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Abstract 

The object of study of the present paper may be considered as a model, in an elementary 
topos with a natural numbers object, of a non-classical variation of the Peano arithmetic. The new 
feature consists in admitting, in addition to the constant (zero) SO E N and the unary operation 
(the successor map) SI : N + N, arbitrary operations s,, : N” --f N of arities u ‘between 0 and 1’. 
That is, u is allowed to range over subsets of a singleton set. @ 1997 Elsevier Science B.V. 

1991 Math. Subj. Class.: Primary 18B25, 03G30; Secondary 68Q55 

In view of the Peano axioms, the set of natural numbers can be considered as a 
solution of the ‘equation’ X + 1 = X. Lawvere with his notion of natural numbers 
object (NNO) gave precise meaning to this statement: here X varies over objects of 
some category S, 1 is a terminal object of this category, and X + 1 (let us call it 
the decidable lift of X) denotes coproduct of X and 1 in S; this obviously defines 
an endofunctor of S. Now for any E : S + S whatsoever, one solves the ‘equation’ 
E(X) = X by considering E-algebras: an E-algebra structure on an object X is a 
morphism E(X) 4 X, and one can form the category of these by defining a morphism 
from E(X) ---f X to another algebra E(Y) + Y to be an X + Y making 

E(X) -E(Y) 

J 1 
X-Y 
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commute. Consider the initial E-algebra, i.e. an initial object I of this category. It was 

first observed by Lambek that its structure morphism E(I) + I is an isomorphism, so 

I is a solution of the above equation. 

Returning to E(X) = X + 1, one easily sees that the initial decidable lift-algebra N 

has precisely the universal property of a NNO. Indeed, in accordance with the Peano 

arithmetic, structure of a decidable lift-algebra on an object X amounts to specify- 

ing just one unary and one nullary operation on it. An ultraintuitionist could demand 

to say it in a different way: there is one operation of each arity between 0 and 1. 

Or, 

which in presence of the law of excluded middle is X1 u X0 = X + 1 again. Now 

suppose our category S is a non-Boolean elementary topos; then, the coproduct above 

still exists, and is different from X + 1 - it is in fact 8, the partial map classijer of 

X (see e.g. [8]). 2 is characterized by a universal property: morphisms from any Y 

to it are in one-to-one correspondence with partial maps Y-X, i.e. morphisms from 

subobjects of Y to A’. Note that X + 1 has a similar universal property, but with all 

subobjects of Y replaced by the complemented ones only. One might think that the 

initial “-algebra N is some kind of ‘non-decidable NNO’, relating to N in the same 

way as the subobject classifier Q = i relates to 2=1+ 1. From the point of view of 

non-classical logics, we are looking at some kind of ultraintuitionistic arithmetic. N 
might also serve needs of universal algebra: on objects of toposes, e.g. sheaves, one 

may indeed encounter algebraic operations with arities more general than numbers. 

There is hope that using N in place of N might enable one to extend methods of [lo] 

from finitary to these more general operations. 

There is another motivation to study objects like N: it turned out that the work 

of Joyal and Moerdijk [l l] on the algebraic foundation of set theory can be also 

formulated in terms of initial algebras for certain endofunctors of pretoposes. Moreover, 

although the case of our (-) and 1 + ( ) is outside the situations considered in [ 111, 

their powerful method turns out to be still applicable. We will return to this matter 

after the main theorem. 

Another field where initial algebras are welcome is denotational semantics of 

programming languages, and specifically synthetic domain theory (SDT); see 

[7, 16, 17, 19, 211. Unfortunately author’s acquaintance with the subject is insuffi- 

cient to tell much about this. Let us just mention that it is of interest to consider - 
endofunctors E which are in a sense intermediate between 1 + ( ) and ( ); they cor- 

respond to objects C between 1 + 1 and 1”, 2 CCC 0. Any such Z gives rise to a 

distinguished class of subobjects: call a subobject C-decidable if its classifying map 

factors through C. Thus, for any X one may consider the object XL, C-lift of X, such 

that morphisms from Y to X_L are in one-to-one correspondence with morphisms from 

C-decidable subobjects of Y to X. In a topos, C-lifts are most easily defined by the 
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pullback square 

where the vertical map on the right is determined by assigning to a partial map its 

domain. Or, as in [7], XJ_ = LIZ n true:i_z(X); identifying C with a set of subsets of 

a singleton set, this can be also written as 

presenting XL as a partial product in the sense of [9]. 

To sketch very roughly the role played by the C-lifts in domain theory, let us again 

consider the ‘equation’ E(X) = X, for a general endofimctor E. Note that the situation 

is not symmetric: instead of the initial E-algebra E(l) + I one might as well consider 

a terminal E-coalgebra T + E(T), i.e. initial algebra for E considered as an endo- 

functor of the opposite category S “P. There always is a canonical morphism I + T, but 

in all the obvious examples that come to mind, this morphism is not an isomorphism. 

According to Freyd’s Versality Principle, domains for the denotational semantics are 

to be found in categories where it is (see [4-6]; in fact, Freyd shows that such cate- 

gories occur naturally also in other situations, very far from computer science). Now 

the SDT approach to construct such categories is as follows: one considers the C-lift 

endofunctor of a topos S and tries to choose .Z in such a way that the morphism 

CT --) C’ , induced by the I -+ T above, is an isomorphism. Moreover, the reflec- 

tive subcategory of S ‘cogenerated by C’ (see [ 141 or [17] for the precise definition) 

must inherit the lift endofunctor and have the desired property, i.e. the morphism 

from the initial algebra to the terminal coalgebra must be an isomorphism 

there. 

In the present paper, we are going to give one particular description of the initial 

algebra, in hope that it may be of some use in concrete calculations. We will discuss 

how this description relates to well-foundedness, and in particular to [ 111. 

So, let us fix an elementary topos S and an object C as above, 2 C CC_ Q, which 

moreover is a dominance in the sense of [16], i.e. if Y’ is a C-decidable subobject 

of Y and Y” is a C-decidable subobject of Y’, then Y” is a C-decidable subobject 

of Y. 

As is by now customary, we will freely switch back and forth between the internal 

language of the topos and the external categorical language. For example subobjects 

of the terminal object, subsets of a singleton, terms of type Q, truth values, and closed 

formulae will be used interchangeably as essentially equivalent concepts. Or, we will 

prove things by induction in the internal language, meaning by this ‘Lawvere induction’ 

using the universal property of the NNO. 
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All functors E considered in this paper will be supposed indexed, i.e. be in fact 

components E = El over the terminal object of families of functors E, : S/I + S/I, 

I E S, such that for all f : I + J in S, the square 

EJ 
S/J - S/J 

commutes up to coherent canonical isomorphisms. Among other things, this additional 

structure enables one to internalize the lattice of subalgebras of any algebra E(A) -+ A. 

That is, one may construct a subobject Sub(E(A) -+ A) of sy’ which is its complete 

meet-subsemilattice and has the needed universal property. In particular, any E(A) ---f A 

will have a smallest subalgebra, represented by the bottom element of Sub(E(A) + A). 

See [ 15, V.2.11 for details. 

Let us begin with a theorem stating existence of an initial E-algebra under some 

conditions on the endofunctor E. This seems to be a typical folklore theorem: I’ve 

heard versions of it from Alex Simpson, Paul Taylor, Pino Rosolini; see also the first 

proposition in [6]. To the author’s knowledge, the earliest (and, it seems, the most 

general) version is Theorem V(2.2.2) of [15]. We shall extract from it the particular 

case we need. First let us recall the notion of unique existentiation (u.e. ) pullback 

from [3, Proposition 2.211. Given any f : X + Y, there is an object Qf, determined 

by {X E Xlf-’ f(x) = {x}} M {v E Y (3!, f(x) = JJ}, with the following universal 

property: there is a pullback square (“the u.e. pullback of f”) 

Q,-x 

II Iv 
Q,-Y 

such that for any other pullback 

the morphism Q + Y factors through Qf. We say that a functor preserves u.e. pull- 

backs, if it carries the ue. pullback of any morphism to a (not necessarily ue.) pullback 

square. One has 

Proposition 1. Let E : S -+ S be an indexed endojiinctor of an elementary topos S 

preserving u.e. pullbacks. Suppose there is an E-algebra whose structure morphism 

E(B) -+ B is a monomorphism. Then, its smallest E-subalgebra E(I) --f I is an initial 

E-algebra. 
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Proof. (We follow the proof from [15] closely; in fact that proof is in turn adapted 

from [18].) Let E(A) -+ A be any E-algebra. Since the forgetful functor from E-algebras 

to S creates all the available limits, there is a unique algebra structure on A x B turning 

the projections A x B ---f A, A x B + B into algebra morphisms. Let E(C) -+ C be 

the smallest E-subalgebra of E(A x B) --f A x B (existing by the indexing requirement 

on E - see above); then also a :C~)AxBiAandb:C~)AxB-+Bare 

algebra morphisms. If we show that b is a monomorphism, we will be done. Indeed, 

this will mean that there is a morphism to A from a subalgebra of B, hence also 

from its smallest subalgebra I. Such a morphism is then unique, since an equalizer of 

any two algebra morphisms from I to A will be a subalgebra of I, hence the whole 

of I. 

First note that the structure morphism E(C) + C is epi: if it factors through X C C, 

then E(X) --) E(C) --f X is a subalgebra of C, hence X = C. Now consider the u.e. 

pullback of b, 

Qh-c 

By assumption on E, the square 

E(Qd =------E(C) 

II I 
E(Q& =----E(B) 

is also pullback, also 1 

E(B) = E(B) 

II I 
E(B) - B 

is pullback because E(B) -+ B is mono. Hence, the compound square 

E<Q,>-E(C)= E(C) 

E&)-E(B)= E(B) 

E(Q,J -E(B) -B 
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is pullback too. But since b is an algebra morphism, E(C) + E(B) + B equals 

E(C) -+ C -+ B; so pulling back in stages one gets 

I 1 
E(Q& -B 

with vertical composition on the left being identity. So E(Qb) --f l is split mono; on 

the other hand, it is pullback of the epi E(C) + C, hence epi itself, hence iso. It 

follows that there is a pullback square 

E(QtJ - C 

I/ I’ 
EtQ,,) - B 

hence by the universal property of ue. pullbacks E(Qb) C Qb is a subalgebra of C, 

hence Qb = C and b is mono as required. 0 

Remark. Without the indexing requirement on E, the above proposition is no longer 

true; here is an example. Let S be, say, the category of sets, and consider the sub- 

category E of SN consisting of those morphisms (fn)nGN of SN satisfying fm = fn 

for all sufficiently large m and n. E is evidently closed under all the topos structure, 

so is a logical subtopos of SN. Now consider the endofimctor E : E ---t E given 

by E(Xo,Xi ,...) = (l,Xi,Xo,Xs,Xz,X&X4 ,... ). Note that E has a left adjoint, hence 

preserves limits. Consider the sequence UN, N = 0, 1,. . . of objects of E, given by 

UN = (X0,X1, . .), where for any n 2 0, X2, = 1 and 

X 
0, n < N, 

2n+l = 
1, n>N. 

Since each of the UN has a (unique) E-algebra structure, it follows that an initial E- 

algebra must admit a morphism to all of the UN; consequently, if some object (X0,X1, . . .) 

has an initial algebra structure, then X&+1 = 8 for all n. On the other hand, it 

is easy to see that if an object (X0,X,, . .) has a structure of an E-algebra, then all the 

X2, must be inhabited; if this is an object of E, this will imply that all but a finite 

number of the X2,,+, are inhabited too. Hence, there is no initial E-algebra in this case. 

We now concentrate on the C-lift endofimctors (they have evident indexings). Note 

that to have an initial Z-lift algebra I, it is necessary to have an NNO: indeed, I + 

1 C II 2 I, so the smallest decidable lift-subalgebra of I is an NNO. So from now on 

we assume that our topos S has a natural numbers object, N. 
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As already mentioned, the C-lift functors are partial product functors, hence accord- 

ing to [9] they preserve pullbacks, in particular the u. e. pullbacks. So to find an initial 

Z-lift algebra, one can try to find an object containing its own Z-lift (and then describe 

its smallest subalgebra). In particular, a terminal C-lift coalgebra will do, as by the dual 

of the Lambek’s observation above, its structure morphism will be an isomorphism. 

We now turn to its construction. 

Specifying a C-lift coalgebra structure on an object X, i.e. a map X ---f Xl, is 

equivalent to specifying a C-decidable partial map from X to itself, i.e. a diagram 

X t-‘Xo -+ X, where X0 CX is a C-decidable subobject. Consider the object 

in other words, this is the object 
1 

N of those Z-decidable subobjects D c N which are 

downdeals, i.e. satisfy V,,,?,, m ED + n ED. It can be also identified with the object of 

order-reversing maps from N (with its natural ordering) to Z (with ordering via +). 

Consider To = {p* E T 1 PO}. This is a C-decidable subobject of T: it is classified 

by the map (P* H PO > : T + C. Hence, the map (p* H p*+t ) : To + T, where 

p*+l = (P~+I)~~N, determines a Z-lift coalgebra structure i : T + TI on T. 

Proposition 2. The i : T --) Tl above is a terminal C-lift coalgebra. 

Proof. Given a coalgebra determined by f : X0 --f X, for a C-decidable subobject 

X0 5X as above, define F : N + Cx inductively by F(0) = X0, F(n+ 1) = f-‘(F(n)). 

This is legitimate, as for any C-decidable subobject X’ of X with the classifying map 

p : X + C, f-’ (X’) C X0 is obviously C-decidable, with the classifying map pf; and 

since f-‘(X’) C X0 and X0 C_X are both C-decidable, f-‘(X’) 5 X also is (recall that 

C is a dominance). 

Now let us show that the exponential transpose p : X + CN of F lands in T C CN. 

Since P is given by F(x) = {n ( XE F(n)}, this means that F(n + 1) 2 F(n) for 

all II E N. This is true for n = 0, as F(1) = f-‘(Xc)~Xo = F(0). Then by in- 

duction, having proved for n, one has F(n + 2) = f-‘(F(n + 1)) 2 f-‘(F(n)) = 

F(n + 1). 

Now uniqueness; given any F’ : X -+ T making the square 

commute, we have to show P’ = P, or, equivalently, F’ = F, where F’ is the transpose 

ofi+:X-tTLtCN. One checks that the two ways from X to TJ. in the diagram 

above are given by x ++ (“x E F’(~)“),,N H (“x E F’(n + l)‘&~ and x ++ {f(x) ) 

XEXO} H {(“f(x)~F’(n)‘&~ ( XEXO}. Comparing these gives F’(0) = X0 and 

F’(n + 1) = {x 1 f(x) E F’(n)}, so indeed F’ = F. 0 
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Remark. T has appeared in several places, e.g. [7] or [21]; but the author could not 

find an explicit mention of the fact that it is the terminal coalgebra. In [17], for certain 

endofunctors E (including our C-lifts) it is shown that E(l)N has a structure of a 

weakly terminal E-coalgebra, i.e. such that every coalgebra has a (possibly non-unique) 

morphism to it. 

We now turn to the initial algebra. We already noted that i : T -+ TI is an isomor- 

phism; its inverse j determines an algebra structure on T, and we have to determine its 

smallest subalgebra. It would be useful to find out which subsets of T are subalgebras 

with respect to this structure. One has 

Lemma 3. A subobject A C T is a subalgebra oj” j : TI + T z$ 

V p,~T(f'O*(P*+~ EA))*(P*EA). 

Proof. Let us describe j more explicitly. Since TI = UpEzTP, the map j is deter- 

mined by a family (j, : TP -+ T),,,Z. Proving the previous proposition we have seen 

that for any X, maps F : X --f T are in one-to-one correspondence with maps F : N + 

Cx satisfying F(n + 1) 5 F(n). Using this, let us identify TJ’ with {p* E T / po GS p}. 

Moreover, this identification carries AJ’ C TP to {p* E TJ’ 1 p + (p* E A)}. 

In terms of the above identification also, for any p* E T, one has that i(p*)n = 

pn+l, i( p*) E TP”. The fact that j is inverse to i thus forces j&p*)0 = p, and 

j,( P*)~+I = pn (which uniquely determines jp by induction). Hence, jp carries AJ’ to 

{p* E T 1 po + (p*+~ EA)}. The lemma follows. 0 

Our next task is the identification of the smallest subalgebra in T. It is instructive 

to see what happens in the “classical” case, when S is the category of sets, and 

2 = C = Q. Recall that T can be identified with the set 
1 

N of all downdeals of N. 

These are either (0, 1, . , II - I} for n E N, or the whole N. Then I = N c T consists 

of all downdeals except that last one. In other words, I = {D E T ) 3, n $! D}. This 

suggests to try in general case ov = {p* E T 1 3, up,} (see [7]). One can show that 

ov is contained in any subalgebra of j : Tl + T. Unfortunately, it is not always a 

subalgebra of T. For example, let S be the topos of sheaves on some space X, with 

the frame of opens 0(X); recall that 52 is given by Q(U) = {U’ E c?(X) / U’ C U}. 

Fix some subsheaf C of Q, and write U’ < U for U’ E C(U). Then, T is easily seen 

to be the sheaf given by 

T(U) = {(Utt)n~N E o(x) 1 ... 1. un+~ 5 un L ... I uo 1. u}. 

The condition on subalgebras from the lemma translates here as follows: a subsheaf 

A 2 T is a C-lift subalgebra of T if for any . . . _< U,,,, < U,, < . . . 5 U. 5 U, one 
has 

(... I Un+2 I U,,+I 5 ... 5 UI 5 uo~A(Uo>> 

=+ (. . 5 U,,, 5 U,, < . . . < U, 5 U E A(U)). 



M. JibladzelJournal of Pure and Applied Algebra 116 (1997) 185-198 193 

Choose X to be the subspace (0, i, $, . . . , n/(n + 1 ), . . . , 1) of the real line, and consider 

the sequence of its open sets pn = {rz/(n + l),(n + l)/(n + 2),. . .}, 1 4 pn, so that 

up,, = (0, l,. . ,(n - 1)/n}. Then, 3nlpn+l = 3,~p, = po = X - (1). Hence, 

((PO + p*+~ E ov) + p* E wv) = po # X and ov is not a C-lift subalgebra of T, 

for any C containing all the p,,. In fact, this example is not quite relevant for SDT; 

however, it has been pointed out by Alex Simpson [20] that mv also fails to be an 

initial C-lift algebra in the Effective topos with its standard dominance C. 

Another possibility could be to try mA = {p* E T 1 TV,, p,}. But this is now too 

big: once again consider the example of sheaves on a space X. Then, & is the subsheaf 

of T given by 

o/‘(U) = {(... < U,,+i 5 U,, 5 ... 5 Uo 5 U) E T(U) ( int = S}. 

This is clearly a subalgebra; however, it may contain proper subalgebras, e.g. 

{(. .’ 5 U,,l 5 u, < .. . 5 UO 5 U) E T 1 (n, U, ) = S}. Once again, Alex 

Simpson [20] has a counterexample more interesting to domain theorists. 

The idea that works is easiest to grasp on this topological example. To each open 

U LX corresponds the sublocale (i.e. frame quotient) o(xj?J = {V E Q(X) 1 (U + 

V) = V} of c?(X). Then, a good candidate for the initial algebra is the subsheaf I of 

T given by 

I(U) = {(... I u~+~ 5 U, i - I u. 5 u) E T(u) I nocxjun = od}. 
n 

Here clearly o(x)@ is the trivial sublocale {X}. To keep closer to the general case, let 

us rewrite this as follows: 

l(u) = {K E T(U) I vva(x)(~n 

Or, 

v E O(X)&) =+ v =X}. 

Ku) = {u* E T(U) I ~va(x)O’n ((u,=5v)=v))=_v=x}. 

We can translate this to the internal language of any topos: 

It is clear that before proceeding further it is absolutely necessary to improve read- 

ability of this expression. One solution can be to introduce an auxiliary notation as 

follows: denote $ +- 4 by z$; then, the above nightmare rewrites as follows: 

To understand this expression better, let us return to the fact that T may be identified 

with the set 
1 

N of all downdeals of the NNO. Call an embedding i : X’ q X strict, 

if there is a unique geometric morphism f (namely, from the degenerate topos to S) 
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for which f*(i) is an isomorphism. Under these circumstances, the corresponding sub- 

object X’ CX will be also called strict. Since surjective geometric morphisms reflect 

isomorphisms, i is strict iff the topology that forces it to be iso is the largest one - or, 

the sublocale oi of 52 corresponding to this topology is degenerate. There is an explicit 

formula for such forcing topology (see e.g. [S]), which gives an explicit description of 

that sublocale: 

hence X’ CX is strict iff 

Comparing this with our expression for I reveals the following: 

Proposition 4. I is isomorphic to the set of strict downdeals of N, i.e. those downdeals 

which are strict as subobjects of N. 

Note also that the strictness condition above is equivalent to 

We will briefly mention relation of strictness to another important notion, well- 

foundedness; but before that, let us prove 

Theorem 5. The object I above is the smallest C-lift subalgebra of T, hence the initial 

C-lift algebra. 

Proof. First let us show that I is indeed a subalgebra. According to the lemma, this 

means that for any p* E T satisfying PO * V+ E a 2% 7 ~p,,+l, one has V@ E o $f,, 7 7pn. 

Now po + ‘dtiEa zV,, 2 ~p,,+l is equivalent to V4&Vn 2 ~p,,+~) + 7~0, since 

one trivially has ($ * 2~) = (x + ,-$). Now ;;IPO = 77 7~0, hence we have 

VlpEQ(V,Z Z;IPn+l) * ~~~‘p 0. Using ($ + 2~) = 2($&x), this may be rewritten 

as V~EQ ~((v~ 2 ;;IP”+I )&z 2~0). The expression in outermost parentheses has the 

form Vn$n+i & $0; such expressions may be rewritten as follows: &,,((3,m = n + 1) + 

i+&)&((m = 0) 3 $m), which is equivalent to V,,l((3,m = n + 1) v (m = 0)) =+ &,,. 

But by decidability properties of N, (3,~ = n + 1) v (m = 0) is true for all m, hence 

this gives V,,, &,,. In our case this gives V4,Q TV,, 2 up,,, so I is indeed a subalgebra. 

It remains to prove that any subalgebra A C T contains I. That is, given p* E T 

with V4 ?V,, 72 pn, we must prove p* E A. We can as well prove the statement 

4 = “V,,, (pm + P*+~+I EA)“‘: specializing to m = 0 will give pa + P*+~ E A, which, 

since A is a subalgebra, implies p* E A. Now since p* is in I, one can deduce 4 from 

VIZ ;;‘zpn. To verify this latter statement, we must, for any n and k, deduce from 

~p,~ and from pk, that p*+k+l EA. Now by decidability properties of N, we may deal 
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separately with cases k > n and 3, n = k +x. In the first case, 

(PkQPn) = (PkWPn * v’m pm * (P*+m+l EA))) 

=+ Pk&(Pn =+ (Pk +- (P*+k+l EA))) 

* PkWPk =$ (P*+k+l EA)) 

=+- P++k+l EA 

In the second, 

Pk&(Pn *vim pm * (p*im+l EA))&S n = k +x 

* pk&% (Pk+x * vim Pm * (P*+m+l ~A11 

+ pk&% (Pk+x =+ (P*+k+x+l EA)) 

* 3, Pk&(Pk+x * (pr+k+x+l EA)). 

We have to deduce from this that &+k+l EA, i.e. we have to prove the statement 

VX [(Pk+x =+ (p*+k+x+l EA)) * (pk * (p*+k+l EA))]. We will use induction on x. 

For x = 0, this is trivial. Then, having proved for X, we have, since A is a subalgebra, 

(Pk+x+l * (P++k+x+2 ~A11 + (P*+k+x+l EA) =+ (Pk+x * (P*+k+x+l GA)), and we 

are done. 0 

Remark. There is a close connection here with the work of Joyal and Moerdijk [ 111. 

There, initial objects are constructed in categories of algebras over a monad, equipped 

with additional structure in form of an arbitrary endomap. According to [ 11, Appendix], 

the objects of their study are equivalent to initial algebras for endofunctor parts of the 

corresponding monads. It turns out that, although C-lifts do not satisfy some of the 

conditions required by Joyal and Moerdijk, their construction of initial algebras using 

certain well-founded trees still applies. 

On the other hand, significantly enough the C-lift endofunctors have canonical monad 

structure for any dominance C (explanation of this fact is to be found in [2]). So our I 

carries also an algebra structure over this monad. For C = 52, such algebras have been 

studied in [13]. 

Just to sketch the connection, let us explain how our notion of strict subobject relates 

to aspects of well-foundedness, as studied in [l, 111, or [22]. 

Using the proposition below one can show that applying the aforementioned con- 

struction from [ 1 l] in our situation gives precisely I, i.e. the method works, although 

some of the axioms from ibid. are not satisfied. 

First recall that a subobject X’ CX is called inductive with respect to the binary 

relation R CX x X if the following holds: 

the relation R is called well-founded if it admits a unique inductive subobject, namely, 

the whole X. Let us consider the relation R on N given by yRx iff y = x + 1. The 
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universal property of NNO shows that the opposite relation R” is well-founded; R 

however is not, e.g. the empty subobject is inductive w.r.t. R. Then, one has 

Proposition 6. A downdml D E T is strict, i.e. belongs to I, @restriction of R to it 

is well-founded 

Proof. Let us write the inductivity condition on a D’ 2 D as follows: 

Equivalently, this may be written as 

It is well known that for any subset D of any set N whatsoever, assigning to D’ c D the 

set (D + D’) = {II EN ( n t D + n t D’}, establishes the one-to-one correspondence 

between subsets of D and D-pe@ct sets, that is, those subsets D” of N satisfying 

(D -+ D”) = D”, i.e. V,2 (n t D + n E D”) + n ED”; the assignment in the reverse 

direction just carries a D-perfect D” to D f~ D”. Hence, inductive subsets of our D 

above arc in one-to-one correspondence with those D” C N satisfying 

Y nt~ (~ED+~ED”)+~ED” 

and 

Y n6N (n+l~D”)*nnD”: 

i.e. D” must be a D-perfect downdeal. It follows that R is a well-founded relation on 

D iff the only D-perfect downdeal is the whole N. 

Now call a subset D” C N constant if it has the form D$ = {nl~$} for some fixed 

d, E Q. Since all the constant subsets are trivially downdeals, the condition “the only 

constant D-perfect downdeal is the whole N” is equivalent to “the only constant D- 

perfect set is the whole N”. Translating this into the formal language gives 

i.e. it exactly means that D is a strict subobject of N. So we just have to show that 

when ensuring absence of inductive subsets to check well-foundedness, it is enough to 

look only at constant ones. That is, we have to show that if there is only one constant 

inductive subset, there cannot be any non-constant ones. So suppose we have some 

inductive subset D”. Consider the constant set C = {U ) D” = N}. If we show that C 

is D-perfect, we are done, since it will follow that C = N, i.e. D” = N. So we have to 

show Vn (n ED + it E C) + n E C, that is, given an n with (n ED) + (D” = N) and 

any k, we have to show k E D”. Now condition on n gives (n E D) + (D” = N) + 

(n ED”), and since D” is D-perfect, n ED”; since D” is a downdeal, this captures those 

K with rl- 5 n. Whereas if k 2 n, then (k ED) =+ (n ED) =s (D” = N) =+ (k E D”), 

and since D” is D-perfect, this implies k ED”. 0 
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