Tornike Kadeishvili

Linear Combinations

A linear combination of vectors $v_{1}, v_{2}, \ldots, v_{m} \in R^{n}$ with scalar coefficients $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in R$ is the vector

$$
\alpha_{1} \cdot v_{1}+\alpha_{2} \cdot v_{2}+\ldots+\alpha_{m} \cdot v_{m} .
$$

The set of all linear combinations of vectors $v_{1}, v_{2}, \ldots, v_{m} \in R^{n}$ is denoted as

$$
L\left[v_{1}, v_{2}, \ldots, v_{m}\right]=\left\{\alpha_{1} \cdot v_{1}+\alpha_{2} \cdot v_{2}+\ldots+\alpha_{m} \cdot v_{m}, \quad \alpha_{i} \in R\right\} .
$$

Span

A sequence of vectors $v_{1}, v_{2}, \ldots, v_{m} \in R^{n}$ spans R^{n} if each vector $u \in R^{n}$ is their linear combination, i.e. there exist scalars $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m} \in R \quad$ s.t.

$$
u=\alpha_{1} v_{1}+\alpha_{2} v_{2}+\ldots+\alpha_{m} v_{n}
$$

In other words it means that $L\left(v_{1}, v_{2}, \ldots, v_{m}\right)=R^{n}$
Example. The vectors $v_{1}=(1,0,0), v_{2}=(0,1,0)$ span the $x y$ plane (the plane given by the non-parameterized equation $z=0$) of R^{3}. Indeed, any point $p=(a, b, 0)$ of this plane is the following linear combination

$$
a v_{1}+b v_{2}=a(1,0,0)+b(0,1,0)=(a, 0,0)+(0, b, 0)=(a, b, 0) .
$$

Example. The vectors $v_{1}=(1,2), v_{2}=(3,4)$ span whole R^{2}. Indeed, let's take any vector $v=(a, b)$. Our aim is to find c_{1}, c_{2} s.t.

$$
c_{1} \cdot v_{1}+c_{2} \cdot v_{2}=v
$$

In coordinates this equation looks as a system

$$
\left\{\begin{array}{l}
c_{1} \cdot 1+c_{2} \cdot 3=a \\
c_{1} \cdot 2+c_{2} \cdot 4=b
\end{array} .\right.
$$

The determinant of this system $\neq 0$, so this system has a solution for each a and b.

Linear Independence

Definition 1. A sequence of vectors $v_{1}, v_{2}, \ldots, v_{n}$ is called linearly dependent if one of these vectors is linear combination of others. That is

$$
\exists i, v_{i} \in L\left(v_{1}, \ldots, \hat{v}_{i}, \ldots, v_{n}\right) .
$$

Definition 1'. A sequence of vectors $v_{1}, v_{2}, \ldots, v_{m}$ is linearly dependent if there exist $\alpha_{1}, \ldots, \alpha_{m}$ with at last one nonzero α_{k} s.t.

$$
\alpha_{1} \cdot v_{1}+\alpha_{2} \cdot v_{2}+\ldots+\alpha_{m} \cdot v_{m}=0 .
$$

Why these definitions are equivalent?
Example. Any sequence of vectors which contains the zero vector is linearly dependent. (Why?)

Example. Any sequence of vectors which contains two collinear vectors is linearly dependent. (Why?)
Example. Any sequence of vectors of R^{2} which consists of more then two vectors is linearly dependent. (Why?)

Example. A sequence consisting of two vectors v_{1}, v_{2} is linearly dependent if and only if these vectors are collinear (proportional), i.e. $v_{2}=k \cdot v_{1}$. (Why?)
Definition 2. A sequence of vectors $v_{1}, v_{2}, \ldots, v_{n}$ is called linearly independent if it is not linearly dependent.

Example. The vectors $e_{1}=(1,0,0), e_{2}=(0,1,0), e_{3}=(0,0,1) \in R^{3}$ are linearly independent.

Basis

A sequence of vectors $v_{1}, \ldots, v_{n} \in R^{n}$ forms a basis of R^{n} if
(1) they are linearly independent;
(2) they span R^{n}.

Example. The vectors

$$
e_{1}=(1,0, \ldots, 0), e_{2}=(0,1, \ldots, 0), \ldots, e_{n}=(0,0, \ldots, 1)
$$

form a basis of R^{n}.
Indeed, firstly they are linearly independent since the $n \times n$ matrix

$$
\left(\begin{array}{llll}
e_{1} & e_{2} & \ldots & e_{n}
\end{array}\right)
$$

is the identity, thus it's determinant is $1 \neq 0$.
Secondly, they span R^{2} : any vector $v=\left(x_{1}, \ldots, x_{n}\right)$ is the following linear combination

$$
v=x_{1} \cdot e_{1}+\ldots+x_{n} \cdot e_{n} .
$$

A basis $v_{1}, \ldots, v_{n} \in R^{n}$ is called orthogonal if $v_{i} \cdot v_{j}=0$ for $i \neq j$. This means that all vectors are perpendicular to each other: $v_{i} \cdot v_{j}=0$ for $i \neq j$.

An orthogonal basis $v_{1}, \ldots, v_{n} \in R^{n}$ is called orthonormal if $v_{i} \cdot v_{i}=1$. This means that each vector of this basis has the length 1 . In other words: $v_{i} \cdot v_{j}=\delta_{i, j}$ where $\delta_{i j}$ is famous Kroneker's symbol

$$
\delta_{i j}=\left\{\begin{array}{lll}
1 & \text { if } \quad i=j \\
0 & \text { if } \quad i \neq j
\end{array} .\right.
$$

The basis e_{1}, \ldots, e_{n} is orthonormal.

Theorem Let $v_{1}, \ldots, v_{k} \in R^{n}$ and A be the matrix whose columns are v_{j} 's:

$$
A=\left(\begin{array}{cccc}
v_{11} & v_{21} & \ldots & v_{n 1} \\
v_{12} & v_{22} & \ldots & v_{n 1} \\
\ldots & \ldots & \ldots & \\
v_{1 n} & v_{2 n} & \ldots & v_{n n}
\end{array}\right) .
$$

Then the following statements are equivalent
(a) v_{1}, \ldots, v_{n} are linearly independent;
(b) v_{1}, \ldots, v_{n} span R^{n};
(c) v_{1}, \ldots, v_{n} is a basis of R^{n};
(d) $\operatorname{det} A \neq 0$.

Linear Transformations

A linear transformation (map, function) $\mathbf{f}: \mathbf{R} \rightarrow \mathbf{R}$ has the form $\mathrm{f}(\mathrm{x})=\mathrm{a} \cdot \mathrm{x}$,
so it is just the multiplication with some scalar a. Note that $a=f(1)$.

A linear transformation (map, function) $\mathbf{f}: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}$ has the form

$$
\mathrm{f}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{a}_{1} \cdot \mathrm{x}_{1}+\mathrm{a}_{2} \cdot \mathrm{x}_{2},
$$

so it is just the inner product

$$
f\left(x_{1}, x_{2}\right)=\left(a_{1}, a_{2}\right) \cdot\left(x_{1}, x_{2}\right) .
$$

Note that $a_{1}=f(1,0)$ and $a_{2}=f(0,1)$.

A linear transformation (map, function) $\mathbf{f}: \mathbf{R}^{\mathbf{2}} \rightarrow \mathbf{R}^{\mathbf{2}}$ has the form

$$
f\left(x_{1}, x_{2}\right)=\left(a_{11} \cdot x_{1}+a_{12} \cdot x_{2}, a_{21} \cdot x_{1}+a_{22} \cdot x=\right)
$$

so it is just the matrix product

$$
f\left(x_{1}, x_{2}\right)=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \cdot\binom{x_{1}}{x_{2}} .
$$

Note that the first column of this matrix is $f(1,0)$ written as a column vector, the second column of this matrix is $f(0,1)$ written as a column vector.

Linear Transformations

A linear function $f: R^{k} \rightarrow R^{m}$ is a function that preserves the vector space structure

$$
f(x+y)=f(x)+f(y), \quad f(k x)=k f(x) .
$$

Such a function is determined by a $m \times k$
matrix

$$
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 k} \\
\ldots & & \\
a_{m 1} & \ldots & a_{m k}
\end{array}\right)
$$

and $f(x)=A \cdot x$ where $x \in R^{k}$ and $f(x) \in R^{m}$
are written as column vectors
the i-th column of A is the column vector $f\left(e_{i}\right)$
where e_{i} is the i-th ort $\mathrm{e}_{\mathrm{i}}=(0, \ldots, 0,1,0, \ldots, 0)$.

Example.

Let $f: R^{2} \rightarrow R^{2}$ be the linear map which is
rotation of the plane by 90° clockwise. Thus

$$
f(1,0)=(0,-1), \quad f(0,1)=(1,0),
$$

so the matrix of this linear map is $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$.

Exercises

Vrite the following linear functions in matrix form
(a) $f: R^{3} \rightarrow R$ given by $f\left(x_{1}, x_{2}, x_{3}\right)=$ $2 x_{1}-3 x_{2}+5 x_{3}$.
(b) $f: R^{2} \rightarrow R^{?}$ given by $f\left(x_{1}, x_{2}\right)=\left(2 x_{1}-\right.$ $\left.3 x_{2}, x_{1}-4 x_{2}, x_{1}\right)$.
(c) $f: R^{?} \rightarrow R^{?}$ given by $f\left(x_{1}, x_{2}, x_{3}\right)=$ $\left(x_{1}-x_{3}, 2 x_{1}+3 x_{2}-6 x_{3}, x_{3}-2 x_{2}\right)$.

Let $\mathrm{F}: \mathrm{R}^{3} \rightarrow \mathrm{R}^{3}$ be a linear map given by

$$
F(1,0,0)=(1,1,0), \quad F(0,1,0)=(0,10,-2), F(0,0,1)=(-1,-6,1),
$$

and $\mathrm{v}=(-2,3,-1)$.
(a) Find a vector u of length 1 such tat $F(u)=v$.
(b) Find a vector w in R^{3} which is NOT in the image of F , that is there exists no vector p such that $w=F(p)$.

Eigenvalues and Eigenvectors

If $A \cdot x=\lambda \cdot x$ where

$$
A=\left(\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\ldots & \ldots & \ldots \\
a_{n 1} & \ldots & a_{n n}
\end{array}\right)
$$

is a matrix, λ is a number and $x=\left(\begin{array}{c}x_{1} \\ \ldots \\ x_{n}\end{array}\right) \in R^{n}$ is a nonzero vector, then λ is called an eigenvalue of the matrix A and x is called a eigenvector of A corresponding to the eigenvalue λ.

Note that if x is an eigenvector corresponding to an eigenvalue λ then $k x$ is an eigenvector too: $A \cdot(k x)=k A \cdot x=k \lambda x=\lambda(k x)$.

The specter of A (denoted by $\operatorname{spec}(A))$ is defined as the set of all eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$

Eigenvalues and Eigenvectors

How to Find Eigenvalues and Eigenvectors

These can be found solving the matrix equation $A \cdot x=\lambda \cdot x$, equivalently $(A-\lambda I) x=0$, which in its turn is equivalent to the system

$$
\left\{\begin{array}{cccc}
\left(a_{11}-\lambda\right) x_{1} & +c a_{12} x_{2} & +\ldots+ & a_{1 n} x_{n}=0 \\
a_{21} x_{1} & +\left(a_{22}-\lambda\right) x_{2} & +\ldots+ & a_{2 n} x_{n}=0 \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} x_{1} & + & a_{n 2} x_{2} & +\ldots+\left(a_{n n}-\lambda\right) x_{n}=0
\end{array} .\right.
$$

This is homogenous system so it has a nonzero solution if and only if its determinant $|A-\lambda I|$ (which is called characteristic polynomial of A) is zero, so $|A-\lambda I|=0$.

So, the eigenvalues can be found from the
characteristic equation $|A-\lambda I|=0$ that is

$$
\left|\begin{array}{cccc}
a_{11}-\lambda & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22}-\lambda & \ldots & a_{2 n} \\
\ldots & \ldots & \ldots & \ldots \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}-\lambda
\end{array}\right|=0 .
$$

Eigenvalues and Eigenvectors
Example. Find the eigenvalues for the matrix

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) .
$$

Solution. The characteristic equation looks as

$$
\left|\begin{array}{ccc}
1-\lambda & 1 & 1 \\
1 & 1-\lambda & 1 \\
1 & 1 & 1-\lambda
\end{array}\right|=0
$$

Calculating this determinant we obtain

$$
(1-\lambda)^{3}-3(1-\lambda)+2=0, \quad \lambda^{3}-3 \lambda^{2}=0,
$$

thus $\lambda_{1}=0, \lambda_{2}=0, \lambda_{3}=3$.

Eigenvalues and Eigenvectors
How to Find Eigenvectors
Eigenvectors corresponding to the eigenvalue λ can be found solving the matrix equation

$$
(A-\lambda I) x=0
$$

which is equivalent to the system
$\left\{\begin{array}{ccccc}\left(a_{11}-\lambda\right) x_{1} & + & a_{12} x_{2} & +\ldots+ & a_{1 n} x_{n}=0 \\ a_{21} x_{1} & + & \left(a_{22}-\lambda\right) x_{2} & +\ldots+ & a_{2 n} x_{n}=0 \\ \ldots & \ldots & \ldots & \ldots \\ a_{n 1} x_{1} & + & a_{n 2} x_{2} & +\ldots+\left(a_{n n}-\lambda\right) x_{n}=0\end{array}\right.$.
Since λ is an eigenvalue the determinant of this system is zero. Thus this homogenous system has nonzero solutions.

Eigenvalues and Eigenvectors
Example. Find the eigenvalues and eigenvec-
tors of the matrix

$$
A=\left(\begin{array}{ll}
2 & 2 \\
1 & 3
\end{array}\right)
$$

Solution. The characteristic equation of the matrix A looks as

$$
A=\left|\begin{array}{cc}
2-\lambda & 2 \\
1 & 3-\lambda
\end{array}\right|=0, \lambda^{2}-5 \lambda+4=0
$$

The roots of this equation, that is the eigenvalues are $\lambda_{1}=1, \quad \lambda_{2}=4$.

Eigenvalues and Eigenvectors
The eigenvectors can be found solving the system of equations

$$
\left\{\begin{array}{cc}
(2-\lambda) x_{1}+ & 2 x_{2}=0 \\
x_{1}+ & (3-\lambda) x_{2}=0
\end{array}\right.
$$

For $\lambda=1$:

$$
\left\{\begin{array}{c}
\left.(2-1) x_{1}+\begin{array}{c}
2 x_{2}=0 \\
x_{1}+ \\
(3-1) x_{2}=0
\end{array} \right\rvert\,, \begin{array}{l}
x_{1}+2 x_{2}=0 \\
x_{1}+2 x_{2}=0
\end{array} \\
x_{1}+2 x_{2}=0, x_{1}=2 x_{2},
\end{array}\right.
$$

thus the solution depending on the free parameter x_{2} is $\left(2 x_{2}, x_{2}\right)$. Taking, say, $x_{2}=1$ we obtain the eigenvector $v_{1}=(2,1)$.

For $\lambda=4$:

$$
\left\{\begin{array}{c}
\left.(2-4) x_{1}+\begin{array}{c}
2 x_{2}=0 \\
x_{1}+\quad(3-4) x_{2}=0
\end{array} \right\rvert\,, \begin{array}{c}
-2 x_{1}+ \\
x_{1}-\quad x_{2}=0 \\
x_{2}=0
\end{array} \\
x_{1}-x_{2}=0, \quad x_{1}=x_{2},
\end{array}\right.
$$

thus the solution depending on the free parameter x_{2} is $\left(x_{2}, x_{2}\right)$. Taking, say, $x_{2}=1$ we obtain the eigenvector $v_{1}=(1,1)$.

Exercises

1. Let $\left(\begin{array}{cc}-1 & 3 \\ 2 & 0\end{array}\right)$.
(a) Check that $\lambda=2$ is an eigenvalue of A.
(b) Check that $\binom{1}{1}$ is a corresponding eigenvector of A.
(c) Find all eigenvalues and corresponding eigenvectors of A.
2. Find the eigenvalues and eigenvectors for the matrix $\left(\begin{array}{ccc}1 & 0 & 2 \\ 0 & 5 & 0 \\ 3 & 0 & 2\end{array}\right)$.
3. A Markov matrix is a matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ if all entries a, b, c, d are nonnegative and $a+c=1, b+d=1$. Show that $\lambda=1$ is an eigenvector for an arbitrary Markov matrix.
4. Find eigenvalues of an upper-triangular matrix $\left(\begin{array}{lll}a & b & c \\ 0 & d & e \\ 0 & 0 & f\end{array}\right)$.
5. Show that a 2×2 symmetric matrix $\left(\begin{array}{ll}a & b \\ b & d\end{array}\right)$ has real eigenvalues. In which case it has just one eigenvalue?
6. Find eigenvalues and eigenvectors of the following matrices

$$
\text { (a) }\left(\begin{array}{cc}
-1 & 3 \\
2 & 0
\end{array}\right) \text {. (b) }\left(\begin{array}{ll}
3 & 0 \\
4 & 5
\end{array}\right) \text {. (c) }\left(\begin{array}{ll}
-1 & 3 \\
-2 & 4
\end{array}\right) \text {. (d) }\left(\begin{array}{ll}
0 & -2 \\
1 & -3
\end{array}\right) \text {. }
$$

7. Find eigenvalues and eigenvectors of the following matrix

$$
\text { (a) }\left(\begin{array}{lll}
1 & 0 & 2 \\
0 & 5 & 0 \\
3 & 0 & 2
\end{array}\right) \text {. (b) }\left(\begin{array}{ccc}
0 & 0 & -2 \\
0 & 7 & 0 \\
1 & 0 & -3
\end{array}\right) \text {. }
$$

