ISET Math Camp 13

Tornike Kadeishvili

Functions and Graphs

Definition of a Function

A function $f: X \to Y$ from X to Y consist of

(a) a set X called domain;

(b) a set *Y* called codomain or target;

(c) a rule which assigns to each element $x \in X$ exactly one element $y \in Y$.

Examples

This is a function.

This is not.

2. The correspondence $f: \{1, 2, 3, 4\} \rightarrow \{1, 2, 3\}$ given by table

X	у
1	1
2	1
3	2
4	2

is not.

is a function,

3. The correspondence $f: People \rightarrow People$ given by f(x) = x's brother is not a function, but f(x) = x's mother is.

4. The correspondence $f: R \to R$ given by $f(x) = \pm \sqrt{x}$ is not a function, but $f(x) = x^2$ is.

Graph of a Function

The graph of a function $f: R \to R$ is defined as a subset of the plane $\Gamma(f) \subset R^2$ given by $\Gamma(f) = \{(x, y) \in R^2, y = f(x)\}.$

Examples

1. Suppose $f: R \to R$ is given by f(x) = 0.5x. Construct a table, indicate the points and join them

У
-1.5
-1
-0.5
0
0.5
1
1.5

2. Suppose $f: R \to R$ is given by $f(x) = x^2$. Construct a table, indicate the points and join them

X	у
-3	-9
-2	-4
-1	-1
0	0
1	1
2	4
3	9

Vertical Line Test

Not all curves in the plane R^2 can be graphs of some function. Only those which pass the following Vertical Line Test: Any vertical line cuts the curve at most in 1 point.

Domain of a Function

Sometimes only the rule y = f(x) is given. Then the domain of f consists of these x for which y = f(x) is defined.

Examples

1. For $f(x) = \sqrt{x}$ the domain is $[0, +\infty) = \{x \ge 0\}$.

2. For
$$f(x) = \frac{1}{x}$$
 the domain is $(-\infty, 0) \bigcup (0, +\infty) = R \setminus 0$.

Range

For a function $f: X \to Y$ the range (or image) is the set of all $y \in Y$ such that y = f(x) for some $x \in X$. In other words

$$\operatorname{Im}(f) = \{ y \in Y, \exists x \in X \text{ s.t. } y = f(x) \}.$$

Examples

1. For the function $f: R \to R$ given by $f(x) = x^2$ the image is $[0, +\infty)$.

2. For the function $f(x) = \frac{1}{x-2}$ the domain is the set $(-\infty, 2) \bigcup (2, +\infty) = R \setminus \{2\}$ and the range is $(-\infty, 0) \bigcup (0, +\infty) = R \setminus \{0\}$.

Composition of Functions

Suppose $f: X \to Y$ and $g: Y \to Z$. Then the composition $g \circ f: X \to Z$ is defined as $g \circ f(x) = g(f(x))$.

Example

If
$$f(x) = x^2$$
 and $f(x) = x+3$ then $g \circ f(x) = x^2+3$ and $f \circ g(x) = (x+3)^2$.

Linear Function

Conclusion

The graph of linear function $y = k \cdot x$ is a straight line which passes trough the origin, the slope depends on the coefficient k: (a) if k > 0 passes trough I and III quadrant, (b) if k < 0 passes trough II and IV quadrants, (c) if k = 0 coincides with x –axes.

Affine Function f(x) = kx + b

The graph of kx + b can be obtained from the graph of kx by sifting by |b| units up if b > 0 and down if b < 0.

Intercepts

Conclusion

The *y* intercepts can be found by substitution x = 0, thus it is $y = k \cdot 0 + b = b$. The *x* intercept can be found by substitution y = 0, i.e. from 0 = kx + b, thus it is $x = -\frac{b}{k}$.

Equation of a Line

Write the equation of the line which passes trough the points M(-1,2) and N(1,6).

Solution gives k=2 and b=4. Thus the equation of this line is y=2x+4

Absolute Value Function

$$\mathbf{y} = |\mathbf{x}| = \begin{cases} +x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

The graph of y = |x|.

Quadratic Functions

$$y = x^2$$

X	У
-3	<u>y</u> 9
-2	4
-1	1
0	0
1	1
2	4
3	9

Reflection About x – **axes**

How the graphs of functions y = f(x) and y = -f(x) are related?

Conclusion

The graph of y = -f(x) can be obtained from the graph of y = f(x) by reflection about the x-axes, i.e. these graphs are symmetric with respect to x-axes.

Vertical Shift

How the graphs of functions y = f(x) and y = f(x) + b are related?

Conclusion

The graph of y = f(x) + b can be obtained from the graph of y = f(x) by shifting by |b| units up if b > 0 and down if b < 0.

Horizontal shift

How the graphs of functions y = f(x) and y = f(x+a) are related?

Conclusion

The graph of y = f(x+a) can be obtained from the graph of y = f(x) by shifting by |a| units left if a > 0 and right if a < 0.

General quadratic function $y = ax^2 + bx + c$ y = 2x² - 8x - 10 = 2(x² - 4x) - 10 = 2(x² - 2·x·2 + 2² - 4) - 10 = 2[(x - 2)² - 4] - 10 = 2(x - 2)² - 8 - 10 = 2(x - 2)² - 18

Shift $y = 2x^2$ right by 2 and down by 14:

 $x_0 = (x_1 + x_2)/2 = 2$, $y_0 = f(x_0) = -18$.

Genarally for $y = ax^2 + bx + c$ the coordinates of the pole are $x_0 = -b/2a$, $y_0 = (-b^2 + 4ac)/4a$.

> plot(2*x^2-8*x-10,x=-2..6);

Cubical function $y = x^3$

When $x \to -\infty$ then $y \to -\infty$, when $x \to +\infty$ then $y \to +\infty$

Cubical function $y = x^3 - 2x^2 - 11x + 12 = (x+3)(x-1)(x-4)$

Cubical function $y = -x^3 + 2x^2 + 11x - 12 = -(x+3)(x-1)(x-4)$

Monomial of degree 4 $y = x^4$

When $x \to -\infty$ then $y \to +\infty$ when $x \to +\infty$ then $y \to +\infty$

Polynomial of degree 4

 $y = (x + 2)(x + 1)(x - 1)(x - 2) = x^4 - 5x^2 + 4$ When $x \rightarrow -\infty$ then $y \rightarrow +\infty$ when $x \rightarrow +\infty$ then $y \rightarrow +\infty$ 4 roots (4 x intercepts) $x_1 = -2, x_2 = -1, x_3 = 1, x_4 = 2$

Polynomial of degree 5

$$y = (x + 2)(x + 1)x(x - 1)(x - 2) = x^{5} - 5x^{3} + 4x$$

When $x \rightarrow -\infty$ then $y \rightarrow -\infty$ when $x \rightarrow +\infty$ then $y \rightarrow +\infty$

4 roots (4 x intercepts) $x_1 = -2$, $x_2 = -1$, $x_3 = 0$, $x_4 = 1$, $x_5 = 2$

General polynomial

$$y = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-2} x^2 + a_{n-1} x + a_n = \sum_{k=0,1,\dots,n} a_k x^{n-k}$$

Assume $a_0 > 0$ and n is even (n = 2k), then: when $x \to -\infty$ then $y \to +\infty$ when $x \to +\infty$ then $y \to +\infty$ And generally n roots (n x-intercepts) x_1, x_2, \dots, x_n

General polynomial

$$y = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-2} x^2 + a_{n-1} x + a_n = \sum_{k = 0,1,\dots,n} a_k x^{n-k}$$

Assume $a_0 > 0$ and n is odd (n = 2k + 1), then: when $x \to -\infty$ then $y \to -\infty$ when $x \to +\infty$ then $y \to +\infty$ And generally n roots (n x-intercepts) x_1, x_2, \dots, x_n

Example

The graph of the polynomial y = f(x) is given below. It has a local maximum and minimum as marked. Use the graph to answer the following questions.

- **a.** State the roots of f(x) = 0. x = -2, 0, 2
- **b.** What is the value of the repeated root. $\mathbf{x} = 2$
- c. For what values of k does the equation f(x) = k have exactly 3 solutions. k = 0, 3.23
- **d.** Solve the inequality f(x) < 0. -2 < x < 0
- e. What is the *least* possible degree of f(x)? 4
- **f.** State the value of the constant of f(x). **0**
- g. For what values of k is $f(x) + k \ge 0$ for all real x. $k \ge 9.91$

Even and odd functions

A function y = f(x) is even if f(-x) = f(x) for all x in the domain of f.

Geometrically, an even function is symmetrical about the y-axis (it has line symmetry). The function $f(x) = x^2$ is an even function as $f(-x) = (-x)^2 = x^2 = f(x)$ for all values of x. We illustrate this on the following graph.

The graph of $y = x^2$.

A function, y = f(x), is odd if f(-x) = -f(x) for all x in the domain of f.

Geometrically, an odd function is symmetrical about the origin (it has rotational symmetry).

The function f(x) = x is an odd function as f(-x) = -x = -f(x) for all values of x. This is illustrated on the following graph.

The graph of y = x.

All monomials of even degree

y = c, y = x², y = x⁴, ..., y = x^{2k}, ... are even functions. More examples $y = \cos x$, $y = 1/(x^2 - 1)$.

All monomials of odd degree

 $y = x, y = x^3, y = x^5, \dots, y = x^{2k+1}, \dots$ are odd functions. More examples $y = \sin x, y = 1/(x^3 - x)$.

The function y = x + 1 is neither even nor odd.

Example. Determine whether the following functions are odd, even or nither.

a.
$$f(x) = x^4 + 2$$

 $f(-x) = (-x)^4 + 2 = x^4 + 2 = f(x)$ even

b. $g(x) = x^3 + 3x$ $g(-x) = (-x)^3 + 3(-x) = -x^3 - 3x = -(x^3 + 3x) = -g(x)$ odd

c. $h(x) = 2^x$ $h(-x) = 2^{-x} = 1/2^x$ neither Inverse Proportionality (Hyperbolic Function)

> plot({1/x,1/(x-2),1/(x-2)+3},x=-3..6,y=-4..6);

> plot({1/x,3/x},x=-12..12,y=-12..12);

CIrcle

 $x^2 + y^2 = 1$

> with(plots): implicitplot(x^2+y^2=1, x=-1..1, y=-1..1);

(x-2)² + (y-1)² =4

> with(plots): implicitplot((x-2)^2+(y-1)^2=4, x=0..4, y=-1..3);

Squaire root

$$y = \sqrt{x}$$
 Domain (0, + ∞)

> plot(sqrt(x),x=0..4,y=0..2);

Squaire root

Piecewise Function

23

Increasing and decreaing functions

A function f is increasing on an interval I, if for all a and b in I such that $a < b \Rightarrow f(a) > f(b)$.

The function $y = x^2$ is increasing on the interval $I = [0, +\infty)$

A function f is decreasing on an interval I, if for all a and b in I such that a < b => f(a) > f(b).

The function $y = x^2$ is decreasing on the interval $I = (-\infty, 0]$

Example

Given the graph below of y = f(x):

a. State the domain and range. Domain R, range $y \ge -2$

- **b**. Where is the graph
 - i increasing? -2 < x < 0 or x > 2
 - ii decreasing? x < -2 or 0 < x < 2
- c. if k is a constant, find the values of k such that f(x)=k has
 - i no solutions k ≤ -2
 - ii 1 solution no such k
 - iii 2 solutions k=2 or k>0
 - iv 3 solutions k = 0
 - v 4 solutions. $-2 \le k \le 0$
- **d.** Is y = f(x) even, odd or neither? **Looks even**

Exponential and Logarithmic Functions

Properties of exponent

$$a^{m} \cdot a^{n} = a^{m+n};$$

$$a^{-n} = \frac{1}{a^{m}};$$

$$\frac{a^{m}}{a^{n}} = a^{m-n};$$

$$(a^{m})^{n} = a^{m \cdot n};$$

$$a^{0} = 1.$$

Exponential Function

 $y = 2^{x}$ $y = 1^{x}$ $y = 2^{-x} = (0.5)^{x}$ Exponential function $y = a^{x}$ is increasing for a > 1, is decreasing for 0 < a < 1, and is constant for a = 1.

Nepper Number

The Nepper Number $e \approx 2.7181693 \dots$ (an important irrational number, as $\pi = 3.141516\dots$) is defined as $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$. By the way, $\lim_{n \to \infty} (1 + \frac{k}{n})^n = e^k$. The function e^x often is denoted as exp(x).

Logarithms

For a > 0, $a \neq 1$, b > 0,

 $\log_a b = n$ if $a^n = b$. That is

$$a^{\log_a b} = b$$

Properties of Logarithm

$$\begin{split} \log_a(r \cdot s) &= \log_a r + \log_a s;\\ \log_a \frac{1}{r} &= -\log_a r;\\ \log_a \frac{r}{s} &= \log_a r - \log_a s;\\ \log_a r^s &= s \cdot \log_a r;\\ \log_a 1 &= 0;\\ \log_r s &= \frac{1}{\log_s r};\\ \log_r s &= \frac{\log_a s}{\log_a r}. \end{split}$$

Notation:

Decimal logarithm $\lg x := \log 10 x$.

Natural logarithm $\ln x := \log_e x$.

