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ABSTRACT. The present paper reports that in the case of module categories
over an elementary topos the Galois theory of Chase and Sweedler and the Galois
theory of Ligen are equivalent .
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Presented closed symmetric monoidal category (C,—-®-,7), M(C) (resp.CM(C),
CoM(C), HM(C), CHM(C)) denotes the category of monoids (resp. cominutative monoids,
comonoids, Hopfmonoids, commutative Hopfmonoids) in C, where a monoid in C is
to be understood as in [1], and a Hopfmonoid in C is defined in the same way as a

Hopfalgebra in K-mod is defined in [2]. A left 4-object in C with to some 4eOb(M(L))
is a pair (C. V) where V_, is a left action in the sense of [1]. ,C (resp. C,, ,Cy, A_Q, _C4 )
denotes the category of lefl A4-objects (resp. right 4 -objects, A-B-biobjects, left A-coobjects,
right “1-coobjects). Similarly one has the notion of groups, cogroups etc.

The catcgories C, ,C, ,Cp etc are related by the following two functors, provided C
has cqualizers and coequalizers (cp. [3]):

Let 4, B € Ob(M(C)) then any PeOb(C ) defines a functor

P®, - ,CHC
and any PeOb(,C) defines a functor
3[P="]: L C

where [P, P] again becomes a monoid .
If now Pe ,Cg, these functors may be interpreted as functors between categories C,
5C, ,Cp etc. in various ways, such that become adjoint [3].

Using these facts, one gets for 4 e Ob(M(C)), PeOb(,C) a morphism g : AlP.A]® gy P> 4
correspopding 0 1 »,4, and a morphism f;: P ®,[P, 4], 4P, P]correspondingto 1, ® g 4.

Definition 1 [4]. P is called

a ) finite over A, if f, is an isomorphism,

b ) faithfully projective over A, if P is finite and g, is an isomorphism.
Let

AeO0b(M(C)),H € Ob(HM(C)),a, e M(CXA,A®H), (A,a,)e0bCY),



Y4 =(V4®L N, ®a,)eM(C)4® 4,48 H).
Definition 2 [4]. 4 is called H-Galois over I ifA is faithfully projective over I, and
y,is an isomorphism in C.
Let H € Ob(HM(C)) be finite over ] and (4,2,)€O5(C") . The fix -object A7
is defined as the equalizer of the following pair of morphisms (a1, ®7;).

In the case A7 ~I in [4] the Morita -context (D, I, 4, O, f, g) is defined, where
D=A#H*Q=D"",0=v,0,8p8,)eC(D® 4, A),

=V (/4 ® 70 JenC(4©0.D), g =0l ® j,)eCO®, 4,1)
(here the morphism 3, € C(H *®A4, 4) is obtained from a, e C(4, A® H *) by the bijec-

tion C(H *®,4,44)zQ(A,A®H *) and f,:4-»D and JogQ—>D ére canonical in-
clusions ) .
Theorem 1 [4). If HeOb(CHM(C)) is finite over I, AcOb(CM(C)) and

(A,a ,4)5 Ob(g_‘” ), then the following statements are equivalent:
a) 4 is H-Galois over I; o _
b) 4 is faithfully projective over I and the morphism A#H* — [A, A] induced by

the left A#H* - monoid structure on A is an isomorphism;

¢) A"" =1 and the Morita context (D, I, A, O, /g is strict .
Now, let E be an arbitrary category with finite products and equalizers. An object

A€ Ob( E) is called faithfull if the functor Ax—: £ — E creates isomorphisms. If this

functor preserves coequalizers then 4 will be called coflat in E.
Definition 3 [5]. Let G be a group in E. A faithfull object A is called Galois G-

object if there exists a morphism B,:GxA—> A in E such that (4,8,)ecE and the

morphism y ;.G x A—> Ax A defined by the product diagram is an isomorphism.

Let £ be an elementary topos with a natural numbers object. If R is a commutative
ring object with identity in £, then (R —mod,—®p -, R) is a symmetric monoidal closed
category [6,7].

Definition 4. P Ob (R - mod) will be called R - progenerator if there are natural

numbers n, m such that P™ is a retract of R and R™ is a retract of P in R - mod.
Theorem 2. An R - module P is faithfully projective over R in the monoidal category

(R - mod,-® —, R) if and only if P locally is R - progenerator [8].
Corollary 1. For arbitrary P e Ob(R ~ mﬁd) the Morita context ([P, P], R, P, [P R], £ ),
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where [, g are morphisms from definition 1, is strict if and only if P locally is R -
progeneraior.

By CR(E) we denote the category of commutative R-algebras in £. Then CR(E)”™ is
a category with finite products and coequalizers [7]. |

Proposition 1. 4 group in CR(E)” is a commutative Hopf algebra with antipode in
CR(E), and if it is finite over R, then it locally is R - progenerator .

Proposition 2. a) An object AeOb|CR(E)”) is faithfull in CRE® if and only if
the following condition holds . whenever f . M—N is a homomorphism of R-modules

such that 1, ®, fis an zsomorphzsm then f likewise is an isomorphism.
b)Ais a coﬂat object in CR(E)™ if and only if A is a flat R-module.

Let He Gr(CR(_)“’P ) be finite over R.

Theorem 3 [8]. Let A be a Galois H-object in CR(E)™. The following statements are
equivalent: -

a) 4 is a coflat Galois H-object in CR(E)*;

b) A locally is finitely generated projective R-module, a faithfull object in CR(E)*
and the homomorphism ARH*—[A, A] is an isomorphism ;

¢) A" =R and the Morita context (D, R, 4, Q, /. g is strict.

Proposition 3 [8]. Let A be a Galois H-object in CR(E)™. Then A is a coflat object
in CR(E)*.

Combining the results , we obtain the following

Theorem 4. In the closed symmetric monoidal category (R——mod,-— g —,R) the

Galois theory of Ligon [4] and Galois theory of Chase and Sweedler [5] are equivalent.
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