ISET MATH I Term 2013 Midterm Exam

Problem 1. Let $f(x)=2 x^{6}+3 x^{5}$, find
(a) domain and range;
(b) x and y intercepts;
(c) increasing and decreasing intervals;
(d) intervals of concavity up, concavity down and inflection points;
(e) local minimums and maximums;
(f) global minimums and maximums;
(g) min and max on the interval $[-1,1]$;
(h) sketch the graph.

Answer

(a)	Domain $x \in(\quad, \quad)$ Range $y \in$
(b)	$\begin{aligned} & x-\text { interc. } x= \\ & y-\text { interc. } \end{aligned}$
(c)	Increasing $x \in(\quad, \quad)$ Decreasing $y \in$
(d)	conc. down $x \in$ conc.up inflection
(e)	loc. $\min x_{\text {min }}=$ loc. $\max \quad x_{\max }=$
(f)	glob. min glob. max
(g)	$\min \cdot x_{\text {min }}=$, $\max \cdot x_{\max }=$ $y_{\max }=$
(h)	

Solution

Problem 2. Let $f(x)=\frac{16(5-x)}{x^{2}-16}$. Find:
(a) Domain and range;
(b) All asymptotes;
(c) All local minimums and maximums;
(d) All intercepts
(e) Sketch the graph of f.

Give examples of rational functions satisfying the following conditions:
(f) Vertical asymptotes at $x=1$ and $x=-1$ and oblique asymptote is $y=-x$.
(g) Vertical asymptote at $x=1$ and and oblique asymptote is $y=-x$.
(h) No vertical asymptotes and oblique asymptote is $y=-x$.

Answer

(a)	Domain Range
(b)	Vertical Horizontal Oblique
(c)	Local min Local max
(d)	$\begin{aligned} & \hline y-\text { inter } c . \\ & x-\text { inter } c . \end{aligned}$
(e)	
(f)	
(g)	
(h)	

Solution

Problem 3. The cost function of a firm is given by $C(x)=x^{2}+16$.
(a) Find the value x_{0} which minimizes the average cost $A C(x)$.
(b) Assume that the firm is in perfectly competitive situation and it receives for its output a constant price $p(x)=20$. Calculate: $\left(b_{1}\right)$ the optimal output point, that is the value x^{*} which maximizes the profit; $\left(b_{2}\right)$ the maximal profit; $\left(b_{3}\right)$ brake even points; $\left(b_{4}\right)$ sketch the graphs of $A C, M C, M R$ and indicate all intersection points.
(c) Assume now that the firm is in pure monopolistic situation and the price function is given by $p(x)=40-x$. Calculate: $\left(c_{1}\right)$ the optimal output point; $\left(c_{2}\right)$ the maximal profit; $\left(c_{3}\right)$ brake even points; $\left(c_{4}\right)$ sketch the graphs of $A C, M C, M R$ and indicate all intersection points.

Answer

Solution

Problem 4. Let $f(x)= \begin{cases}x^{2} & x \leq 1 \\ -x^{2}+a x+b & x>1 .\end{cases}$
(a) Indicate values of a and b for which $f(x)$ is a continuous but not C^{1} function. Plot the graph.
(b) Find the values of a and b for which $f(x)$ is a C^{1} function. Plot the graph.
(c) Is the obtained function C^{2} ? Justify your answer.

Answer

Solution

Problem 5. The demand function is given by $x(p)=120-20 p$.
(a) Find the elasticity.
(b) At what price is the elasticity equal to -1 ?
(c) Find the price interval where the demand is elastic?
(d) Find the price interval where the demand is inelastic?
(e) At price $p=2$ will a small increase in price cause the total revenue to increase or decrease?
(f) At price $p=4$ will a small increase in price cause the total revenue to increase or decrease?
(g) Calculate percent of change of demand if the price $p_{0}=2$ increases by 10%. Give the answer: $\left(g_{1}\right)$ first by direct calculation, $\left(g_{2}\right)$ then using elasticity.
(h) Calculate percent of change of demand if the price $p_{0}=4$ increases by 10%. Give the answer: $\left(h_{1}\right)$ first by direct calculation, $\left(h_{2}\right)$ then using elasticity.

Answer

(a)	$\epsilon(p)=$
(b)	
(c)	
(d)	
(e)	
(f)	
(g)	$\left(g_{1}\right):$
	$\left(g_{2}\right):$
(h)	$\left(h_{1}\right):$
$\left(h_{2}\right):$	

Solution

ADDITIONAL PAPER

ADDITIONAL PAPER

