cdot x+\ldots+b_{n} \cdot x^{n}}
$$

"ad infinitum" mirrors the behavior of the quotient of leading terms

$$
l(x)=\frac{a_{m} \cdot x^{m}}{b_{n} \cdot x^{n}}=\frac{a_{m}}{b_{n}} x^{m-n} .
$$

Case $1 m>n$, in this case

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} l(x)=\lim _{x \rightarrow \infty} \frac{a_{m}}{b_{n}} x^{m-n}=+\infty
$$

so no horizontal asymptote in this case.
Case $2 m=n$, in this case

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} l(x)=\lim _{x \rightarrow \infty} \frac{a_{m}}{b_{m}} x^{m-m}=\frac{a_{m}}{b_{m}}
$$

so the horizontal asymptote in this case is the line $y=\frac{a_{m}}{b_{m}}$.
Case $3 m<n$, in this case

$$
\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} l(x)=\lim _{x \rightarrow \infty} \frac{a_{m}}{b_{n}} \frac{1}{x^{n-m}}=0
$$

so the horizontal asymptote in this case is the x-axes $y=0$.

2.2.4 Oblique Asymptotes

The line $y=a x+b$ is an oblique asymptote of $f(x)=\frac{P(x)}{Q(x)}$ if

$$
\lim _{x \rightarrow \pm \infty}(f(x)-(a x+b))=0
$$

Such asymptote exists if $\operatorname{deg} P(x)=\operatorname{deg} Q(x)+1$. This is the linear function $y=a x+b$ which is the quotient of division $P(x): Q(x)$.

Reminder. The quotient of division of $14: 4$ is $q=3$ and the reminder is $r=2$, that is

$$
\frac{14}{4}=3+\frac{2}{4}, \quad \text { or } \quad 14=3 \cdot 4+2
$$

notice that $r=2<4$.
Generally, The quotient of division of $a: b$ is q and the reminder is r if

$$
\frac{a}{b}=q+\frac{r}{b}, \quad a=b \cdot q+r,
$$

and $0 \leq r<b$.
If a and b are polynomials, then the quotient of division of $a: b$ is q and the reminder is r if $a=b \cdot q+r$ and $0 \leq \operatorname{deg} r<\operatorname{deg} b$.

For example for $a=x^{3}+2 x^{2}+3 x$ and $b=x^{2}-x+1$ we have $q=x+3$ and $r=5 x-3$, indeed

$$
\begin{gathered}
b \cdot q+r=\left(x^{2}-x+1\right) \cdot(x+3)+5 x-3= \\
x^{3}-x^{2}+x+3 x^{2}-3 x+3+5 x-3=x^{3}+2 x^{2}+3 x=a .
\end{gathered}
$$

Division of polynomials by MAPLE:

$>a:=x^{3}+2 * x^{2}+3 * x$;

$$
a:=x^{3}+2 * x^{2}+3 * x
$$

$>b:=x^{2}-x+1 ;$

$$
b:=x^{2}-x+1
$$

$>q:=q u o(a, b, x) ;$

$$
q=x+3
$$

$>r:=\operatorname{rem}(a, b, x) ;$

$$
r=5 x+3
$$

$>\operatorname{evala}(b * q+r) ;$

$$
x^{3}+2 * x^{2}+3 * x
$$

Examples

1. Find the oblique asymptote of $\frac{x^{3}+1}{x^{2}-1}$.

Solution. Division gives

$$
\left(x^{3}+1\right):\left(x^{2}-1\right)=x \operatorname{rem}(x+1)
$$

that is

$$
\frac{x^{3}+1}{x^{2}-1}=x+\frac{x+1}{x^{2}-1}
$$

or

$$
x^{3}+1=\left(x^{2}-1\right) \cdot x+(x+1)
$$

so the quotient is x and the remainder is $x-1$. The oblique asymptote is $y=x$:

2. Find the oblique asymptote of $\frac{2 x^{3}+4 x^{2}-9}{-x^{2}+3}$.

Solution. Division gives

$$
\left(2 x^{3}+4 x^{2}-9\right):\left(-x^{2}+3\right)=(-2 x-4) \operatorname{rem}(6 x+3),
$$

that is

$$
\frac{x^{3}+1}{x^{2}-1}=-2 x-4+\frac{6 x+3}{-x^{2}+1}
$$

so the quotient is $-2 x-4$ and the remainder is $6 x+3$. The oblique asymptote is $y=-2 x-4$.

2.3 Summary: Asymptotes of rational Functions

A rational function

$$
f(x)=\frac{P(x)}{Q(x)}=\frac{a_{0}+a_{1} \cdot x+\ldots+a_{n} \cdot x^{n}}{b_{0}+b_{1} \cdot x+\ldots+b_{m} \cdot x^{m}}
$$

has:
(a) Vertical asymptotes at zeros of denominator.
(b) If $\operatorname{deg} P(x)>\operatorname{deg} Q(x)$ then f has no Horizontal asymptotes.
(c) If $\operatorname{deg} P(x)=\operatorname{deg} Q(x)+1$ then f has an oblique asymptote, which is the linear function $y=a x+b$, the quotient of division $P(x): Q(x)$.
(d) If $\operatorname{deg} P(x)=\operatorname{deg} Q(x)$ then f has Horizontal asymptote $y=\frac{a_{n}}{b_{m}}$.
(e) If $\operatorname{deg} P(x)<\operatorname{deg} Q(x)$ then f has Horizontal asymptote $y=0$.

2.4 Examples of Graphing

Example 1. Sketch the graph of $f(x)=\frac{8}{x^{2}-4}$.

Solution.

1. Intercepts. There are no x-intercepts, and the y-intercept is $f(0)=$ -2 .

2. Asymptotes.

Vertical: $x^{2}-4=0, x=-2, x=2$. Horizontal: $y=0$. Oblique: no.
3. Derivatives. $f^{\prime}(x)=\frac{-16 x}{\left(x^{2}-4\right)^{2}}, \quad f^{\prime \prime}(x)=\frac{16\left(3 x^{2}+4\right.}{\left.\left(x^{2}-4\right)^{3}\right)}$.
4. Critical points. $x=-2, x=2$, and $f^{\prime}(x)=\frac{-16 x}{\left(x^{2}-4\right)^{2}}=0, \quad x=0$.

5. Increasing and decreasing intervals of f.

x	$(-\infty,-2)$	-2	$(-2,0)$	0	$(0,2)$	2	$(2,+\infty)$
$f^{\prime}(x)$	+	$n o$	+	0	-	$n o$	-
$f(x)$	\nearrow	$n o$	\nearrow	-2	\searrow	$n o$	\searrow

6. Inflection points. $x=-2, x=2$, and $f^{\prime \prime}(x)=\frac{16\left(3 x^{2}+4\right)}{\left(x^{2}-4\right)^{3}}=0$ has no solution.

7. Concavity.

x	$(-\infty,-2)$	-2	$(-2,2)$	2	$(2,+\infty)$
$f^{\prime \prime}(x)$	+	no	-	no	+
$f(x)$	conc. up	no	conc. down	no	conc. up

8. Sketch the graph. Now you are ready to sketch the graph using this information:

Example 2. Sketch the graph of $f(x)=\frac{x^{2}+4}{x}$.

Solution.

1. Intercepts. There are no x-intercepts, and no y-intercept.
2. Asymptotes.

Vertical: $x=0$. Horizontal: no. Oblique: yes, the division gives $f(x)=$ $x+\frac{4}{x}, f$ has the oblique asymptote $y=x$.
3. Derivatives. $f^{\prime}(x)=\frac{x^{2}-4}{x^{2}}, \quad f^{\prime \prime}(x)=\frac{8}{\left.x^{3}\right)}$.
4. Critical points. $x=-2, x=0 x=2$.
5. Increasing and decreasing intervals of f.

x	$(-\infty,-2)$	-2	$(-2,0)$	0	$(0,2)$	2	$(2,+\infty)$
$f^{\prime}(x)$	+	0	-	$n o$	-	0	+
$f(x)$	\nearrow	-4	\searrow	$n o$	\searrow	4	\nearrow

6. Inflection points. $f^{\prime \prime}(x)=\frac{8}{x^{3}}=0$ has no solution, and $f^{\prime \prime}(0)$ does not exists, so $x=0$ can be considered as an inflection point (where may be concavity changes).

7. Concavity.

x	$(-\infty, 0)$	0	$(0,+\infty)$
$f^{\prime \prime}(x)$	-	no	+
$f(x)$	conc. down	no	conc. up

8. Sketch the graph. Now you are ready to sketch the graph using this information:

3 Maxima and Minima

A function f has a local (or relative) interior maximum at x_{0} if $f(x) \leq$ $f\left(x_{0}\right)$ for all x in some open interval containing x_{0}.

A function f has a global (or absolute) maximum at x_{0} if $f(x) \leq f\left(x_{0}\right.$ for all x in the domain of f.

A function f has a local (or relative) interior minimum at x_{0} if $f(x) \geq f\left(x_{0}\right)$ for all x in some open interval containing x_{0}.

A function f has a global (or absolute) minimum at x_{0} if $f(x) \geq f\left(x_{0}\right.$ for all x in the domain of f.

A max or min can also occur at a boundary point of the domain of f. In this case it is called boundary max or boundary min.

3.1 First Order Conditions

Theorem 2 If x_{0} is an interior max or min of f then x_{0} is a critical point.

This means that the criticality is a necessary condition for optimality
So we must seek interior min or max points among critical points. But if x_{0} is a critical point, how can we decide wether it is min, max or neither?

3.2 Second Order Condition

Theorem 3 (a) If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)<0$, then x_{0} is a local max of f;
(b) If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)>0$, then x_{0} is a local min of f;
(c) If $f^{\prime}\left(x_{0}\right)=0$ and $f^{\prime \prime}\left(x_{0}\right)=0$, then the second derivative test fails.

So the second order condition is sufficient for optimality.

3.3 Global Maxima and Minima

What conditions guarantee that a given critical point x_{0} of f is a global \max or min?

3.3.1 Only One Critical Point Case

Suppose

(a) the domain of f is an open interval (finite or infinite) of R;
(b) x_{0} is a local max (min) of f;
(c) x_{0} is the only critical point of f

Then x_{0} is the global max (min).

3.3.2 Nowhere Zero Second Derivative Case

If the domain of f is an open interval (finite or infinite) I of R and $f^{\prime \prime}(x)$ is newer zero on I, then f has at most one critical point in I. This critical point is global maximum if $f^{\prime \prime}<0$ and global minimum if $f^{\prime \prime}>0$.

3.3.3 How to Find Global max and min

A function f defined on an open interval need not have a global min or max:

$f(x)=\frac{1}{x}$ does not have a global max on $(0,1)$

$$
f(x)=\frac{1}{x} \text { does not have a global min on }(-1,0)
$$

However, a function f defined on a closed and bounded interval $[a, b]$ must have both a global min and global max.

How to find them?
(1) Find all critical points in (a, b);
(2) Evaluate f at these critical points and at the endpoints a and b;
(3) Choose the point from among these that gives the largest value of f (max) and smallest value of $f(\mathrm{~min})$.

Example

Find the global max and global min for $f(x)=x^{3}-3 x$ on
(a) $D=[-4,-2]$,
(b) $D_{2}=(0, \infty)$.

Solution. Derivative $f^{\prime}(x)=3 x^{2}-3$. Critical points

$$
3 x^{2}-3 x=0, \quad x^{2}-1=0, \quad(x-1)(x+1)=0, \quad x_{1}=-1, \quad x_{2}=1 .
$$

$D_{1}=[-4,-2]:$ No critical points in this interval, so check just the endpoints $f(-4)=-4^{3}-12=-64+12=-52, \quad f(-2)=-2^{3}+6=-2$, so $x_{\text {min }}=$
$D_{2}=(0, \infty)$: The critical point $x_{2}=1$ belongs to D_{2}, and it is a local min point: $f^{\prime \prime}(1)=\left.6 x\right|_{1}=6>0$, besides, since $f^{\prime \prime}(x)=6 x>0$ in whole interval $(0, \infty)$,

