Math for Economists, Calculus 1

Tornike Kadeishvili

WEEK 2

1 Derivatives

1.1 The Slope of Nonlinear Function

If we want approximate a nonlinear function $y=f(x)$ by a linear one around some point x_{0}, the best approximation is the line tangent to the graph of the function $y=f(x)$ at the point $\left(x_{0}, f\left(x_{0}\right)\right)$. The slope of this tangent line is the derivative of $y=f(x)$ at x_{0} and is denoted as

$$
f^{\prime}\left(x_{0}\right) \quad \text { or } \quad \frac{d f}{d x}\left(x_{0}\right) .
$$

More precisely:
The tangent line of the function $y=f(x)$ at a point x_{0} is the limit of secant which passes trough two points $\left(x_{0}, f\left(x_{0}\right)\right)$ and $(x, f(x))$, when $x \rightarrow x_{0}$.

What is the slope of this secant? This is

$$
\frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} .
$$

Thus the slope of the tangent line is

$$
\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

Definition 1 The derivative of a function $y=f(x)$ at x_{0} is

$$
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

equivalently

$$
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h} .
$$

Derivative

Slope of tangent MP $=\lim _{\alpha \rightarrow \alpha}$ (slope of secant MN) $=$

$$
f^{\prime}(x)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}}
$$

Example. Let us calculate using the definition the derivative of quadratic function $f(x)=x^{2}$ at a point x_{0} :

$$
\begin{gathered}
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}= \\
\lim _{h \rightarrow 0} \frac{\left(x_{0}+h\right)^{2}-x_{0}^{2}}{h}=\lim _{h \rightarrow 0} \frac{x_{0}^{2}+2 x_{0} h+h^{2}-x_{0}^{2}}{h}= \\
\lim _{h \rightarrow 0} \frac{2 x_{0} h+h^{2}}{h}=\lim _{h \rightarrow 0}\left(2 x_{0}+h\right)=2 x_{0} .
\end{gathered}
$$

Example. In previous proof we have used the formula

$$
(a+b)^{2}=a^{2}+2 a b+b^{2}
$$

This is a particular case of general Newton Binom formula

$$
\begin{gathered}
(a+b)^{k}= \\
C_{k}^{0} a^{k}+C_{k}^{1} a^{k-1} b+C_{k}^{2} a^{k-2} b^{2}+\ldots+C_{k}^{k-1} a b^{k-1}+C_{k}^{k} b^{k}
\end{gathered}
$$

where $C_{k}^{i}=\frac{k!}{i!(k-i)!}$ are binomial coefficients given by

$$
C_{k}^{i}=\frac{k!}{i!(k-i)!},
$$

that is

$$
C_{k}^{0}=1, C_{k}^{1}=k, C_{k}^{2}=\frac{(k-1) \cdot k}{2}, \ldots, C_{k}^{k-1}=k, C_{k}^{k}=1
$$

In particular

$$
C_{1}^{0}=1, C_{1}^{1}=1
$$

thus $(a+b)^{1}=a+b$ (wow!)
Furthermore

$$
C_{2}^{0}=1, C_{2}^{1}=2, C_{2}^{2}=1,
$$

thus $(a+b)^{2}=a^{2}+2 a b+b^{2}$.
And furthermore

$$
C_{3}^{0}=1, C_{3}^{1}=3, C_{3}^{2}=3, C_{3}^{3}=1
$$

thus $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$.
The binomial coefficients C_{k}^{j} form Pascal's triangle

				1		1				
			1		2		1			
		1		3		3		1		
	1		4		6		4		1	
\ldots		\ldots		\ldots		\ldots		\ldots		\ldots

where each number is the sum of the two directly above it.
We use this formula to find the derivative of the function $f(x)=x^{k}$:

$$
\begin{gathered}
f^{\prime}\left(x_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}=\lim _{h \rightarrow 0} \frac{\left(x_{0}+h\right)^{k}-x_{0}^{k}}{h}= \\
\lim _{h \rightarrow 0} \frac{x_{0}^{k}+k x_{0}^{k-1} h+C_{k}^{2} x_{0}^{k-2} h^{2}+\ldots+k x_{0} h^{k-1}+h^{k}-x_{0}^{k}}{h}= \\
\lim _{h \rightarrow 0} \frac{k x_{0}^{k-1} h+C_{k}^{2} x_{0}^{k-2} h^{2}+\ldots+k x_{0} h^{k-1}+h^{k}}{h}= \\
\lim _{h \rightarrow 0}\left(k x_{0}^{k-1}+C_{k}^{2} x_{0}^{k-2} h+\ldots+k x_{0} h^{k-2}+h^{k-1}\right)=k x_{0}^{k-1} .
\end{gathered}
$$

1.1.1 Rules for Computing Derivatives

(a) $(f \pm g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) \pm g^{\prime}\left(x_{0}\right)$,
(b) $(k f)^{\prime}\left(x_{0}\right)=k f^{\prime}\left(x_{0}\right)$,
(c) $(f \cdot g)^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right) \cdot g\left(x_{0}\right)+f\left(x_{0}\right) \cdot g^{\prime}\left(x_{0}\right)$,
(d) $\left(\frac{f}{g}\right)^{\prime}\left(x_{0}\right)=\frac{f^{\prime}\left(x_{0}\right) \cdot g\left(x_{0}\right)-f\left(x_{0}\right) \cdot g^{\prime}\left(x_{0}\right)}{g\left(x_{0}\right)^{2}}$,
(e) $\left(x^{k}\right)^{\prime}=k x^{k-1}$,
(f) $\quad\left(\left(f(x)^{n}\right)^{\prime}=n(f(x))^{n-1} \cdot f^{\prime}(x)\right.$,

1.2 Tangent line

There are infinitely many lines which pass trogh given ONE point. But two different points determine a line uniquely.
Example. Write the equation of the line which passes trough points $A=$ $(1,3)$ and $B=(5,11)$.
Solution. This is $y=a x+b, a=$?, $b=$?. Since A when $x=1=>y=3$ and since B when $x=5=>y=11$, so we have the system

$$
\left\{\begin{array}{l}
3=a \cdot 1+b \\
11=a \cdot 5+b
\end{array},\right.
$$

solution gives $a=2, b=1$, so this line is $y=2 x+1$.
Example. Write the equation of the tangent line to the graph of the function $y=x^{2}$ at the point with $x=2$.
Solution. This is $y=a x+b, a=$?, $b=$?. But $a=f^{\prime}(2)=2 \cdot 2=4$, so we need only b. Substitution in $y=4 x+b$ of $x=2, y=2^{2}=4$ gives $4=4 \cdot 2+b, \quad b=-4$, so the tangent line is $y=4 x-4$.

If you prefare generally the equation of the tangent line to $f(x)$ at x_{0} is $y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot\left(x-x_{0}\right)$ (try to prove!).

1.3 Continuous Functions

A function is continuous if its graph has no brakes.
Precise definition: a function $y=f(x)$ is continuous at x if for any sequence

$$
\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}
$$

which converges to x the sequence

$$
\left\{f\left(x_{1}\right), f\left(x_{2}\right), \ldots, f\left(x_{n}\right), \ldots\right\}
$$

converges to $f(x)$, that is

$$
\lim _{n \rightarrow \infty} x_{n}=x \Rightarrow \lim _{n \rightarrow \infty} f\left(x_{n}\right)=f(x) .
$$

Example. The function

$$
f(x)= \begin{cases}-x, & x \leq 0 \\ x+1, & x>0\end{cases}
$$

is discontinuous at $x=0$: for a sequence

$$
\left\{x_{n}=-\frac{1}{n}\right\}=\left\{-1,-\frac{1}{2},-\frac{1}{3}, \ldots,-\frac{1}{n}, \ldots\right\},
$$

which converges to $x=0$ from the left, the sequence

$$
\left\{f\left(x_{n}\right)=\frac{1}{n}\right\}=\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots\right\}
$$

converges to $0=f(0)$, but for the sequence

$$
\left\{x_{n}=\frac{1}{n}\right\}=\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots, \frac{1}{n}, \ldots\right\}
$$

which converges to $x=0$ from the right, the sequence

$$
\left\{f\left(x_{n}\right)=\frac{1}{n}+1\right\}=\left\{1+1, \frac{1}{2}+1, \frac{1}{3}+1, \ldots, \frac{1}{n}+1, \ldots\right\}
$$

converges to $1 \neq f(0)$. We write in this case

$$
\lim _{x \rightarrow 0^{-}} f(x)=0=f(0) \neq 1=\lim _{x \rightarrow 0^{+}} f(x) .
$$

Example. The function

$$
f(x)= \begin{cases}\frac{1}{x}, & x \neq 0 \\ 0, & x=0\end{cases}
$$

is discontinuous at $x=0$:

$$
\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty, f(0)=0, \lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty
$$

The function $\frac{1}{x}$ is continuous at each point of its domain $(-\infty, 0) \cup(0, \infty)$ but not at $x=0$.

1.4 Differentiability

A function $y=f(x)$ is called differentiable if it has the derivative at every point of its domain. The graph of such function has tangent everywhere, that is its graph is a smooth curve.

A function $y=f(x)$ is called continually differentiable function (a C^{1} function in short) if
(a) $f(x)$ is continuous, (b) $f(x)$ is differentiable, (c) $f^{\prime}(x)$ is continuous.

Example. The function $y=|x|$ has no tangent at $x=0$, so it has no derivative at this point, it is not differentiable, it is not smooth.
Example. The function

$$
f(x)= \begin{cases}-x^{2}, & x \leq 0 \\ x, & x>0\end{cases}
$$

is continuous at $x=0$: the left limit at $x=0$ is

$$
\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}}\left(-x^{2}\right)=0
$$

as well as the right limit

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x=0 .
$$

But it is not differentiable at $x=0$: the left derivative is

$$
\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=\left.\left(-x^{2}\right)^{\prime}\right|_{x=0}=-\left.2 x\right|_{x=0}=0
$$

and the right derivative is

$$
\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\left.(x)^{\prime}\right|_{x=0}=\left.1\right|_{x=0}=1
$$

$\mathrm{f}^{\prime}(\mathrm{x})$
Example. The function

$$
f(x)= \begin{cases}-x^{2}, & x \leq 0 \\ x^{3}, & x>0\end{cases}
$$

is differentiable at $x=0$: the left derivative is

$$
\lim _{x \rightarrow 0^{-}} f^{\prime}(x)=\left.\left(-x^{2}\right)^{\prime}\right|_{x=0}=-\left.2 x\right|_{x=0}=0
$$

and the right derivative is

$$
\mathrm{f}^{\prime}(\mathrm{x})
$$

Remark. Here is an example of differentiable but not C^{1} function:

$$
f(x)=\left\{\begin{array}{ll}
x^{2} \sin (1 / x), & x \neq 0 \\
0, & x=0
\end{array} .\right.
$$

Exercises

1. Check the continuity and the differentiability of

$$
f(x)= \begin{cases}x^{3} & x<1 \\ x & x \geq 1\end{cases}
$$

Solution. Check the continuity at $x=1$:

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x^{3}=1^{3}=1, \quad \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} x=1,
$$

so the function is continuous.
The derivative of our function is

$$
f^{\prime}(x)= \begin{cases}3 x^{2} & x<1 \\ 1 & x \geq 1\end{cases}
$$

thus $\lim _{x \rightarrow 1^{-}} f^{\prime}(x)=\lim _{x \rightarrow 1^{-}} 3 x^{2}=3$, and $\lim _{x \rightarrow 1^{+}} f^{\prime}(x)=\lim _{x \rightarrow 1^{+}} f^{\prime} x=1$, so $f^{\prime}(x)$ does not exist at $x=1$, the function is not C^{1}.
2. Check the continuity and the differentiability of

$$
f(x)= \begin{cases}x^{3} & x<1 \\ 3 x-2 & x \geq 1\end{cases}
$$

Solution. Check the continuity at $x=1$:

$$
\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} x^{3}=1^{3}=1, \quad \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}}(3 x-2)=3 \cdot 1-2=1,
$$

so the function is continuous.
The derivative of our function is

$$
f^{\prime}(x)= \begin{cases}3 x^{2} & x<1 \\ 3 & x \geq 1\end{cases}
$$

thus $\lim _{x \rightarrow 1^{-}} f^{\prime}(x)=\lim _{x \rightarrow 1^{-}} 3 x^{2}=3$, and $\lim _{x \rightarrow 1^{+}} f^{\prime}(x)=\lim _{x \rightarrow 1^{+}} 3=3$, so $f^{\prime}(x)$ is continuous, the function is C^{1}.
3. Check the continuity and the differentiability of $f(x)=x^{\frac{1}{3}}$.

1.5 Higher order derivatives

The second derivative of a function $y=f(x)$ is the derivative of the derivative $f^{\prime}(x)$. Notation

$$
f^{\prime \prime}(x) \quad \text { or } \quad \frac{d}{d x}\left(\frac{d f}{d x}(x)\right)=\frac{d^{2} f}{d x^{2}}(x)
$$

For example $\left(x^{3}\right)^{\prime \prime}=\left(\left(x^{3}\right)^{\prime}\right)^{\prime}=\left(2 x^{2}\right)^{\prime}=4 x$.
A C^{2} function is a twice continuously differentiable function.
The k-th derivative of f is denoted by

$$
f^{[k]}=\frac{d^{k} f}{d x^{k}}(x)
$$

If this k-th derivative is continuous, then we say f is C^{k}. If f has continuous $f^{[k]}$-s for all k, then we say f is C^{∞}. All polynomials are C^{∞}.

Exercises

4. Check the continuity and the differentiability of

$$
f(x)= \begin{cases}x^{2} & x \leq 0 \\ -x^{2} & x>0\end{cases}
$$

Solution. The derivative of our function is

$$
f^{\prime}(x)=\left\{\begin{array}{ll}
2 x & x \leq 0 \\
-2 x & x>0
\end{array}=-2|x|\right.
$$

thus the function is continuous, differentiable, but the second derivative does not exists at $x-0$. So this function is C^{1} but not C^{2}.

$\mathrm{f}^{\prime}(\mathrm{x})$

$$
f^{\prime \prime}(x)
$$

5. We have already checked that the function

$$
f(x)= \begin{cases}x^{3} & x<1 \\ 3 x-2 & x \geq 1\end{cases}
$$

is C^{1}. But is it C^{2} ? The second derivative of our function is

$$
f^{\prime \prime}(x)= \begin{cases}6 x & x<1 \\ 0 & x \geq 1\end{cases}
$$

so at $x=1$ the left second derivative is

$$
\lim _{x \rightarrow 1^{-}} f^{\prime \prime}(x)=\left.6 x\right|_{x=1}=6 \cdot 1=6
$$

and the right second derivative is

$$
\lim _{x \rightarrow 1^{+}} f^{\prime \prime}(x)=\left.0\right|_{x=1}=0
$$

thus $f^{\prime \prime}(1)$ does not exists, i.e. this function is not C^{2}.

$$
\mathrm{f}^{\prime \prime}(\mathrm{x})
$$

6. We have already checked that the function

$$
f(x)= \begin{cases}-x^{2}, & x \leq 0 \\ x^{3}, & x>0\end{cases}
$$

is C^{1}, but is it $C^{2} ?$
7. Construct a function which is C^{2} but not C^{3}.

1.6 Approximation by Differential

By definition of the derivative

$$
f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

thus

$$
f\left(x_{0}+h\right) \approx f^{\prime}\left(x_{0}\right) \cdot h+f\left(x_{0}\right)
$$

Equivalently, taking $x=x_{0}+h$ we obtain

$$
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot\left(x-x_{0}\right)
$$

This allows to approximate $f(x)$ by the linear function $f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot\left(x-x_{0}\right)$ around a point x_{0}, for which $f\left(x_{0}\right)$ and $f^{\prime}\left(x_{0}\right)$ are easy to calculate.

Denote $f(x)-f\left(x_{0}\right)=\Delta f$ and $x-x_{0}=\Delta x$, then the above can be rewritten as

$$
\Delta f \approx f^{\prime}\left(x_{0}\right) \cdot \Delta x
$$

Write $d f$ instead of Δf and $d x$ instead of Δx. Then

$$
d f=f^{\prime}\left(x_{0}\right) \cdot d x
$$

$d f$ is called differential of f.
Example. Estimate $\sqrt{920}$.
Solution. Consider the function $f(x)=\sqrt{x}$. The point nearest to 920 for which we can calculate $f(x)$ (and $f^{\prime}(x)$) is $x=900: f(900)=\sqrt{900}=30$, furthermore, the derivative of $f(x)=\sqrt{x}$ is $f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}}$, thus $f^{\prime}(900)=\frac{1}{60}$.

So $f(920)$ can be approximated as

$$
\begin{gathered}
f(920) \approx f(900)+f^{\prime}(900) \cdot 20= \\
\sqrt{920}=30+\frac{1}{60} \cdot 20=30+\frac{1}{3}=30.333 \ldots
\end{gathered}
$$

$>f(x):=\operatorname{sqrt}(x) ; d f(x):=\operatorname{diff}(f(x), x) ;$
$>x 0:=900 . ; k:=\operatorname{eval}(d f(x), x=x 0) ; f(x 0):=\operatorname{eval}(f(x), x=x 0) ;$
$>g(x):=k *(x-x 0)+f(x 0)$;
$>\operatorname{eval}(f(x), x=920$.); $\operatorname{eval}(g(x), x=920)$;
$>\operatorname{plot}(f(x), g(x), x=0 . .1000)$;

1.7 Taylor Formula

The linear approximation

$$
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot\left(x-x_{0}\right)
$$

is a particular case of more general approximation of a function with Taylor polynomials $P_{n}(x)$

$$
\begin{gathered}
f(x) \approx P_{n}(x)= \\
f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!} \cdot\left(x-x_{0}\right)^{2}+\ldots+\frac{f^{[n]}\left(x_{0}\right)}{n!} \cdot\left(x-x_{0}\right)^{n}
\end{gathered}
$$

where n ! is the factorial $n!=1 \cdot 2 \cdot 3 \cdot \ldots \cdot n$. The Taylor series of f is "infinite" Taylor polynomial

$$
\begin{gathered}
P_{\infty}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!} \cdot\left(x-x_{0}\right)^{2}+\ldots \\
+\frac{f^{[n]}\left(x_{0}\right)}{n!} \cdot\left(x-x_{0}\right)^{n}+\ldots
\end{gathered}
$$

Equivalent form

$$
\begin{aligned}
P_{\infty}\left(x_{0}+h\right)= & f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \cdot h+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!} \cdot h^{2}+\ldots \\
& +\frac{f^{[n]]}\left(x_{0}\right)}{n!} \cdot h^{n}+\ldots
\end{aligned}
$$

The particular case of this series when $x_{0}=0$

$$
P_{\infty}(x)=f(0)+f^{\prime}(0) \cdot x+\frac{f^{\prime \prime}(0)}{2!} \cdot x^{2}+\ldots+\frac{f^{[n]}(0)}{n!} \cdot x^{n}+\ldots
$$

is called MacLaurin series.
Example. Estimate $\sqrt{920}$ now using the second order Taylor polynomial.

Solution.

$$
\begin{gathered}
f(x) \approx f(900)+f^{\prime}(900) \cdot(x-900)+\frac{f^{\prime \prime}(900)}{2!} \cdot(x-900)^{2} . \\
f^{\prime}(x)=\frac{1}{2 \sqrt{x}}, \quad f^{\prime}(900)=\frac{1}{2 \cdot 30}=\frac{1}{60} . \\
f^{\prime \prime}(x)=-\frac{1}{4 \sqrt{x}^{3}}, \quad f^{\prime \prime}(900)=-\frac{1}{4 \cdot 30^{3}}=-\frac{1}{108000} .
\end{gathered}
$$

Thus
$f(920)=30+\frac{1}{60} \cdot 20-\frac{1}{2} \cdot \frac{1}{108000} \cdot 20^{2}=30+0.33 \ldots-0.001852=30.33148$.
Compare this by $30.333 \ldots$ obtained by linear approximation and the value $\sqrt{920}=30.33150178$ given by calculator.

$$
\begin{aligned}
& \text { By MAPLE } \\
& >f:=\operatorname{sqrt}(x) ; \\
& >T 2:=\operatorname{taylor}(f, x=900,3) ; \\
& \quad T 2:=30+\frac{1}{60}(x-900)-\frac{1}{216000}(x-900)^{2}+O\left((x-900)^{3}\right) \\
& >P 2:=\operatorname{convert}(T 2, \text { polynom }) ; \\
& P 2:=15+\frac{x}{60}-\frac{(x-900)^{2}}{216000} \\
& >t:=\operatorname{eval}(P 2, x=920) ; \quad \frac{16379}{540} \\
& >\operatorname{eval} f(t) ;
\end{aligned}
$$

30.33148148

Exercises

8. Find the MacLaurin polynomial $P_{4}(x)$ for the functions $f(x)=\frac{1}{1+x}$ and $f(x)=\frac{1}{1-x}$.
9. Estimate e^{x} using the MacLaurin polynomials $P_{1}(x), P_{2}(x), P_{3}(x)$.
10. Estimate $\ln x$ using Taylor polynomials $P_{1}(x), P_{2}(x), P_{3}(x)$ at $x=1$.
11. Find the MacLaurin polynomials $\left.P_{1}(x), P_{2}(x), P_{3}(x), P_{4}(x)\right)$ for the a polynomial $f(x)=a x^{3}+b x^{2}+c x+d$.
