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ABSTRACT. The l)feSent pal)er reports that in the case of module categories 
over an elementary topos the Galois theory 01' Chase and Sweedler and the 'Gulois 
theory of Ligon are equivalent. 
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Pr~sented closed symmetric tnonoidal category ~,-®-J), M({2) (resp.CM(C), 
CoM(f:;.), lIM(Q, CHM(Q) denotes the category ofmonoids (resp. comlnutative rnonoids, 
comonoids, Hopfmonoids, conunutative Hopfmonoids) in C, where a monoid in Cis 
to be understood as in [1], and a Hopfmonoid in C is defined in the same way as a 
Hopfalgebra in K-rnod is d~fined in [2]. A left A-object in C with to someAeOb(M(Q) 

is a pair (h~ Vc) where Vc is a left action in the sense of [1]. AC (resp. CA , ACB' AC, ~) 
denotes the calegory of leU-A -objects (resp. right A -objects, A -B-biobjects, left A-coo~jects, 
right A-coobjects). Similarly one has the notion of groups, cogroups etc. 

The categories C, AC, ACH etc arc r~lated by the follo'wing two functors, provided C 
has equalizers and coequalizers (cp. [3J): 

Let A, B e Ob(M(g) then any PeOb(CA) defines a functor 

P®A.-: AC-tC 
and any PeOb<ng defines a functor 

BlP,-]: BC-t C 
where H[P, P] again becomes a monoid. 

If now PeACB' these functors may be interpreted as functors between categories C.4' 
BC, A.c..B etc. ill various ways, such that become adjoint [3]. 

Using these facts, one gets forA eObC;U(Q), PeOb~g a111.OIphism gA. :A[P,A]®Alp,p I P -+ A 

correspopding to lAIP,Aj ,and a morphism fA: P®A [p,A1-+A[P,P]correspondingto 11' ®gA' 

Definition 1 [4]. P is called 1 

a) finite over A. if~ is an isomorphism; 
b ) faithfully projective over A. ifP is finite and gA is an isomorphism. 
Let 

A E Ob(M(s;;),H E Ob(HM(O),aA e M(C)(A,A ® H), (A,aA ) e Ob(CH 
) , 



rA =(VA® IAX1A ®aA) E A1(C)(A ®A,A® H). 

Definition 1 [4]. A is called H-Galois over 1 ifA is faithfully projective over], and 
Y..I is an isomorphism in C. 

Let HE Ob(flAl(C» be finite over 1 and (A,aA ) E Ob(C
H

). The fix -object AH
• 

is defined as the equalizer of the following pair of morphisms (aA ,lA ®TJH)' 

In the case AH 
• ::; 1 in [4] the Morita -context (D, 1, A, Q, f, g) is defined, where 

. D = A#H*,Q = DH"',rp = V A(l A ® PA)eC(D® A,A), 

f= VDUA ®JQ)eD C D(A®Q,D), g =rpUQ ® jA)E C(Q®D A,I) 

(here the morphism PA EC(ll*®A,A) is obtained from all eC(A,A®H*) bythebijec­

tion C(H *®A,A)::; C(A,A® H *)' and j A : A -~ D and jQ:Q -4- D are canonical in­

clusions) . 

Theorem 1 [4]. If H eOb(CfLAf(s;;.)) is finite over 1, A eOb(CM~)) and 

(A,aA)eOb(cH), then the following statements are equivalent: 

aJ A is H-Galois over 1; 

l~) A is faithfully projective over 1 and the morphism A#H* ~ [A, A] induced by 

the left A# H* - monoid structure on A is an isomorphism; 

c) AfI 
'" ::; I and the Morita context (D, 1, A, Q, f, g) is strict. 

Now, Jet E be an arbitrary category with finite products and equalizers. An object 

A e Ob( E) is called faithfull if the functor A x - : E ~ E creates isomorphisms. If this 

functor preserves coeqmilizers then A will be called coflat in E. 
Definition 3 [5]. Let G be a group in E. A faithfull object A is called Galois G-

object if there exists a morphism PA: G x A -4- A in E such that (A, PA}eO E and the 

morphism rA : G x A -4- A x A defined by the product diagram is an i.vomorphism. 

Let Ii be an elementary'topos with a natural numbers object. If R is a commutative 

ring object with identity in E, then (R -mod'-®R -,R) is a symmetric monoidal closed 

category [6,7]. 

Definition 4. P e Ob(R - mod) will be called R - progenerator ifthere are natural 

numbers n, m such that pfn] is a retract ofRand Rfm
] is a retract ofP in R - mod 

Theorem 2. An R - module P is faithfully projective over R in the monoidal category 

(R-mod'-®R -,R) if and only ifP locally is R - progenerator [8}. 

Corollary 1. For arbitrary P e Ob(R - mod) the Morita context ([P, pJ, R, P, [P, RJ,J, g), 
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where f, g are morphisms from definition J, is strict if and only if P locally is R ­
...progenerator. 

By CR® we denote the category of commutative R-algebras in E. Then CR®oP is 
a category with finite products and coequalizers [7]. 

Proposition t: A group in CR®oP is a commutative Hopf algebra with antipode in 
CR(fl), and if it is finite over R, then it locally is R - progenerator . 

PrOl)osition 2. a) An object A E Ob(CR(E)OP) is faithfull in CR(fl)°P ifand only if 
the following condition holds: whenever f : M~N is a homomorphism ofR-modules 
such that 1A ®R f is an isomorphism, then f likewise is an isomorphism. 

b) A is a coflat object in CR®oP if and only ifA is a flat R-module. 

Let HE Gr(CR (E)OP ) be finite over R. 

Theorem 3 [8]. Let A be a Galois H-object in CR(IDoP. The following statements are 
equivalent: 

a) A is a coflat Galois H-object in CR(fjJoP; 
b) A local(v is finitely generated projective R-module, a faithfull object in C'"'R(fjJ°P 

and the homomorphism A#H*~[A, AJ is an isomorphism; 

c) AH
• ~ R and the Morita context (D, R, A, Q, f, g) is strict. 

Proposition 3 [8]. Let A be a Galois [I-object in CR(fjJoP. Then A is a coflat object 
in CR(fjJ°P. 

Combining the results, we obtain the following 

Theorem 4. In the closed symmetric monoidal category (R -mod'-®R -,R) the 

Galois theory ofLigon [4J and Galois theory ofChase and Sweedler [5J are equivalent. 
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