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“EXPLAINING” THE ARDESHIR-RUITENBURG OPERATOR

DAVID GABELAIA AND MAMUKA JIBLADZE

Abstract. We provide semantical description of a peculiar operator on Visser algebras introduced by Ardeshir
and Ruitenburg, in the semantics of the Basic Propositional Calculus proposed by Ma and Sano using the dual
of the Cantor-Bendixson derivative, as well as in the semantics provided by wK4-algebras.

1. Introduction

In [6] Albert Visser introduced the Basic Propositional Logic BPL. This is a rather peculiar subintuitionistic
logic: adding to it true → false does not lead to contradiction. Instead it lands in a consistent extension of an
even more interesting logic FPL, which is to the Provability Logic of the Peano Arithmetic as the Intuitionistic
Propositional Logic IPL is to the modal logic S4 (via the celebrated Gödel translation).

We will work with BPL through its algebraic semantics; it should be clear from it what BPL actually is.
Algebras that arise from BPL are usually called Visser algebras in the literature.

1.1. Definition. A Visser algebra [1] (𝐴, 99K ) is a bounded distributive lattice 𝐴 together with a binary oper-
ation 99K ∶ 𝐴 × 𝐴 → 𝐴 satisfying

𝑥 ⩽ 199K 𝑥,
(𝑥99K 𝑥) = 1,

(𝑥99K 𝑦) ∧ (𝑦99K 𝑧) ⩽ 𝑥99K 𝑧,
𝑥99K (𝑦 ∧ 𝑧) = (𝑥99K 𝑦) ∧ (𝑥99K 𝑧),
(𝑥 ∨ 𝑦)99K 𝑧 = (𝑥99K 𝑧) ∧ (𝑦99K 𝑧)

for any 𝑥, 𝑦, 𝑧 ∈ 𝐴.

1.1.1. Remarks. Let us point out that any Heyting algebra satisfies these conditions with the Heyting implication
→ taken for 99K . In fact, a Visser algebra 𝐴 satisfies 199K 𝑥 = 𝑥 for any 𝑥 ∈ 𝐴 if and only if it is a Heyting
algebra with 99K as the Heyting implication. Still better way to see where Visser algebras are situated with
respect to Heyting algebras is to note the easy consequence of the above definition: for any 𝑥, 𝑦, 𝑧 in a Visser
algebra (𝐴, 99K ),

(𝑥 ∧ 𝑦)99K 𝑧 ⩽ 𝑥99K (𝑦99K 𝑧).

And, 99K can be used for the implication that turns 𝐴 into a Heyting algebra if and only if the reverse inequality
holds in 𝐴 too.

In [1, 2], an operator 𝜉 is defined on Visser algebras. It is given by

𝜉𝑎 = ((199K 𝑎)99K 𝑎)99K (199K 𝑎)

and has the following properties:
199K 𝜉𝑎 = 𝜉𝑎;
if 199K 𝑎 = 𝑎 then 𝜉𝑎 = 𝑎.

These imply that 𝜉 is an idempotent operator whose image coincides with the set of all Heyting elements (those
𝑎 with 199K 𝑎 = 𝑎).

In [4], a semantics for the BPL has been proposed, which provides certain class of Visser algebras: one takes
the lattice Op(𝑋) of all open sets of any topological space 𝑋 with the binary operation

𝑈99K𝑉 ∶= 𝜏((𝑋 − 𝑈) ∪ 𝑉 ),

where 𝜏 is the coderivative operator:
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1.2. Definition. For a subset 𝑆 of a topological space 𝑋, the coderivative of 𝑆 is

𝜏𝑆 ∶= {𝑥 ∈ 𝑋 | ∃ 𝑥 ∈ 𝑈 ∈ Op(𝑋) 𝑈 − 𝑆 ⊆ {𝑥} } .

Note that when applied to an open set, the operator 𝜏 adds to it all isolated points of its complement1.
Since in this interpretation we have 199K𝑈 = 𝜏𝑈, it follows that the above operator 𝜉 in this case retracts all

open sets onto all perfect open sets (the fixed points of 𝜏). This seems quite surprising since in general finding
the perfect hull of an open set requires either transfinite iteration of 𝜏 or (in general infinite) meet of all perfect
opens containing the given open set, whereas 𝜉 is a finitary construct.

We will describe the operator 𝜉 in this situation; in particular it will be clear that, although it indeed captures
all perfect open sets, 𝜉𝑈 does not coincide with the perfect hull of 𝑈 — it may be strictly larger.

2. Operators on Heyting algebras

We will use the following fact, cf. [7, 3.9.22]

2.1. Proposition. Let Τ ∶ 𝐻 → 𝐻 be a multiplicative inflationary operator on a Heyting algebra 𝐻. Then the
operator FΤ ∶ 𝐻 → 𝐻 given by

FΤ𝑎 ∶= (Τ𝑎 → 𝑎) → 𝑎
has the following properties:

FΤ𝑎 is a fixed point of Τ for every 𝑎 ∈ 𝐻;
FΤ and Τ have the same fixed points.

Hence FΤ is an idempotent operator whose image coincides with the set of all fixed points of Τ. Moreover if
𝑥 ⩽ FΤ𝑎 then Τ𝑥 ⩽ FΤ𝑎, in particular, one has

𝑎 ⩽ Τ𝑎 ⩽ ΤΤ𝑎 ⩽ ⋯ ⩽ FΤ𝑎

for all 𝑎 ∈ 𝐻.

Proof. The first assertion follows from

Τ((Τ𝑎 → 𝑎) → 𝑎) ∧ (Τ𝑎 → 𝑎) = Τ((Τ𝑎 → 𝑎) → 𝑎) ∧ Τ(Τ𝑎 → 𝑎) ∧ (Τ𝑎 → 𝑎)
= Τ(((Τ𝑎 → 𝑎) → 𝑎) ∧ (Τ𝑎 → 𝑎)) ∧ (Τ𝑎 → 𝑎)
= Τ(𝑎 ∧ (Τ𝑎 → 𝑎)) ∧ (Τ𝑎 → 𝑎)
= Τ𝑎 ∧ (Τ𝑎 → 𝑎)
= Τ𝑎 ∧ 𝑎
= 𝑎,

as by adjunction this gives
Τ((Τ𝑎 → 𝑎) → 𝑎) ⩽ (Τ𝑎 → 𝑎) → 𝑎.

The second assertion follows since

FΤ𝑎 → 𝑎 = ((Τ𝑎 → 𝑎) → 𝑎) → 𝑎 = Τ𝑎 → 𝑎.

These two then easily imply the rest. �

2.1.1. Example. If 𝐻 is boolean, then FΤ = Τ. In fact any inflationary multiplicative operator Τ on a boolean
algebra has form Τ𝑎 = 𝑎 ∨ Τ0. Indeed, 𝑎 ∨ Τ0 ⩽ Τ𝑎 is clear while Τ𝑎 − 𝑎 ⩽ Τ𝑎 ∧ Τ−𝑎 = Τ(𝑎 ∧ −𝑎) = Τ0.

Note that FΤ need not preserve order, and FΤ Τ ≠ FΤ in general.

2.1.2. Example. Suppose 𝐻 is linear. Then

FΤ𝑎 =
{

𝑎 if Τ𝑎 = 𝑎,
1 if Τ𝑎 > 𝑎.

3. Ma-Sano semantics for wK4-algebras

Let us now consider, according to [4], the Visser algebra obtained from the lattice of open sets of a topological
space equipped with the binary operation 99K defined as above by 𝑈99K𝑉 ∶= 𝜏(−𝑈 ∪ 𝑉 ).

It will turn out that when Τ is the coderivative operator on open sets, then FΤ coincides with the Ardeshir-
Ruitenburg operator on the corresponding Visser algebra. We can as well work in the greater generality of any
wK4-algebra [3].

1Since there might be non-unique interpretation of this term: for us, a point 𝑥 of a topological space 𝑋 is isolated iff the singleton
set {𝑥} is open
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3.1. Definition. A wK4-algebra is a modal algebra (𝐵, 𝜏) where 𝐵 is a Boolean algebra and 𝜏 is a multiplicative
operator such that, defining ◻𝑏 ∶= 𝑏 ∧ 𝜏𝑏, the algebra (𝐵, ◻) is an S4-algebra. This holds if and only if

𝜏1 = 1

and

𝑏 ∧ 𝜏𝑏 ⩽ 𝜏𝜏𝑏

for all 𝑏 ∈ 𝐵.

3.1.1. Example. The leading example is the algebra 𝐵 = 𝒫 (𝑋) of all subsets of a topological space 𝑋, equipped
with the coderivative operator 𝜏 as in 1.2 above. This justifies the terminology that follows.

An element 𝑢 ∈ 𝐵 will be called open if 𝑢 = ◻𝑢 (equivalently, 𝑢 ∈ ◻(𝐵), equivalently, 𝑢 ⩽ 𝜏𝑢). An open
element 𝑢 is perfect if 𝜏𝑢 = 𝑢. Dually, 𝛿𝑏 = −𝜏−𝑏 and ⬦𝑏 = 𝑏 ∨ 𝛿𝑏; an element 𝑐 ∈ 𝐵 is closed if 𝑐 = ⬦𝑐
(equivalently, 𝑐 ∈ ⬦(𝐵), equivalently, 𝛿𝑐 ⩽ 𝑐). A closed element 𝑐 is perfect if 𝛿𝑐 = 𝑐. An open (resp. closed)
element 𝑢 (resp. 𝑐) is regular if ◻⬦𝑢 = 𝑢 (resp. ⬦◻𝑐 = 𝑐). An element 𝑏 ∈ 𝐵 will be called locally closed if
𝑏 = 𝑐 ∧ 𝑢 for some closed 𝑐 and open 𝑢.

Given a wK4-algebra (𝐵, 𝜏), let 𝐻𝜏 ⊆ 𝐵 be the set of its open elements, 𝐻𝜏 = ◻(𝐵). Since (𝐵, ◻) is an
S4-algebra, 𝐻𝜏 is a sublattice of 𝐵 and is a Heyting algebra when equipped with the implication

𝑢 → 𝑣 ∶= ◻(−𝑢 ∨ 𝑣).

To extend the semantics of [4] from topological spaces to arbitrary wK4-algebras, we are going to equip 𝐻𝜏
with the operation

𝑢99
𝜏
K 𝑣 ∶= 𝜏(−𝑢 ∨ 𝑣).

For this to work, we need to know that 𝜏(−𝑢 ∨ 𝑣) is open for any open 𝑢, 𝑣. It will be convenient for us to
pass to the complements and prove the equivalent statement, that 𝛿(𝑐 − 𝑑) is closed for any closed elements 𝑐, 𝑑,
i. e. that 𝛿(𝑠) is closed for any locally closed 𝑠.

3.2. Proposition. Let 𝑠 be an element of a wK4-algebra (𝐵, 𝜏). If 𝑠 is locally closed then 𝛿𝑠 is closed, i. e.
𝛿𝛿𝑠 ⩽ 𝛿𝑠 holds.

Proof. Clearly 𝑠 is locally closed iff there are closed elements 𝑐1, 𝑐2 with 𝑐2 ⩽ 𝑐1 such that 𝑠 = 𝑐1 − 𝑐2. Thus
𝛿𝑐1 ⩽ 𝑐1 and 𝛿𝑐2 ⩽ 𝑐2. Then,

𝛿𝑐1 = 𝛿(𝑐2 ∨ (𝑐1 − 𝑐2)) = 𝛿𝑐2 ∨ 𝛿(𝑐1 − 𝑐2) ⩽ 𝑐2 ∨ 𝛿(𝑐1 − 𝑐2),

or equivalently
(𝛿𝑐1) − 𝑐2 ⩽ 𝛿(𝑐1 − 𝑐2).

Since 𝛿 is order preserving, 𝛿𝛿(𝑐1 − 𝑐2) ⩽ 𝛿𝛿𝑐1 ⩽ 𝛿𝑐1; also 𝛿𝛿(𝑐1 − 𝑐2) ⩽ (𝑐1 − 𝑐2) ∨ 𝛿(𝑐1 − 𝑐2) since we are in wK4.
It follows that

𝛿𝛿(𝑐1 − 𝑐2) ⩽ 𝛿𝑐1 ∧ ((𝑐1 − 𝑐2) ∨ 𝛿(𝑐1 − 𝑐2)) = (𝛿𝑐1 ∧ (𝑐1 − 𝑐2)) ∨ (𝛿𝑐1 ∧ 𝛿(𝑐1 − 𝑐2))
= ((𝛿𝑐1) − 𝑐2) ∨ 𝛿(𝑐1 − 𝑐2) = 𝛿(𝑐1 − 𝑐2),

which by definition means that 𝛿(𝑐1 − 𝑐2) is closed. �

3.2.1. Remark. It is interesting to compare 3.2 with the following fact, observed in [3]. For a topological space
𝑋, the wK4-algebra (𝒫 (𝑋), 𝜏) corresponding to it (using 𝜏 as in 1.2) is a K4-algebra (i. e. 𝛿𝛿𝑆 ⊆ 𝛿𝑆 holds for
all 𝑆 ⊆ 𝑋), iff 𝑋 is a T𝑑-space (i. e. every singleton subset of 𝑋 is locally closed).

With 3.2 at hand, we have

3.3. Corollary. For any wK4-algebra (𝐵, 𝜏), let 𝐻𝜏 ⊆ 𝐵 be the set of its 𝜏-open elements, i. e. 𝐻𝜏 = {𝑢 ∈ 𝐵 ∣
𝑢 ⩽ 𝜏𝑢}. For any 𝑢, 𝑣 ∈ 𝐻𝜏 let

𝑢99
𝜏
K 𝑣 ∶= 𝜏(−𝑢 ∨ 𝑣).

Then, 𝑢99
𝜏
K 𝑣 ∈ 𝐻𝜏.

Proof. This is straightforward from 3.2, given that an element is open iff its complement is closed, and that

−(𝑢99
𝜏
K 𝑣) = 𝛿((−𝑣) − (−𝑢)).

�

3.4. Theorem. If (𝐵, 𝜏) is a wK4-algebra, then (𝐻𝜏, 99
𝜏
K ) is a Visser algebra.

Proof. It is straightforward to verify all of the identities in 1.1 for 99
𝜏
K , using properties of 𝜏. �
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4. The Ardeshir-Ruitenburg operator

Given a wK4-algebra (𝐵, 𝜏) as above, since (𝐻𝜏, 99
𝜏
K ) is a Visser algebra, we can, after [1], consider the

operator 𝜉 ∶ 𝐻𝜏 → 𝐻𝜏 defined as follows:
𝜉𝑢 ∶= ((199

𝜏
K 𝑢)99

𝜏
K 𝑢)99

𝜏
K (199

𝜏
K 𝑢) = (𝜏𝑢99

𝜏
K 𝑢)99

𝜏
K 𝜏𝑢.

On the other hand, since (𝐵, ◻) is an S4-algebra, 𝐻𝜏 is a Heyting algebra, with the implication
𝑢 → 𝑣 ∶= ◻(−𝑢 ∨ 𝑣),

so, as in 2.1, we have the operator F𝜏 on 𝐻𝜏 given by
F𝜏(𝑢) = (𝜏𝑢 → 𝑢) → 𝑢.

We then have

4.1. Theorem. For any wK4-algebra (𝐵, 𝜏), the operators 𝜉 and F𝜏 above coincide.

Proof. Let us begin by showing that 𝜉(0) = F𝜏(0). We have
𝜉(0) = 𝜏(−𝜏(−𝜏0) ∨ 𝜏0) = 𝜏(𝛿𝜏0 ∨ 𝜏0) = 𝜏⬦𝜏0

and
F𝜏(0) = ¬¬𝜏0 = ◻⬦𝜏0 = ⬦𝜏0 ∧ 𝜏⬦𝜏0,

so definitely F𝜏(0) ⩽ 𝜉(0). For the reverse inequality we have to show 𝜏⬦𝜏0 ⩽ ⬦𝜏0. Indeed

𝜏⬦𝜏0 − ⬦𝜏0 = 𝜏⬦𝜏0 − ⬦⬦𝜏0 = 𝜏⬦𝜏0 ∧ ◻(−⬦𝜏0) = 𝜏⬦𝜏0 ∧ 𝜏(−⬦𝜏0) ∧ (−⬦𝜏0)
= 𝜏(⬦𝜏0 ∧ (−⬦𝜏0)) ∧ (−⬦𝜏0) = 𝜏0 ∧ (−⬦𝜏0) ⩽ 𝜏0 ∧ (−𝜏0) = 0,

so that indeed 𝜏⬦𝜏0 ⩽ ⬦𝜏0.
For general 𝑢 ∈ 𝐻𝜏, let us relativize the whole thing to the algebra (𝐵𝑢, 𝜏𝑢), where 𝐵𝑢 = [𝑢, 1] and 𝜏𝑢 = 𝜏. It is

straightforward to show that this is a wK4-algebra, so that we get operators F𝜏𝑢
and 𝜉𝑢 on 𝐻𝜏𝑢

. Moreover the
bottom element 0𝑢 of 𝐵𝑢 is 𝑢, and 𝐻𝜏𝑢

= 𝐻𝜏 ∩ [𝑢, 1], so that
F𝜏𝑢

(0𝑢) = ¬𝑢¬𝑢𝜏𝑢 = (𝜏(𝑢) → 𝑢) → 𝑢 = F𝜏(𝑢),

while for 𝑢 ⩽ 𝑏,
𝛿𝑢(𝑏) = −𝑢𝜏𝑢(−𝑢𝑏) = 𝑢 ∨ −𝜏(𝑢 ∨ −𝑏) = 𝑢 ∨ 𝛿(𝑏 − 𝑢),

so that
⬦𝑢(𝑏) = 𝑏 ∨ 𝛿𝑢(𝑏) = 𝑏 ∨ 𝛿(𝑏 − 𝑢),

hence
𝜉𝑢(0𝑢) = 𝜏𝑢⬦𝑢𝜏𝑢(0𝑢) = 𝜏(𝜏𝑢 ∨ 𝛿(𝜏𝑢 − 𝑢)) = 𝜉(𝑢).

As we have already shown F𝜏𝑢
(0𝑢) = 𝜉𝑢(0𝑢), the equality F𝜏(𝑢) = 𝜉(𝑢) follows. �
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