Multivariable Calculus

Tornike Kadeishvili

Functions $R^n \rightarrow R$

1. The area of a rectangle with dimensions x and y is a function of two variables $S: R^2 \to R$ given by *quadratic* function

$$S(x,y) = xy.$$

The perimeter of this rectangle is a *linear* function of two variables $P: \mathbb{R}^2 \to \mathbb{R}$ given by

$$P(x,y) = 2x + 2y.$$

Functions $R^n \rightarrow R$

2. The volume of a box with dimensions x, y, z is a function of three

variables $V: \mathbb{R}^3 \to \mathbb{R}$ given by *cubical* function

$$V(x, y, z) = xyz.$$

The area of the surface is a *quadratic* function of three variables

$$S(x, y, z) = 2xy + 2xz + 2yz.$$

3. The amount A is a function of three variables: P-principal, r-annual rate, t-time in years. The function $A: \mathbb{R}^3 \to \mathbb{R}$ is given by

$$A(P,r,t) = P(1+rt).$$

4. For a demand functions q = f(p) the quantity demanded q is a function of one variable: its own price p.

In reality the demanded quantity depends also on the prices of other goods in the market and on income y:

$$q_1 = f(p_1, p_2, y).$$

Computer - printer (complementary)

 $q_{comp}(p_{comp}, p_{print}) = A - k \cdot p_{comp} - s \cdot p_{print}$

Computer -laptop (competitive)

 $q_{lap}(p_{lap}, p_{desk}) = A - k \cdot p_{lap} + s \cdot p_{desk}$

5. Another example of multivariable function in economics is *production* function. Consider a firm which uses n inputs to produce a single output.

For i = 1, ..., n, let x_i denote the amount of input *i*. The vector $(x_1, ..., x_n)$ is called an *input bundle*. The firm's production function assigns to each input bundle $(x_1, ..., x_n)$ the amount of output $y = f(x_1, ..., x_n)$.

Functions $R^n \rightarrow R$

6. One more example is a *utility function*. Consider an economy with k commodities. Let x_i denote the amount of commodity i. The vector $(x_1, ..., x_k) \in \mathbb{R}^k$ is called a *commodity bundle*.

Suppose two bundles $x = (x_1, ..., x_k)$ and $x' = (x'_1, ..., x'_k)$ are given. Is it possible to say which from these two bundles is preferable?

A utility function is a function $u : \mathbb{R}^k \to \mathbb{R}$ which assigns to a commodity bundle $(x_1, ..., x_k)$ a number $u(x_1, ..., x_k)$ which measures the consumer's degree of satisfaction or utility with the given commodity bundle. Utility function determines preferences: a commodity bundle $x = (x_1, ..., x_k)$ is preferred to another bundle $x' = (x'_1, ..., x'_k)$ if

$$u(x_1, ..., x_k) > u(x'_1, ..., x'_k),$$

and x and x' are called *indifferent* if $u(x_1, ..., x_k) = u(x'_1, ..., x'_k)$.

Partial Derivatives

Let $f: \mathbb{R}^n \to \mathbb{R}$. Then for each x_i at each point $x^0 = (x_1^0, ..., x_n^0)$ the *i*th partial derivative is defined as

$$\frac{\partial f}{\partial x_i}(x_1^0,...,x_n^0) = \lim_{h \to 0} \frac{f(x_1^0,...,x_i^0 + h,...,x_n^0) - f(x_1^0,...,x_i^0,...,x_n^0)}{h}.$$

Notice that here only *i*th variable is changing, the others are treated as constants. Thus the partial derivative $\frac{\partial f}{\partial x_i}(x_1^0, ..., x_n^0)$ is the ordinary derivative of the function $f(x_1^0, ..., x_{i-1}^0, x, x_{i+1}^0, ..., x_n^0)$ of one variable x at the point $x = x_i^0$.

Notation

$$\frac{\partial f}{\partial x_i}(x_1^0, ..., x_n^0) = f_{x_i} \ (= f'_{x_i}).$$

Examples. 1. Find partial derivatives for $f(x, y) = 3x^2y^2 + 4xy^3 + 7y$. For $\frac{\partial f}{\partial x}$ only x is considered as a *variable* and y is treated as a *constant*:

$$\frac{\partial f}{\partial x} = 3 \cdot 2x \cdot y^2 + 4 \cdot 1 \cdot y^3 + 0 = 6xy^2 + 4y^3.$$

For $\frac{\partial f}{\partial y}$ only y is considered as a variable and x is treated as a constant:

$$\frac{\partial f}{\partial y} = 3x^2 \cdot 2y + 4x \cdot 3y^2 + 7 \cdot 1 = 6x^2y + 12xy^2 + 7.$$

2. Find partial derivatives for $f(x, y) = \sqrt{xy}$.

$$\frac{\partial f}{\partial x} = \frac{1}{2\sqrt{xy}} \cdot \frac{\partial (xy)}{\partial x} = \frac{y}{2\sqrt{xy}}.$$
$$\frac{\partial f}{\partial y} = \frac{1}{2\sqrt{xy}} \cdot \frac{\partial (xy)}{\partial y} = \frac{x}{2\sqrt{xy}}.$$

Chain Rule

If
$$y = f(x_1, \dots, x_n), x_i = x_i(t_1, \dots, t_m), i = 1, 2, \dots, n$$
, then

$$\frac{\partial y}{\partial t_j} = \sum_{i=1}^n \frac{\partial f(x_1, \dots, x_n)}{\partial x_i} \frac{\partial x_i}{\partial t_j}.$$

Second Partial Derivatives

Second order partial derivative of $y = f(x_1, \ldots, x_n)$ is defined as

$$\frac{\partial^2 y}{\partial x_j \partial x_i} = f_{x_i x_j}(x_1, \dots, x_n) = \frac{\partial}{\partial x_j} f_{x_i}(x_1, \dots, x_n), \quad i, j = 1, 2, \dots, n.$$

Example.

Young's Theorem

$$\frac{\partial^2 f}{\partial x_j \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_j}, \quad i, j = 1, 2, \dots, n.$$

Gradient

Gradient of a function $f(x_1, \ldots, x_n)$ is the vector

$$\nabla f = \left(\frac{\partial f}{\partial x_{1}}, \dots, \frac{\partial f}{\partial x_{n}}\right) = \left(f_{x_{1}}, \dots, f_{x_{n}}\right)$$

Sometimes the gradient vector is denoted as $D^{1}f$.

Example. For $f(x,y) = x^2y^3$ the gradient is $D^1f(x,y) = (2xy^3, 3x^2y^2)$.

Hessian

Hessian of a function $f(x_1, \ldots, x_n)$ is the matrix

$$H(f) = \begin{pmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n} \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \frac{\partial^2 f}{\partial x_n \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1^2} \end{pmatrix}$$

Sometimes H(f) is denoted as D^2f .

Hessian Example. For $f(x,y) = x^2y^3$ the Hessian is

$$D^{2}f(x,y) = \begin{pmatrix} 2y^{3} & 6xy^{2} \\ 6xy^{2} & 6x^{2}y \end{pmatrix}$$

Linear Approximation

Recall that for a function of one variable f(x) the derivative

$$f'(x^*) = \frac{df}{dx}(x^*)$$

allows to approximate $f(x^* + \Delta x)$ as a linear function of Δx

$$f(x^* + \Delta x) \approx f(x^*) + f'(x^*) \cdot \Delta x.$$

Similarly, for a function of two variables F(x, y) the partial derivatives $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$ allow to approximate F(x, y) in the neighborhood of a given point (x^*, y^*) :

$$F(x^* + \Delta x, y^* + \Delta y) \approx F(x^*, y^*) + \frac{\partial F}{\partial x}(x^*, y^*) \cdot \Delta x + \frac{\partial F}{\partial y}(x^*, y^*) \cdot \Delta y$$

For a function of n variables similar linear approximation looks as

$$F(x_1^* + \Delta x_1, ..., x_n^* + \Delta x_n) \approx F(x_1^*, ..., x_n^*) + \frac{\partial F}{\partial x_1}(x_1^*, ..., x_n^*) \cdot \Delta x_1 + ... + \frac{\partial F}{\partial x_n}(x_1^*, ..., x_n^*) \cdot \Delta x_n.$$

The expression

$$dF = \frac{\partial F}{\partial x_1}(x_1^*, ..., x_n^*) \cdot dx_1 + ... + \frac{\partial F}{\partial x_n}(x_1^*, ..., x_n^*) \cdot dx_n$$

is called the *total differential*, and it approximates the actual change $\Delta F = F(x_1^* + \Delta x_1, ..., x_n^* + \Delta x_n) - F(x_1^*, ..., x_n^*)$.

Example. Consider the Cobb-Douglas production function $Q = 4K^{\frac{3}{4}}L^{\frac{1}{4}}$. For K = 10000, L = 625 the output is Q = 20000. We want to use marginal analysis to estimate (a) Q(10010, 625), (b) Q(10000, 623), (c) Q(10010, 623).

Step 1. The partial derivatives of Q are: the marginal product of capital is $\frac{\partial Q}{\partial K} = 3K^{-\frac{1}{4}}L^{\frac{1}{4}}$ the marginal product of labor is $\frac{\partial Q}{\partial K} = 3K^{\frac{3}{4}}L^{-\frac{3}{4}}$.

Step 2. Calculate these partial derivatives on (10000, 625): $\frac{\partial Q}{\partial K}(1000, 625) = 1.5, \quad \frac{\partial Q}{\partial L}(1000, 625) = 8.$

Step 3. (a) $Q(10010, 625) = Q(1000, 625) + \frac{\partial Q}{\partial K}(1000, 625) \cdot 10 = 20000 + 1.5 \cdot 10 = 20015.$

(b) $Q(10000, 623) = Q(1000, 625) + \frac{\partial Q}{\partial L}(1000, 625) \cdot (-2) = 20000 + 8 \cdot (-2) = 19984.$

(c) $Q(10000, 623) = Q(1000, 625) + \frac{\partial Q}{\partial K}(1000, 625) \cdot 10 + \frac{\partial Q}{\partial L}(1000, 625) \cdot (-2) = 20000 + 1.5 \cdot 10 + 8 \cdot (-2) = 19999.$

Exercises

1. Compute the partial derivatives of the following functions

a)
$$4x^2y - 3xy^3 + 6x$$
; b) xy ; c) xy^2 ; d) e^{2x+3y} ;
e) $\frac{x+y}{x-y}$; f) $3x^2y - 7x\sqrt{y}$; g) $(x^2 - y^3)^3$; h) $\sqrt{2x - y^2}$;
i) $\ln(x^2 + y^2)$; j) $y^2e^{xy^2}$; k) $\frac{x^2-y^2}{x^2+y^2}$.

2. Find an example of a function f(x, y) such that $\frac{\partial f}{\partial x} = 3$ and $\frac{\partial f}{\partial y} = 2$. How many such a functions are there?

6. A firm has the Cobb-Douglas production function $y = 10x_1^{\frac{1}{3}}x_2^{\frac{1}{2}}x_3^{\frac{1}{6}}$. Currently it is using the input bundle (27, 16, 64).

a) How much is producing?

b) Use differentials to approximate its new output when x_i increases to 27.1, x_2 decreases to 15.7, and x_3 remains the same.

- c) Compare the answer in part b with the actual output.
- d) Do b and c for $\Delta x_1 = \Delta x_2 = 0$ and $\Delta x_3 = -0.4$.

7. Use differentials to approximate each of the following:

a) $f(x,y) = x^4 + 2x^2y^2 + xy^4 + 10y$ at x = 10.36 and y = 1.04; b) $f(x,y) = 6x^{\frac{2}{3}}y^{\frac{1}{2}}$ at x = 998 and y = 101.5; c) $f(x,y) = \sqrt{x^{\frac{1}{2}} + y^{\frac{1}{3}} + 5x^2}$ at x = 4.2 and y = 1.02.

8. . Use calculus and no calculator to estimate the output given by the production function $Q=3K^{\frac{2}{3}}L^{\frac{1}{3}}$ when

a) K = 1000 and L = 125;

- b) K = 998 and L = = 128.
- 9 . Estimate $\sqrt{(4.1)^3 (2.95)^3 (1.02)^3}$.