Tornike Kadeishvili

WEEK 7

1 Integral Calculus

Reading: [SB] appendix A4

1.1 Antiderivative = Indefinite integral

Definition. Indefinite integral $\int f(x) d x$ is a function $F(x)$ such that $F^{\prime}(x)=$ $f(x)$.

Examples

$$
\begin{gathered}
\left(x^{2}\right)^{\prime}=2 x \Rightarrow \int 2 x d x=x^{2}+C, \quad\left(x^{3}\right)^{\prime}=3 x^{2} \Rightarrow \int 3 x^{2} d x=x^{3}+C \\
\left(e^{x}\right)^{\prime}=e^{x} \Rightarrow \int e^{x} d x=e^{x}+C, \quad(\ln x)^{\prime}=\frac{1}{x} \Rightarrow \int \frac{1}{x} d x=\ln x+C
\end{gathered}
$$

1.1.1 Indefinite Integral Formulas

1. $\int k d x=k x+C$;
2. $\int x^{n} d x=\frac{x^{n+1}}{n+1}+C$ for $n \neq-1$
3. $\int x^{-1} d x=\ln x+C$;
4. $\quad \int k f(x) d x=k \int f(x) d x$;
5. $\quad \int[f(x)+g(x)] d x=\int f(x) d x+\int g(x) d x$;
6. $\int[u(x)]^{n} u^{\prime}(x) d x=\frac{[u(x)]^{n+1}}{n+1}+C$ for $n \neq-1$
7. $\int[u(x)]^{-1} u^{\prime}(x) d x=\ln u(x)+C$;
8. $\int e^{u(x)} u^{\prime}(x) d x=e^{u(x)}+C$.

Examples

1. $\int 5 d x=5 x+C$;
2. $\int x^{3} d x=\frac{x^{4}}{4}+C$;
3. $\int \frac{4}{x} d x=4 \int x^{-1} d x=4 \ln x+C$;
4. $\int 3 e^{x} d x=3 e^{x}+C$;
5. $\int\left(6 x^{2}-4 x+2\right) d x=2 x^{3}-2 x^{2}+2 x+C$;
6. $\int 4 x\left(x^{2}+1\right) d x=2 \int\left(x^{2}+1\right) d\left(x^{2}+1\right)=\left(x^{2}+1\right)^{2}+C$;
7. $\int 2 x\left(x^{2}+1\right)^{-1} d x=\int\left(x^{2}+1\right)^{-1} d\left(x^{2}+1\right)=\ln \left(x^{2}+1\right)+C$;
8. $\int e^{4 x+3} d x=\frac{1}{4} \int e^{4 x+3} 4 d x=\frac{1}{4} \int e^{4 x+3} d(4 x+3)=\frac{1}{4} e^{4 x+3}+C$

Exercises

1. $\int(2 x+3)^{10} d x$.
2. $\int(2 x+3)^{-1} d x$.
3. $\int(2 x+3)^{-3} d x$.
4. $\int x\left(2 x^{2}+3\right)^{-1} d x$.
5. $\int x^{2}\left(2 x^{3}+3\right)^{5} d x$.
6. $\int e^{3 x} d x$.
7. $\int e^{x}\left(3 e^{x}+1\right)^{7} d x$.
8. $\int \frac{x}{3 x^{2}+1} d x$.
9. $\int \frac{x^{2}}{1-3 x^{3}} d x$.

Find $f(x)$ if
10. $f^{\prime}(x)=2 x-3$, and $f(0)=5$.
11. $f^{\prime}(x)=2 x^{-2}+3 x^{-1}$ and $f(1)=0$.
12. Marginal cost function is given by $C^{\prime}(x)=3 x^{2}-24 x+53$, and the fixed cost at 0 output are $\$ 30,000$. What is the cost for manufacturing of 4,000 items?
13. The weekly marginal revenue from the sale of x pairs of shoes is given by $R^{\prime}(x)=40-0.02 x+\frac{200}{x+1}$. Besides $R(0)=0$. Find the revenue function. Find the revenue from the sale of 1,000 shoes.
14. The weekly marginal cost of producing x pairs of shoes is $C^{\prime}(x)=$ $12+\frac{500}{x+1}$, and the weekly fixed costs are $\$ 2,000$. Find the cost function. What is the average cost per one pair of shoes if 1,000 pair of shoes are produced?

1.1.2 Integration by Parts

By product rule

$$
[u(x) \cdot v(x)]^{\prime}=u^{\prime}(x) \cdot v(x)+u(x) \cdot v^{\prime}(x) .
$$

Integrating both sides we obtain

$$
\begin{aligned}
& \int[u(x) \cdot v(x)]^{\prime} d x=\int u^{\prime}(x) \cdot v(x) d t+\int u(x) \cdot v^{\prime}(x) d x, \\
& u(x) \cdot v(x)=\int u^{\prime}(x) \cdot v(x) d t+\int u(x) \cdot v^{\prime}(x) d x,
\end{aligned}
$$

let us rewrite this as

$$
\int u(x) \cdot v^{\prime}(x) d x=u(x) \cdot v(x)-\int u^{\prime}(x) \cdot v(x) d x
$$

Equivalently

$$
\int u(x) \cdot d v(x)=u(x) \cdot v(x)-\int v(x) d u(x) .
$$

Examples

1. Calculate $\int x e^{x} d x$. Let $u(x)=x, d v(x)=e^{x} d x$, then $d u(x)=d x$ and $v(x)=e^{x}$ thus

$$
\begin{gathered}
\int x e^{x} d x=\int u(x) d v(x)=u(x) v(x)-\int v(x) d u(x)= \\
x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+C .
\end{gathered}
$$

2. Calculate $\int \ln x d x$. Let $u(x)=\ln x, d v(x)=d x$, then $d u(x)=\frac{1}{x} d x$ and $v(x)=x$ thus

$$
\begin{gathered}
\int \ln x d x=\int u(x) d v(x)=u(x) v(x)-\int v(x) d u(x)= \\
(\ln x) \cdot x-\int x d(\ln x)= \\
x \ln x-\int x \cdot \frac{1}{x} d x=x \ln x-\int d x=x \ln x-x+C .
\end{gathered}
$$

3. Calculate $\int x \sqrt{x+1} d x$. Let $u(x)=x, d v(x)=(x+1)^{\frac{1}{2}} d x$, then $d u(x)=$ $d x$ and $v(x)=\int d v(x)=\int(x+1)^{\frac{1}{2}} d x=\frac{2}{3}(x+1)^{\frac{3}{2}}$ thus

$$
\begin{gathered}
\int x \sqrt{x+1} d x=\int u(x) d v(x)=u(x) v(x)-\int v(x) d u(x)= \\
x \cdot \frac{2}{3}(x+1)^{\frac{3}{2}}-\int \frac{2}{3}(x+1)^{\frac{3}{2}} d x= \\
\frac{2}{3} x(x+1)^{\frac{3}{2}}-\frac{2}{3} \cdot \frac{(x+1)^{\frac{3}{2}+1}}{\frac{3}{2}+1}=\frac{2}{3} x(x+1)^{\frac{3}{2}}-\frac{4}{15}(x+1)^{\frac{5}{2}}+C .
\end{gathered}
$$

Exercises

1. Calculate $\int x \ln x d x$. Try 4 ways to solve this problem, which way works?

Way 1. Let $u(x)=1, \quad d v(x)=x \ln x d x$.
Way 2. Let $u(x)=x \ln x, \quad d v(x)=d x$.
Way 3. Let $u(x)=\ln x, \quad d v(x)=x d x$.
Way 4. Let $u(x)=x, \quad d v(x)=\ln x d x$.
2. Calculate $\int x^{3} \cdot e^{x} d x$.

1.2 Definite Integral

The definite integral $\int_{a}^{b} f(x) d x$ is defined as follows. Take any natural number N and divide the interval $[a, b]$ into N equal subintervals, for this let $\Delta=\frac{b-a}{N}$ and let's consider the points

$$
x_{0}=a, x_{1}=x_{0}+\Delta, x_{2}=x_{1}+\Delta, \ldots, x_{N}=x_{N-1}+\Delta=b,
$$

these points divide $[a, b]$ into N intervals

$$
\left[a=x_{0}, x_{1}\right],\left[x_{1}, x_{2}\right], \ldots,\left[x_{k}, x_{k+1}\right], \ldots,\left[x_{N-1}, x_{N}=b\right]
$$

each of length Δ.
Now consider the Riemann sum
$f\left(x_{0}\right) \cdot\left(x_{1}-x_{0}\right)+f\left(x_{1}\right) \cdot\left(x_{2}-x_{1}\right)+\ldots+f\left(x_{N-1}\right) \cdot\left(x_{N}-x_{N-1}\right)=\sum_{i=1}^{N} f\left(x_{i-1}\right) \cdot \Delta$.
This sum approximates the area under the graph of $f(x)$ from a to b :

Definition. The definite integral $\int_{a}^{b} f(x) d x$ is defined as the limit

$$
\lim _{N \rightarrow \infty} \sum_{i=1}^{N} f\left(x_{i-1}\right) \cdot \Delta
$$

Remark. Actually in the general definition of definite integral partitions of $[a, b]$ not necessarily into equal intervals $\left[x_{k-1}, x_{k}\right]$ are used, and in the limit process it is assumed that the length of largest subinterval goes to zero. Besides, as $f\left(x_{k}\right)$ can be taken not necessarily the left end but any point of the k-th subinterval $\left[x_{k-1}, x_{k}\right]$.

1.2.1 The Fundamental Theorem of Calculus

As we see the definitions of indefinite and definite integrals are totally different. This theorem connects these two notions: suppose $F^{\prime}(x)=f(x)$, i.e. $\int f(x) d x=F(x)+C$, then

$$
\int_{a}^{b} f(x) d x=F(b)-F(a)=\left.F(x)\right|_{a} ^{b}
$$

Example. Calculate $\int_{1}^{e} \ln x d x$.

Solution. We have already calculated the indefinite integral

$$
\int \ln x d x=x \ln x-x+C
$$

Then

$$
\begin{gathered}
\int_{1}^{e} \ln x d x=\left.(x \ln x-x+C)\right|_{1} ^{e}= \\
(e \cdot \ln e-e+C)-(1 \cdot \ln 1-1+C)= \\
(e-e+C)-(1 \cdot 0-1+C)=1 .
\end{gathered}
$$

1.3 Applications

1.3.1 Average Value

Let f be a continuous function over a closed interval $[a, b]$. Its average value over $[a, b]$ is

$$
y_{a v}=\frac{1}{b-a} \int_{a}^{b} f(x) d x
$$

Geometrical meaning: multiply both sides by $b-a$

$$
(b-a) \cdot y_{a v}=\int_{a}^{b} f(x) d x
$$

So the average value $y_{a v}$ is the height of the rectangle of length $b-a$ whose area is the same as the area under the graph of $f(x)$ over the interval $[a, b]$, which equals to $\int_{a}^{b} f(x) d x$.

Example. Find the average value of $f(x)=x^{3}$ over the interval $[-1,1]$.

$$
y_{a v}=\frac{1}{1-(-1)} \int_{-1}^{1} x^{3} d x=\left.\frac{1}{2} \cdot \frac{x^{4}}{4}\right|_{-1} ^{1}=\frac{1}{2}\left(\frac{1}{4}-\frac{1}{4}\right)=0 .
$$

Is it strange?

1.3.2 Consumer's Surplus

Consider the inverse demand function $p=D(q)$ (p is the price at the demand $q)$. We know that this is a decreasing function.

Take any demand q^{*}, the corresponding price is $p^{*}=D\left(q^{*}\right)$. If we purchase q^{*} units immediately for the price $p^{*}=D\left(q^{*}\right)$, then our expenditure will be $q^{*} \cdot D\left(q^{*}\right)$.

On the other hand the total willingness to pay for q^{*} units of commodity is the area under the graph of inverse demand function $p=D(q)$ on the interval $\left[0, q^{*}\right]$, so it is $\int_{0}^{q^{*}} f(q) d q$.

The consumer's surplus is defined as

$$
\int_{0}^{q^{*}} D(q) d q-q^{*} \cdot D\left(q^{*}\right) .
$$

Example. Let the price of a book depending on number of books purchased is given by $p=10-q$, this means that the price of the first book is $\$ 9$; of the second is $\$ 8$; of the third book is $\$ 7$, etc. Let us analyze what does it mean.

Consider three strategies of selling books.

1. Trivial: each book costs 9 , so if you buy two books, you pay $9+9=18$; if you buy three books you pay $9+9+9=27$, etc.
2. Weak discount: if you buy one book you pay 9 ; if you buy two books you pay 9 for the first book and 8 for the second, so $9+8=17$ for both; if you buy three books you pay 9 for the first, 8 for the second, 7 for the third, so you pay $9+8+7=25$ for all three, etc.
3. Strong discount: if you buy one book you pay 9 ; if you buy two books you pay 8 for each, so you pay $8+8=16$ for both; if you buy three books you pay 7 for each, so you pay $7+7+7=21$ for all three, etc.

The consumer's surplus is the difference between the second and the third methods, that is:

If $q=1$, the surplus is $9-9=0$.
If $q=2$, the surplus is $17-16=1$.
If $q=3$, the surplus is $25-21=4$.
Generally, if $q=q_{0}$, the surplus is

$$
\begin{gathered}
\int_{0}^{q_{0}}(10-q) d q-q_{0} \cdot\left(10-q_{0}\right)=\left.\left(10 q-\frac{q^{2}}{2}\right)\right|_{0} ^{q_{0}}-10 q_{0}+q_{0}^{2}= \\
10 q_{0}-\frac{q_{0}^{2}}{2}-10 q_{0}+q_{0}^{2}=\frac{q_{0}^{2}}{2} .
\end{gathered}
$$

Why this result differs from above for $q_{0}=1,2,3$?

1.3.3 Producer's Surplus

Let $p=S(q)$ be the supply function for a commodity, it is an increasing function. The producer's surplus at $q=q^{*}$ is defined as

$$
q^{*} \cdot S\left(q^{*}\right)-\int_{0}^{q^{*}} S(q) d q
$$

Example. Let $D(q)=(q-5)^{2}$ and $S(q)=q^{2}+q+3$, find
(a) The equilibrium point.
(b) The consumer's surplus at the equilibrium point.
(c) The producer's's surplus at the equilibrium point.

Solution.

(a) $S(q)=D(q), \quad(q-5)^{2}=q^{2}+q+3, \quad q^{*}=2, \quad p^{*}=D(2)=S(2)=9$.
(b) $\int_{0}^{2} D(q) d q-q^{*} \cdot D\left(q^{*}\right)=\int_{0}^{2}(q-5)^{2} d q-2 \cdot 9=\left.\frac{(q-5)^{3}}{3}\right|_{0} ^{2}-18=\frac{44}{3}$.
(c) $q^{*} \cdot S\left(q^{*}\right)-\int_{0}^{2} S(q) d q=2 \cdot 9-\int_{0}^{2}\left(q^{2}+q+3\right) d q=18-\left.\left(\frac{\left(q^{3}\right.}{3}+\frac{q^{2}}{2}+q\right)\right|_{0} ^{2}=\frac{22}{3}$.

$$
d:=(q-5)^{\wedge} 2 ; s:=q^{\wedge} 2+q+3 ;
$$

> solve (d=s,q) ;
> eval (s,q=2);
Consumer surplus
$>\operatorname{CS}:=\operatorname{int}(d, q=0 . .2)-2 * 9$;
Producer surplus
>PS:=2*9-int(s,q=0..2);

Exercises

A4.1-A4.5 from [SB], pp. 983.

1. Find the consumer's surplus at a price level $\$ 150$ if the price-demand equation is $D(x)=400-0.05 x$.
2. Find the producer's surplus at a price level $\$ 67$ if the price-supply equation is $S(x)=10+0.1 x+0.0003 x^{2}$.
3. Suppose the price-demand function is $D(x)=50-0.1 x$ and the pricesupply function is $S(x)=11+0.05 x$. Find:
(a) The equilibrium price level.
(b) Consumer's surplus at equilibrium.
(c) Producer's surplus at equilibrium.
