Multivariable Calculus

Tornike Kadeishvili

Functions $\mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}$

1. The area of a rectangle with dimensions x and y is a function of two variables $S: R^{2} \rightarrow R$ given by quadratic function

$$
S(x, y)=x y .
$$

The perimeter of this rectangle is a linear function of two variables $P: R^{2} \rightarrow$ R given by

$$
P(x, y)=2 x+2 y .
$$

Functions $\mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}$
2. The volume of a box with dimensions x, y, z is a function of three
variables $V: R^{3} \rightarrow R$ given by cubical function

$$
V(x, y, z)=x y z .
$$

The area of the surface is a quadratic function of three variables

$$
S(x, y, z)=2 x y+2 x z+2 y z .
$$

x
3. The amount A is a function of three variables: P-principal, r-annual rate, t-time in years. The function $A: R^{3} \rightarrow R$ is given by

$$
A(P, r, t)=P(1+r t) .
$$

4. For a demand functions $q=f(p)$ the quantity demanded q is a function of one variable: its own price p.

In reality the demanded quantity depends also on the prices of other goods in the market and on income y :

$$
q_{1}=f\left(p_{1}, p_{2}, y\right)
$$

Computer - printer (complementary)
$q_{\text {comp }}\left(p_{\text {comp }}, p_{p r \text { int }}\right)=A-k \cdot p_{\text {comp }}-s \cdot p_{p r \text { int }}$
Computer -laptop (competitive)
$q_{\text {lap }}\left(p_{\text {lap }}, p_{\text {desk }}\right)=A-k \cdot p_{\text {lap }}+s \cdot p_{\text {desk }}$
5. Another example of multivariable function in economics is production function. Consider a firm which uses n inputs to produce a single output.

For $i=1, \ldots, n$, let x_{i} denote the amount of input i. The vector $\left(x_{1}, \ldots, x_{n}\right)$ is called an input bundle. The firm's production function assigns to each input bundle $\left(x_{1}, \ldots, x_{n}\right)$ the amount of output $y=f\left(x_{1}, \ldots, x_{n}\right)$.

Functions $\mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}$
6. One more example is a utility function. Consider an economy with k commodities. Let x_{i} denote the amount of commodity i. The vector $\left(x_{1}, \ldots, x_{k}\right) \in R^{k}$ is called a commodity bundle.

Suppose two bundles $x=\left(x_{1}, \ldots, x_{k}\right)$ and $x^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$ are given.
Is it possible to say which from these two bundles is preferable?
A utility function is a function $u: R^{k} \rightarrow R$ which assigns to a commodity bundle $\left(x_{1}, \ldots, x_{k}\right)$ a number $u\left(x_{1}, \ldots, x_{k}\right)$ which measures the consumer's degree of satisfaction or utility with the given commodity bundle. Utility function determines preferences: a commodity bundle $x=\left(x_{1}, \ldots, x_{k}\right)$ is preferred to another bundle $x^{\prime}=\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$ if

$$
u\left(x_{1}, \ldots, x_{k}\right)>u\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)
$$

and x and x^{\prime} are called indifferent if $u\left(x_{1}, \ldots, x_{k}\right)=u\left(x_{1}^{\prime}, \ldots, x_{k}^{\prime}\right)$.

Partial Derivatives

Let $f: R^{n} \rightarrow R$. Then for each x_{i} at each point $x^{0}=\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)$ the i th partial derivative is defined as

$$
\frac{\partial f}{\partial x_{i}}\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{1}^{0}, \ldots, x_{i}^{0}+h, \ldots, x_{n}^{0}\right)-f\left(x_{1}^{0}, \ldots, x_{i}^{0}, \ldots, x_{n}^{0}\right)}{h} .
$$

Notice that here only i th variable is changing, the others are treated as constants. Thus the partial derivative $\frac{\partial f}{\partial x_{i}}\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)$ is the ordinary derivative of the function $f\left(x_{1}^{0}, \ldots, x_{i-1}^{0}, x, x_{i+1}^{0}, \ldots, x_{n}^{0}\right)$ of one variable x at the point $x=x_{i}^{0}$.

Notation

$$
\frac{\partial f}{\partial x_{i}}\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)=f_{x_{i}}\left(=f_{x_{i}}^{\prime}\right)
$$

Examples. 1. Find partial derivatives for $f(x, y)=3 x^{2} y^{2}+4 x y^{3}+7 y$.
For $\frac{\partial f}{\partial x}$ only x is considered as a variable and y is treated as a constant:

$$
\frac{\partial f}{\partial x}=3 \cdot 2 x \cdot y^{2}+4 \cdot 1 \cdot y^{3}+0=6 x y^{2}+4 y^{3}
$$

For $\frac{\partial f}{\partial y}$ only y is considered as a variable and x is treated as a constant:

$$
\frac{\partial f}{\partial y}=3 x^{2} \cdot 2 y+4 x \cdot 3 y^{2}+7 \cdot 1=6 x^{2} y+12 x y^{2}+7
$$

2. Find partial derivatives for $f(x, y)=\sqrt{x y}$.

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{1}{2 \sqrt{x y}} \cdot \frac{\partial(x y)}{\partial x}=\frac{y}{2 \sqrt{x y}} \\
& \frac{\partial f}{\partial y}=\frac{1}{2 \sqrt{x y}} \cdot \frac{\partial(x y)}{\partial y}=\frac{x}{2 \sqrt{x y}}
\end{aligned}
$$

Chain Rule
If $y=f\left(x_{1}, \ldots, x_{n}\right), x_{i}=x_{i}\left(t_{1}, \ldots, t_{m}\right), i=1,2, \ldots, n$, then

$$
\frac{\partial y}{\partial t_{j}}=\sum_{i=1}^{n} \frac{\partial f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{i}} \frac{\partial x_{i}}{\partial t_{j}}
$$

Second Partial Derivatives

Second order partial derivative of $y=f\left(x_{1}, \ldots, x_{n}\right)$ is defined as

$$
\frac{\partial^{2} y}{\partial x_{j} \partial x_{i}}=f_{x_{i} x_{j}}\left(x_{1}, \ldots, x_{n}\right)=\frac{\partial}{\partial x_{j}} f_{x_{i}}\left(x_{1}, \ldots, x_{n}\right), \quad i, j=1,2, \ldots, n
$$

Example.

Let $f(x, y)=x^{2} y^{3}$. Then

$$
\mathrm{f}_{\mathrm{xx}}=2 \mathrm{y}^{3} \quad \mathrm{f}_{\mathrm{xy}}=6 \mathrm{xy} y^{2}=\mathrm{f}_{\mathrm{yx}}=6 \mathrm{x} \mathrm{y}^{2} \quad \mathrm{f}_{y y}=6 \mathrm{x}^{2} \mathrm{y}
$$

Young's Theorem

$$
\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}=\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}, \quad i, j=1,2, \ldots, n
$$

Gradient
Gradient of a function $f\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)$ is the vector

$$
\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)=\left(f_{x_{n}}, \ldots, f_{x_{n}}\right)
$$

Sometimes the gradient vector is denoted as $\mathrm{D}^{1} \mathrm{f}$.
Example. For $f(x, y)=x^{2} y^{3}$ the gradient is $D^{1} f(x, y)=\left(2 x y^{3}, 3 x^{2} y^{2}\right)$.

Hessian
Hessian of a function $f\left(x_{1}, \ldots, x_{n}\right)$ is the matrix

$$
\mathrm{H}(\mathrm{f})=\left(\begin{array}{cccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\dddot{2}^{2} f & \dddot{\partial}^{2} f & \cdots & \dddot{2}^{2} f \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2}}{\partial x_{n} \partial x_{2}} & \cdots & \frac{\partial x_{1}^{2}}{l}
\end{array}\right)
$$

Sometimes $\mathrm{H}(\mathrm{f})$ is denoted as $\mathrm{D}^{2} \mathrm{f}$.

Hessian
Example. For $f(x, y)=x^{2} y^{3}$ the Hessian is

$$
D^{2} f(x, y)=\left(\begin{array}{cc}
2 y^{3} & 6 x y^{2} \\
6 x y^{2} & 6 x^{2} y
\end{array}\right)
$$

Linear Approximation

Recall that for a function of one variable $f(x)$ the derivative

$$
f^{\prime}\left(x^{*}\right)=\frac{d f}{d x}\left(x^{*}\right)
$$

allows to approximate $f\left(x^{*}+\Delta x\right)$ as a linear function of Δx

$$
f\left(x^{*}+\Delta x\right) \approx f\left(x^{*}\right)+f^{\prime}\left(x^{*}\right) \cdot \Delta x .
$$

Similarly, for a function of two variables $F(x, y)$ the partial derivatives $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$ allow to approximate $F(x, y)$ in the neighborhood of a given point $\left(x^{*}, y^{*}\right)$:

$$
F\left(x^{*}+\Delta x, y^{*}+\Delta y\right) \approx F\left(x^{*}, y^{*}\right)+\frac{\partial F}{\partial x}\left(x^{*}, y^{*}\right) \cdot \Delta x+\frac{\partial F}{\partial u}\left(x^{*}, y^{*}\right) \cdot \Delta y .
$$

For a function of n variables similar linear approximation looks as

$$
\begin{aligned}
& F\left(x_{1}^{*}+\Delta x_{1}, \ldots, x_{n}^{*}+\Delta x_{n}\right) \approx \\
& F\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)+\frac{\partial F}{\partial x_{1}}\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) \cdot \Delta x_{1}+\ldots+\frac{\partial F}{\partial x_{n}}\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) \cdot \Delta x_{n} .
\end{aligned}
$$

The expression

$$
d F=\frac{\partial F}{\partial x_{1}}\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) \cdot d x_{1}+\ldots+\frac{\partial F}{\partial x_{n}}\left(x_{1}^{*}, \ldots, x_{n}^{*}\right) \cdot d x_{n}
$$

is called the total differential, and it approximates the actual change $\Delta F=$ $F\left(x_{1}^{*}+\Delta x_{1}, \ldots, x_{n}^{*}+\Delta x_{n}\right)-F\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$.

Example. Consider the Cobb-Douglas production function $Q=4 K^{\frac{3}{4}} L^{\frac{1}{4}}$. For $K=10000, L=625$ the output is $Q=20000$. We want to use marginal analysis to estimate (a) $Q(10010,625)$, (b) $Q(10000,623)$, (c) $Q(10010,623)$.

Step 1. The partial derivatives of Q are:
the marginal product of capital is $\frac{\partial Q}{\partial K}=3 K^{-\frac{1}{4}} L^{\frac{1}{4}}$
the marginal product of labor is $\frac{\partial Q}{\partial W}=3 K^{\frac{3}{4}} L^{-\frac{3}{4}}$.
Step 2. Calculate these partial derivatives on $(10000,625)$:
$\frac{\partial Q}{\partial K}(1000,625)=1.5, \quad \frac{\partial Q}{\partial L}(1000,625)=8$.
Step 3. (a) $Q(10010,625)=Q(1000,625)+\frac{\partial Q}{\partial K}(1000,625) \cdot 10=20000+1.5$. $10=20015$.
(b) $Q(10000,623)=Q(1000,625)+\frac{\partial Q}{\partial L}(1000,625) \cdot(-2)=20000+8 \cdot(-2)=$ 19984.
(c) $Q(10000,623)=Q(1000,625)+\frac{\partial Q}{\partial K}(1000,625) \cdot 10+\frac{\partial Q}{\partial L}(1000,625) \cdot(-2)=$ $20000+1.5 \cdot 10+8 \cdot(-2)=19999$.

Exercises

1. Compute the partial derivatives of the following functions

a) $4 x^{2} y-3 x y^{3}+6 x ;$ b) $x y ;$ c) $x y^{2} ; \quad$ d) $e^{2 x+3 y}$;
e) $\frac{x+y}{x-y} ; \quad$ f) $3 x^{2} y-7 x \sqrt{y}$;
g) $\left(x^{2}-y^{3}\right)^{3} ; \quad$ h) $\sqrt{2 x-y^{2}}$;
i) $\ln \left(x^{2}+y^{2}\right)$;
j) $y^{2} e^{x y^{2}}$;
k) $\frac{x^{2}-y^{2}}{x^{2}+y^{2}}$.
2. Find an example of a function $f(x, y)$ such that $\frac{\partial f}{\partial x}=3$ and $\frac{\partial f}{\partial y}=2$. How many such a functions are there?
6. A firm has the Cobb-Douglas production function $y=10 x_{1}^{\frac{1}{3}} x_{2}^{\frac{1}{2}} x_{3}^{\frac{1}{6}}$. Currently it is using the input bundle $(27,16,64)$.
a) How much is producing?
b) Use differentials to approximate its new output when x_{i} increases to 27.1, x_{2} decreases to 15.7, and x_{3} remains the same.
c) Compare the answer in part b with the actual output.
d) Do b and c for $\Delta x_{1}=\Delta x_{2}=0$ and $\Delta x_{3}=-0.4$.
7. Use differentials to approximate each of the following:
a) $f(x, y)=x^{4}+2 x^{2} y^{2}+x y^{4}+10 y$ at $x=10.36$ and $y=1.04$;
b) $f(x, y)=6 x^{\frac{2}{3}} y^{\frac{1}{2}}$ at $x=998$ and $y=101.5$;
c) $f(x, y)=\sqrt{x^{\frac{1}{2}}+y^{\frac{1}{3}}+5 x^{2}}$ at $x=4.2$ and $y=1.02$.
8. . Use calculus and no calculator to estimate the output given by the production function $Q=3 K^{\frac{2}{3}} L^{\frac{1}{3}}$ when
a) $K=1000$ and $L=125$;
b) $K=998$ and $L==128$.
9. Estimate $\sqrt{(4.1)^{3}-(2.95)^{3}-(1.02)^{3}}$.

