ISET Math Camp 13

Tornike Kadeishvili

Functions and Graphs

Definition of a Function

A function $f: X \rightarrow Y$ from X to Y consist of
(a) a set X called domain;
(b) a set Y called codomain or target;
(c) a rule which assigns to each element $x \in X$ exactly one element $y \in Y$.

Examples

1.

This is a function.

This is not.
2. The correspondence $f:\{1,2,3,4\} \rightarrow\{1,2,3\}$ given by table

\mathbf{x}	\mathbf{y}
1	1
2	1
3	2
4	2

is a function,

\mathbf{x}	\mathbf{y}
1	1
2	1,2
3	
4	2

is not.
3. The correspondence $f:$ People \rightarrow People given by $f(x)=x^{\prime} s$ brother is not a function, but $f(x)=x^{\prime} s$ mother is.
4. The correspondence $f: R \rightarrow R$ given by $f(x)= \pm \sqrt{x}$ is not a function, but $f(x)=x^{2}$ is.

Graph of a Function

The graph of a function $f: R \rightarrow R$ is defined as a subset of the plane $\Gamma(f) \subset R^{2}$ given by

$$
\Gamma(f)=\left\{(x, y) \in R^{2}, y=f(x)\right\} .
$$

Examples

1. Suppose $f: R \rightarrow R$ is given by $f(x)=0.5 x$. Construct a table, indicate the points and join them

\mathbf{x}	\mathbf{y}
-3	-1.5
-2	-1
-1	-0.5
0	0
1	0.5
2	1
3	1.5

2. Suppose $f: R \rightarrow R$ is given by $f(x)=x^{2}$. Construct a table, indicate the points and join them

\mathbf{x}	\mathbf{y}
-3	-9
-2	-4
-1	-1
0	0
1	1
2	4
3	9

Vertical Line Test

Not all curves in the plane R^{2} can be graphs of some function. Only those which pass the following Vertical Line Test: Any vertical line cuts the curve at most in 1 point.

This curve passes the test.

This fails.

Domain of a Function

Sometimes only the rule $y=f(x)$ is given. Then the domain of f consists of these x for which $y=f(x)$ is defined.

Examples

1. For $f(x)=\sqrt{x}$ the domain is $[0,+\infty)=\{x \geq 0\}$.
2. For $f(x)=\frac{1}{x}$ the domain is $(-\infty, 0) \cup(0,+\infty)=R \backslash 0$.

Range

For a function $f: X \rightarrow Y$ the range (or image) is the set of all $y \in Y$ such that $y=f(x)$ for some $x \in X$. In other words

$$
\operatorname{Im}(f)=\{y \in Y, \exists x \in X \text { s.t. } y=f(x)\} .
$$

Examples

1. For the function $f: R \rightarrow R$ given by $f(x)=x^{2}$ the image is $[0,+\infty)$.
2. For the function $f(x)=\frac{1}{x-2}$ the domain is the set $(-\infty, 2) \cup(2,+\infty)=R \backslash\{2\}$ and the range is $(-\infty, 0) \cup(0,+\infty)=R \backslash\{0\}$.

Composition of Functions

Suppose $f: X \rightarrow Y$ and $g: Y \rightarrow Z$. Then the composition $g \circ f: X \rightarrow Z$ is defined as

$$
g \circ f(x)=g(f(x))
$$

Example

If $f(x)=x^{2}$ and $f(x)=x+3$ then $g \circ f(x)=x^{2}+3$ and $f \circ g(x)=(x+3)^{2}$.

Linear Function

$$
y=2 x
$$

$y=\frac{1}{2} x$

$$
>\operatorname{plot}\left(\left\{x, 2^{*} x, 0.5^{*} x,-x,-2^{*} x,-0.5^{*} x\right\}, x=-3 . .3\right)
$$

Conclusion

The graph of linear function $y=k \cdot x$ is a straight line which passes trough the origin, the slope depends on the coefficient $k:$ (a) if $k>0$ passes trough I and III quadrant, (b) if $k<0$ passes trough II and IV quadrants, (c) if $k=0$ coincides with x -axes.

Affine Function $f(x)=k x+b$

The graph of $k x+b$ can be obtained from the graph of $k x$ by sifting by $|b|$ units up if $b>0$ and down if $b<0$.

Intercepts

Where the graph of $k x+b$ intersects x and y axes?

$$
f(x)=2 x-2
$$

Conclusion

The y intercepts can be fount by substitution $x=0$, thus it is $y=k \cdot 0+b=b$.
The x intercept can be found by substitution $y=0$, i.e. from $0=k x+b$, thus it is $x=-\frac{b}{k}$.

Equation of a Line

Write the equation of the line which passes trough the points $\mathrm{M}(-1,2)$ and $\mathrm{N}(1,6)$.

$$
\begin{aligned}
& y=k x+b, k=?, b=? \\
& x=-1=>y=2,2=k \cdot(-1)+b \\
& x=1=>y=6,6=k \cdot 1+b \\
& \left\{\begin{array}{c}
2=-k+b \\
6=k+b
\end{array}\right.
\end{aligned}
$$

Solution gives $\mathrm{k}=2$ and $\mathrm{b}=4$.
Thus the equation of this line is $\mathrm{y}=2 \mathrm{x}+4$

Absolute Value Function

$\mathrm{y}=|\mathrm{x}|= \begin{cases}+x & \text { if } x \geq 0 \\ -x & \text { if } x<0\end{cases}$

The graph of $y=|x|$.

Quadratic Functions

$$
y=x^{2}
$$

\mathbf{x}	\mathbf{y}
-3	9
-2	4
-1	1
0	0
1	1
2	4
3	9

Quadratic functions $y=x^{2}, y=2 x^{2}, y=\frac{1}{2} x^{2}$. Who is who?

Quadratic functions $y=-x^{2}, y=-2 x^{2}, y=-\frac{1}{2} x^{2}$. Who is who?

Reflection About \mathbf{x} - axes

How the graphs of functions $y=f(x)$ and $y=-f(x)$ are related?

1. $y=x^{2}$ and $y=-x^{2}$

2. $y=x+1$ and $y=-x-1$

3. $y=|x|$ and $y=-|x|$

Conclusion

The graph of $y=-f(x)$ can be obtained from the graph of $y=f(x)$ by reflection about the x-axes, i.e. these graphs are symmetric with respect to x-axes.

Vertical Shift

How the graphs of functions $y=f(x)$ and $y=f(x)+b$ are related?

1. $y=x^{2}, y=x^{2}+1, y=x^{2}-1$

2. $y=x$ and $y=x-1$

3. $y=|x|$ and $y=|x-1|$

Conclusion

The graph of $y=f(x)+b$ can be obtained from the graph of $y=f(x)$ by shifting by $|b|$ units up if $b>0$ and down if $b<0$.

Horizontal shift

How the graphs of functions $y=f(x)$ and $y=f(x+a)$ are related?

1. $y=x^{2}, y=(x-1)^{2}$

2. $y=x^{2}, y=(x+1)^{2}$

3. $y=|x|, y=|x-2|$

Conclusion

The graph of $y=f(x+a)$ can be obtained from the graph of $y=f(x)$ by shifting by $|a|$ units left if $a>0$ and right if $a<0$.

General quadratic function $y=a x^{2}+b x+c$
$y=2 x^{2}-8 x-10=2\left(x^{2}-4 x\right)-10=2\left(x^{2}-2 \cdot x \cdot 2+2^{2}-4\right)-10=2\left[(x-2)^{2}-4\right]-10=$ $2(x-2)^{2}-8-10=2(x-2)^{2}-18$

Shift $y=2 x^{2}$ right by 2 and down by 14 :

Intercepts

For y intercept find $f(0)$.
For x intercepts solve $f(x)=0$.
Example $f(x)=2 x^{2}-8 x-10$
y intercept $f(0)=-6$.
x intercept $2 x^{2}-8 x-6=0, x_{1}=-1, x_{2}=5$.

Coordinates of the pole

$$
x_{0}=\left(x_{1}+x_{2}\right) / 2=2, y_{0}=f\left(x_{0}\right)=-18
$$

Genarally for $y=a x^{2}+b x+c$ the coordinates of the pole are $x_{0}=-b / 2 a, y_{0}=\left(-b^{2}+4 a c\right) / 4 a$.

$$
>p \operatorname{lot}\left(2 * x^{\wedge} 2-8 * x-10, x=-2 . .6\right)
$$

Cubical function $y=x^{3}$

When $\mathrm{x} \rightarrow-\infty$ then $\mathrm{y} \rightarrow-\infty$, when $\mathrm{x} \rightarrow+\infty$ then $\mathrm{y} \rightarrow+\infty$

Cubical function $y=x^{3}-2 x^{2}-11 x+12=(x+3)(x-1)(x-4)$

Cubical function $y=-x^{3}+2 x^{2}+11 x-12=-(x+3)(x-1)(x-4)$

Cubical function $y=(x+a) \cdot x \cdot(x-a)$
$a=1$

$$
a=0.75
$$

$a=0.5$

Monomial of degree $4 \quad y=x^{4}$

When $\mathrm{x} \rightarrow-\infty$ then $\mathrm{y} \rightarrow+\infty$ when $\mathrm{x} \rightarrow+\infty$ then $\mathrm{y} \rightarrow+\infty$

Polynomial of degree 4

$$
y=(x+2)(x+1)(x-1)(x-2)=x^{4}-5 x^{2}+4
$$

When $x \rightarrow-\infty$ then $y \rightarrow+\infty$ when $x \rightarrow+\infty$ then $y \rightarrow+\infty$ 4 roots (4 xintercepts) $x_{1}=-2, x_{2}=-1, x_{3}=1, x_{4}=2$

Polynomial of degree 5

$$
y=(x+2)(x+1) x(x-1)(x-2)=x^{5}-5 x^{3}+4 x
$$

$$
\text { When } \mathrm{x} \rightarrow-\infty \text { then } \mathrm{y} \rightarrow-\infty \text { when } \mathrm{x} \rightarrow+\infty \text { then } \mathrm{y} \rightarrow+\infty
$$

4 roots ($4 x$ intercepts) $x_{1}=-2, x_{2}=-1, x 3=0, x_{4}=1, x_{5}=2$

General polynomial
$y=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-2} x^{2}+a_{n-1} x+a_{n}=\sum_{k=0,1, \ldots, n} a_{k} x^{n-k}$

Assume $a_{0}>0$ and n is even $(n=2 k)$, then:
when $\mathrm{x} \rightarrow-\infty$ then $\mathrm{y} \rightarrow+\infty$ when $\mathrm{x} \rightarrow+\infty$ then $\mathrm{y} \rightarrow+\infty$
And generally n roots (n x-intercepts) $x_{1}, x_{2}, \ldots, x_{n}$

General polynomial

$$
\begin{array}{r}
y=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\ldots+a_{n-2} x^{2}+a_{n-1} x+a_{n}= \\
\sum_{k=0,1, \ldots, n} a_{k} x^{n-k}
\end{array}
$$

Assume $\mathrm{a}_{0}>0$ and n is odd $(\mathrm{n}=2 \mathrm{k}+1$), then:
when $\mathrm{x} \rightarrow-\infty$ then $\mathrm{y} \rightarrow-\infty$ when $\mathrm{x} \rightarrow+\infty$ then $\mathrm{y} \rightarrow+\infty$
And generally n roots (n x-intercepts) $x_{1}, x_{2}, \ldots, x_{n}$

Example

The graph of the polynomial $y=f(x)$ is given below. It has a local maximum and minimum as marked. Use the graph to answer the following questions.
a. State the roots of $f(x)=0 . \quad \mathrm{x}=-2,0,2$
b. What is the value of the repeated root. $\mathrm{x}=2$
c. For what values of k does the equation $f(x)=k$ have exactly 3 solutions. $\mathrm{k}=0,3.23$
d. Solve the inequality $f(x)<0 . \quad-2<\mathrm{x}<0$
e. What is the least possible degree of $f(x)$? 4
f. State the value of the constant of $f(x)$. 0
g. For what values of k is $f(x)+k \geq 0$ for all real x. $\mathrm{k} \geq 9.91$

Even and odd functions

A function $y=f(x)$ is even if $f(-x)=f(x)$ for all x in the domain of f.

Geometrically, an even function is symmetrical about the y-axis (it has line symmetry). The function $f(x)=x^{2}$ is an even function as $f(-x)=(-x)^{2}=x^{2}=f(x)$ for all values of x. We illustrate this on the following graph.

The graph of $y=x^{2}$.

A function, $y=f(x)$, is odd if $f(-x)=-f(x)$ for all x in the domain of f.

Geometrically, an odd function is symmetrical about the origin (it has rotational symmetry).
The function $f(x)=x$ is an odd function as $f(-x)=-x=-f(x)$ for all values of x. This is illustrated on the following graph.

The graph of $y=x$.

All monomials of even degree
$y=c, y=x^{2}, y=x^{4}, \ldots, y=x^{2 k}, \ldots$ are even functions.
More examples $y=\cos x, y=1 /\left(x^{2}-1\right)$.

All monomials of odd degree
$y=x, y=x^{3}, y=x^{5}, \ldots, y=x^{2 k+1}, \ldots$ are odd functions.
More examples $y=\sin x, y=1 /\left(x^{3}-x\right)$.

The function $y=x+1$ is neither even nor odd.

Example. Determine whether the following functions are odd, even or nither.
a. $f(x)=x^{4}+2$
$f(-x)=(-x)^{4}+2=x^{4}+2=f(x)$ even
b. $\mathbf{g}(\mathbf{x})=\mathrm{x}^{\mathbf{3}}+\mathbf{3 x}$
$g(-x)=(-x)^{3}+3(-x)=-x^{3}-3 x=-\left(x^{3}+3 x\right)=-g(x)$ odd
c. $h(x)=2^{x}$
$h(-x)=2^{-x}=1 / 2^{x}$ neither

Inverse Proportionality (Hyperbolic Function)

$$
y=\frac{1}{x} \quad \text { Domain }(-\infty, 0) \cup(0,+\infty)
$$

$$
\text { Range }(-\infty, 0) \cup(0,+\infty)
$$

[^0]$y=\frac{1}{x-2} \quad$ Domain $(-\infty, 2) \cup(2,+\infty)$
Range $(-\infty, 0) \cup(0,+\infty)$
$>\operatorname{plot}(1 /(x-2), x=-12 . .12, y=-12 . .12) ;$
$$
y=\frac{1}{x-2}+3 \text { Domain }(-\infty, 2) \cup(2,+\infty)
$$
$$
\text { Range }(-\infty, 3) \cup(3,+\infty)
$$

$>\operatorname{plot}(\{1 / \mathrm{x}, 1 /(\mathrm{x}-2), 1 /(\mathrm{x}-2)+3\}, x=-3 . .6, y=-4 . .6) ;$
$$
y=\frac{1}{x} \quad y=\frac{3}{x} \quad \text { Domain }(-\infty, 2) \mathrm{U}(2,+\infty)
$$

$>\operatorname{plot}(\{1 / x, 3 / x\}, x=-12 . .12, y=-12 . .12)$;

Clrcle

$$
x^{2}+y^{2}=1
$$

$>$ with(plots):
implicitplot($x^{\wedge} 2+y^{\wedge} 2=1, x=-1 . .1, y=-1 . .1$);

CIrcle
$(x-2)^{2}+(y-1)^{2}=4$

$>$ with(plots):
implicitplot(($\left.x-2)^{\wedge} 2+(y-1)^{\wedge} 2=4, x=0 . .4, y=-1 . .3\right)$;

Squaire root

$$
y=\sqrt{x} \quad \text { Domain }(0,+\infty)
$$

$>\operatorname{plot}(\operatorname{sqrt}(\mathrm{x}), \mathrm{x}=0 . .4, \mathrm{y}=0 . .2)$;

Squaire root

$$
y=\sqrt{x-2}+3 \quad \begin{aligned}
& \text { Domain }(2,+\infty) \\
& \text { Range }(3,+\infty)
\end{aligned}
$$

Piecewise Function

The graph of $y=1-x$ for $x<0$.

The graph of $y=1-x^{2}$ for $x \geq 0$.

Picewise fuction

$$
f(x)= \begin{cases}x^{2}+1 & \text { for } x \geq 0 \\ 2 & \text { for } x<0\end{cases}
$$

Increasing and decreaing functions

A function f is increasing on an interval I, if for all a and b in I such that $a<b=>f(a)>f(b)$.

The function $y=x^{2}$ is increasing on the interval $I=[0,+\infty)$

A function f is decreasing on an interval I, if for all a and b in I such that $a<b=>f(a)>f(b)$.

The function $y=x^{2}$ is decreasing on the interval $\mathrm{I}=(-\infty, 0]$
$-$

Example

Given the graph below of $y=f(x)$:
a. State the domain and range. Domain R, range $y \geq-2$
b. Where is the graph
increasing? $-2<x<0$ or $x>2$
ii decreasing? $\mathrm{x}<-2$ or $0<\mathrm{x}<2$
c. if k is a constant, find the values of k such that $f(x)=k$ has
i no solutions $k<-2$
ii 1 solution no such k
iii 2 solutions $\mathrm{k}=2$ or $\mathrm{k}>0$
iv 3 solutions $\mathrm{k}=0$
v 4 solutions. $\quad-2<\mathrm{k}<0$
d. Is $y=f(x)$ even, odd or neither? Looks even

Exponential and Logarithmic Functions

Properties of exponent
$a^{m} \cdot a^{n}=a^{m+n} ;$
$a^{-n}=\frac{1}{a^{m}}$;
$\frac{a^{m}}{a^{n}}=a^{m-n} ;$
$\left(a^{m}\right)^{n}=a^{m \cdot n}$;
$a^{0}=1$.

Exponential Function

$$
y=2^{x} \quad y=1^{x} \quad y=2^{-x}=(0.5)^{x}
$$

Exponential function $y=a^{x}$ is increasing for $a>1$, is decreasing for $0<a<$
1 , and is constant for $a=1$.

$y=2^{\prime}$
$y=3$

Nepper Number

The Nepper Number $\mathrm{e} \approx 2.7181693 \ldots$ (an important irrational number, as $\pi=3.141516 \ldots$) is defined as $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$. By the way, $\lim _{n \rightarrow \infty}\left(1+\frac{k}{n}\right)^{n}=e^{k}$. The function e^{x} often is denoted as $\exp (x)$.

Logarithms

For $a>0, a \neq 1, b>0$,
$\log _{a} b=n$ if $a^{n}=b$. That is

$$
a^{\log _{a} b}=b
$$

Properties of Logarithm

$$
\begin{aligned}
& \log _{a}(r \cdot s)=\log _{a} r+\log _{a} s \\
& \log _{a} \frac{1}{r}=-\log _{a} r \\
& \log _{a} \frac{r}{s}=\log _{a} r-\log _{a} s \\
& \log _{a} r^{s}=s \cdot \log _{a} r \\
& \log _{a} 1=0 \\
& \log _{r} s=\frac{1}{\log _{s} r} \\
& \log _{r} s=\frac{\log _{a} s}{\log _{a} r}
\end{aligned}
$$

Notation:

Decimal logarithm $\quad \lg \mathrm{x}:=\log 10 \mathrm{x}$.
Natural logarithm $\quad \ln \mathrm{x}:=\log _{\mathrm{e}} \mathrm{x}$.

$y=\log _{2} x$
$\mathbf{y}=\log _{0.5} \mathbf{x}$
$\mathbf{y}=\log _{2} \mathrm{x}$
$y=\log _{3} x$

[^0]: $>\operatorname{plot}(1 / x, x=-12 . .12, y=-12 . .12) ;$

