# $(\beta, \gamma)$-SECOND HANKEL-CLIFFORD LIPSCHITZ FUNCTIONS IN THE SPACE $L_{\mu}^{2}$ 

MOHAMED EL HAMMA AND AYOUB MAHFOUD


#### Abstract

In this paper, using a generalized translation operator, we obtain an analogue of the Younis theorem 5.2 (see in [17] for the second Hankel-Clifford transform on the half-line for the functions satisfying the $(\beta, \gamma)$-second Hankel-Clifford Lipschitz condition in the space $L_{\mu}^{2}(0,+\infty)$.


## 1. Introduction and Preliminaries

Younis [17, Theorem 5.2], characterized the set of functions in $L^{2}(\mathbb{R})$ satisfying the Dini-Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transforms, namely, we have following
Theorem 1.1 ([17, Theorem 5.2]). Let $f \in L^{2}(\mathbb{R})$. Then the following are equivalent:

1. $\|f(.+h)-f(.)\|_{L^{2}(\mathbb{R})}=O\left(\frac{h^{\alpha}}{\left(\log \frac{1}{h}\right)^{\beta}}\right)$ as $h \longrightarrow 0, \quad 0<\alpha<1, \quad \beta>0$,
2. $\int_{|\lambda| \geq r}|\mathcal{F}(f)(\lambda)|^{2} d \lambda=O\left(\frac{r^{-2 \alpha}}{(\log r)^{2 \beta}}\right)$ as $r \longrightarrow+\infty$,
where $\mathcal{F}$ stands for the Fourier transform of $f$.
There are many analogues of this result: for the Dunkl transform, for Fourier-Bessel transform on $\mathbb{R}_{+}^{n}$, for generalized Fourier-Bessel transform, for generalized Fourier-Dunkl transform, for the first Hankel-Clifford transform (see, for example, [3-7, 11, 12]).

The main aim of this paper is to establish an analogue of Theorem 1.1 in the second Hankel-Clifford transform.

We briefly overview the theory of second Hankel-Clifford transformation and related harmonic analysis [13-15].

We define the space $L_{\mu}^{p}=L_{\mu}^{p}(0,+\infty), 1 \leq p<\infty$ and $\mu \geq 0$, as the space of all those real-valued measurable functions $f$ on $(0,+\infty)$ such that

$$
\|f\|_{L_{\mu}^{p}}=\left(\int_{0}^{+\infty}|f(x)|^{p} x^{\mu} d x\right)^{\frac{1}{p}}<\infty
$$

The Bessel--Clifford function of the first kind of order $\mu \geq 0$ (see [8])

$$
C_{\mu}(x)=\sum_{k=0}^{+\infty} \frac{(-1)^{k} x^{k}}{k!\Gamma(\mu+k+1)}
$$

is a solution of the differential equation

$$
x y^{\prime \prime}+(\mu+1) y^{\prime}+y=0
$$

and we have

$$
\begin{equation*}
C_{\mu}(x)=x^{-\frac{\mu}{2}} J_{\mu}(2 \sqrt{x}), \tag{1}
\end{equation*}
$$

[^0]where $J_{\mu}$ is the Bessel function of the first kind.
For $f \in L_{\mu}^{1}$, Hayek [10] introduced the second Hankel-Clifford transformation by
$$
h_{2, \mu}(f)(\lambda)=\int_{0}^{+\infty} C_{\mu}(\lambda x) f(x) x^{\mu} d x
$$
and its inversion formula defined by
$$
f(x)=\int_{0}^{+\infty} C_{\mu}(\lambda x) h_{2, \mu}(f)(\lambda) \lambda^{\mu} d \lambda
$$

The corresponding Parseval's equality now takes the form [14]

$$
\int_{0}^{+\infty} f(x) g(x) x^{\mu} d x=\int_{0}^{+\infty} F_{2}(\lambda) G_{2}(\lambda) \lambda^{\mu} d \lambda
$$

where $F_{2}(\lambda)=h_{2, \mu}(f)(\lambda)$ and $G_{2}(\lambda)=h_{2, \mu}(g)(\lambda)$, i.e., for $f \in L_{\mu}^{2}$, we have

$$
\|f\|_{L_{\mu}^{2}}=\left\|h_{2, \mu}(f)\right\|_{L_{\mu}^{2}} .
$$

Let $\Delta=\Delta(x, y, z)$ be the area of a triangle with sides $x, y, z$ if such a triangle exists (see $[9,16])$. Set

$$
D_{\mu}(x, y, z)=\frac{\Delta^{2 \mu+1}}{2^{2 \mu}(x y z)^{\mu} \Gamma\left(\mu+\frac{1}{2}\right) \sqrt{\pi}}
$$

if $\Delta$ exists and zero otherwise. We note that $D_{\mu}(x, y, z) \geq 0$ and that $D_{\mu}(x, y, z)$ is symmetric in $x$, $y, z$.

The generalized translation operator on $L_{\mu}^{2}$ is defined by

$$
T_{h}(f)(x)=\int_{0}^{+\infty} f(z) D_{\mu}(h, x, z) z^{\mu} d z, \quad 0<x, \quad h<\infty
$$

From Lemma 1.3 in [15], we have

$$
\begin{equation*}
h_{2, \mu}\left(T_{h}(f)\right)(\lambda)=C_{\mu}(\lambda h) h_{2, \mu}(f)(\lambda), \tag{2}
\end{equation*}
$$

where $f \in L_{\mu}^{2}$.
For $\mu \geq-\frac{1}{2}$, we introduce the normalized spherical Bessel function $j_{\mu}$ defined by

$$
\begin{equation*}
j_{\mu}(x)=\frac{2^{\mu} \Gamma(\mu+1) J_{\mu}(x)}{x^{\mu}} . \tag{3}
\end{equation*}
$$

From [1], we have the following
Lemma 1.1. Let $\mu \geq-\frac{1}{2}$. The following inequalities hold:

1. $\left|j_{\mu}(x)\right| \leq 1$.
2. $1-j_{\mu}(x)=O\left(x^{2}\right) ; \quad 0 \leq x \leq 1$.
3. $\sqrt{x} J_{\mu}(x)=O(1)$.

Lemma 1.2. For $|x| \geq 1$,

$$
\left|1-j_{\mu}(x)\right| \geq c
$$

where $c>0$ is a constant.
Proof. (Analogue of Lemma 2.9 in [2]).
It follows from (1) and (3) that

$$
C_{\mu}(x)=\frac{1}{\Gamma(\mu+1)} j_{\mu}(2 \sqrt{x})
$$

## 2. Main Result

In this section, we give the main result of this paper. We first need to define the $(\beta, \gamma)$-second Hankel-Clifford Lipschitz class.

Definition 2.1. Let $\beta \in(0,1)$ and $\gamma \geq 0$. A function $f \in L_{\mu}^{2}$ is said to be in the $(\beta, \gamma)$-second Hankel-Clifford Lipschitz class, denoted by $\operatorname{SHLip}(\beta, 2, \gamma)$ if

$$
\left\|T_{h} f(x)-\frac{1}{\Gamma(\mu+1)} f(x)\right\|_{L_{\mu}^{2}}=O\left(\frac{h^{\beta}}{\left(\log \frac{1}{h}\right)^{\gamma}}\right) \text { as } h \longrightarrow 0
$$

Our main result is as follows.
Theorem 2.1. Let $f \in L_{\mu}^{2}$, then the following are equivalent:

1. $f \in S H \operatorname{Lip}(\beta, 2, \gamma)$,
2. $\int_{r}^{+\infty}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda=O\left(\frac{r^{-2 \beta}}{(\log 4 r)^{2 \gamma}}\right)$ as $r \longrightarrow+\infty$.

Proof. 1) $\Rightarrow 2)$. Assume that $f \in S H \operatorname{Lip}(\beta, 2, \gamma)$. Then

$$
\left\|T_{h} f(x)-\frac{1}{\Gamma(\mu+1)} f(x)\right\|_{L_{\mu}^{2}}=O\left(\frac{h^{\beta}}{\left(\log \frac{1}{h}\right)^{\gamma}}\right) \text { as } h \longrightarrow 0 .
$$

From (2), we have

$$
\begin{aligned}
h_{2, \mu}\left(T_{h} f-\frac{1}{\Gamma(\mu+1)} f\right)(\lambda) & =\left(C_{\mu}(\lambda h)-\frac{1}{\Gamma(\mu+1)}\right) h_{2, \mu}(f)(\lambda) \\
& =\frac{1}{\Gamma(\mu+1)}\left(j_{\mu}(2 \sqrt{\lambda h})-1\right) h_{2, \mu}(f)(\lambda)
\end{aligned}
$$

Parseval's identity yields

$$
\begin{gather*}
\left\|T_{h} f(x)-\frac{1}{\Gamma(\mu+1)} f(x)\right\|_{L_{\mu}^{2}}^{2} \\
=\frac{1}{(\Gamma(\mu+1))^{2}} \int_{0}^{+\infty}\left|1-j_{\mu}(2 \sqrt{\lambda h})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda . \tag{4}
\end{gather*}
$$

If $\lambda \in\left[\frac{1}{4 h}, \frac{2}{4 h}\right]$, then $2 \sqrt{\lambda h} \geq 1$ and Lemma 1.2 implies that

$$
1 \leq \frac{1}{c^{2}}\left|1-j_{\mu}(2 \sqrt{\lambda h})\right|^{2}
$$

Then

$$
\begin{aligned}
& \frac{1}{(\Gamma(\mu+1))^{2}} \int_{\frac{1}{4 h}}^{\frac{2}{4 h}}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda \\
& \leq \frac{1}{c^{2}(\Gamma(\mu+1))^{2}} \int_{\frac{1}{4 h}}^{\frac{2}{4 h}}\left|1-j_{\mu}(2 \sqrt{\lambda h})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda \\
& \leq \frac{1}{c^{2}(\Gamma(\mu+1))^{2}} \int_{0}^{+\infty}\left|1-j_{\mu}(2 \sqrt{\lambda h})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda \\
& \leq \frac{1}{c^{2}}\left\|T_{h} f(x)-\frac{1}{\Gamma(\mu+1)} f(x)\right\|_{L_{\mu}^{2}}^{2} \\
&=O\left(\frac{h^{2 \beta}}{\left(\log \frac{1}{h}\right)^{2 \gamma}}\right)
\end{aligned}
$$

holds and we obtain

$$
\int_{r}^{2 r}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda=O\left(\frac{r^{-2 \beta}}{(\log 4 r)^{2 \gamma}}\right) \text { as } r \longrightarrow+\infty
$$

Thus there exists $c_{1}>0$ such that

$$
\int_{r}^{2 r}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda \leq c_{1} \frac{r^{-2 \beta}}{(\log 4 r)^{2 \gamma}}
$$

So,

$$
\begin{aligned}
\int_{r}^{+\infty}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda & =\left[\int_{r}^{2 r}+\int_{2 r}^{4 r}+\int_{4 r}^{8 r}+\cdots\right]\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda \\
& \leq c_{1} \frac{r^{-2 \beta}}{(\log 4 r)^{2 \gamma}}+c_{1} \frac{(2 r)^{-2 \beta}}{(\log 8 r)^{2 \gamma}}+c_{1} \frac{(4 r)^{-2 \beta}}{(\log 16 r)^{2 \gamma}}+\cdots \\
& \leq c_{1} \frac{r^{-2 \beta}}{(\log 4 r)^{2 \gamma}}\left(1+2^{-2 \beta}+\left(2^{-2 \beta}\right)^{2}+\left(2^{-2 \beta}\right)^{3}+\cdots\right) \\
& \leq c_{1} K_{\beta} \frac{r^{-2 \beta}}{(\log 4 r)^{2 \gamma}}
\end{aligned}
$$

where $K_{\beta}=\left(1-2^{-2 \beta}\right)^{-1}$, since $2^{-2 \beta}<1$.
This proves that

$$
\int_{r}^{+\infty}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda=O\left(\frac{r^{-2 \beta}}{(\log 4 r)^{2 \gamma}}\right)
$$

$2) \Rightarrow 1)$. Now, suppose that

$$
\int_{r}^{+\infty}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda=O\left(\frac{r^{-2 \beta}}{(\log 4 r)^{2 \gamma}}\right) \text { as } r \longrightarrow+\infty
$$

Then we write

$$
\int_{0}^{+\infty}\left|1-j_{\mu}(2 \sqrt{\lambda h})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda=I_{1}+I_{2}
$$

where

$$
I_{1}=\int_{0}^{\frac{1}{4 h}}\left|1-j_{\mu}(2 \sqrt{\lambda h})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda
$$

and

$$
I_{2}=\int_{\frac{1}{4 h}}^{+\infty}\left|1-j_{\mu}(2 \sqrt{\lambda h})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda
$$

Estimate the summands $I_{1}$ and $I_{2}$.

From (1) of Lemma 1.1, we have

$$
\begin{aligned}
I_{2} & =\int_{\frac{1}{4 h}}^{+\infty}\left|1-j_{\mu}(2 \sqrt{\lambda h})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda \\
& \leq 4 \int_{\frac{1}{4 h}}^{+\infty}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda \\
& =O\left(\frac{h^{2 \beta}}{\left(\log \frac{1}{h}\right)^{2 \gamma}}\right) .
\end{aligned}
$$

Then

$$
\frac{1}{\Gamma(\mu+1)} \int_{\frac{1}{4 h}}^{+\infty}\left|1-j_{\mu}(2 \sqrt{\lambda h})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda=O\left(\frac{h^{2 \beta}}{\left(\log \frac{1}{h}\right)^{2 \gamma}}\right)
$$

Set

$$
\varphi(x)=\int_{x}^{+\infty}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda
$$

We know from (2) of Lemma 1.1 that

$$
1-j_{\mu}(2 \sqrt{\lambda h})=O(\lambda h) \text { for } 0 \leq 2 \sqrt{\lambda h} \leq 1
$$

Thus there exists $c_{2}>0$ such that

$$
\left|1-j_{\mu}(2 \sqrt{\lambda h})\right| \leq c_{2} \lambda h \text { for } 0 \leq 2 \sqrt{\lambda h} \leq 1
$$

Then

$$
I_{1} \leq-c_{2} h^{2} \int_{0}^{\frac{1}{4 h}} x^{2} \varphi^{\prime}(x) d x
$$

Using integration by parts, we obtain

$$
\begin{aligned}
I_{1} & \leq-c_{2} h^{2} \int_{0}^{\frac{1}{4 h}} x^{2} \varphi^{\prime}(x) d x \\
& \leq-c_{2} \varphi\left(\frac{1}{4 h}\right)+2 c_{2} h^{2} \int_{0}^{\frac{1}{4 h}} x \varphi(x) d x \\
& \leq 2 c_{2} h^{2} \int_{0}^{\frac{1}{4 h}} x \varphi(x) d x \\
& \leq c_{3} h^{2} \int_{0}^{\frac{1}{4 h}} \frac{x^{1-2 \beta}}{(\log 4 x)^{2 \gamma}} d x \\
& \leq c_{3} h^{2} \int_{0}^{\frac{1}{h}} \frac{x^{1-2 \beta}}{(\log x)^{2 \gamma}} d x \\
& \leq c_{3} \frac{h^{2 \beta}}{\left(\log \frac{1}{h}\right)^{2 \gamma}}
\end{aligned}
$$

Then

$$
\frac{1}{\Gamma(\mu+1)} \int_{0}^{\frac{1}{4 h}}\left|1-j_{\mu}(2 \sqrt{\lambda h})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda=O\left(\frac{h^{2 \beta}}{\left(\log \frac{1}{h}\right)^{2 \gamma}}\right)
$$

Hence

$$
\left\|T_{h} f(x)-\frac{1}{\Gamma(\mu+1)} f(x)\right\|_{L_{\mu}^{2}}=O\left(\frac{h^{\beta}}{\left(\log \frac{1}{h}\right)^{\gamma}}\right) \text { as } h \longrightarrow 0
$$

and this completes the proof.

Definition 2.2. A function $f \in L_{\mu}^{2}$ is said to be in the $(\psi, \gamma)$-second Hankel-Clifford Lipschitz class, denoted by $\operatorname{SHLip}(\psi, 2, \gamma)$, if

$$
\left\|T_{h} f(x)-\frac{1}{\Gamma(\mu+1)} f(x)\right\|_{L_{\mu}^{2}}=O\left(\frac{\psi(h)}{\left(\log \frac{1}{h}\right)^{\gamma}}\right), \quad \gamma>0 \text { as } h \longrightarrow 0
$$

where

1. $\psi(t)$ is a continuous increasing function on $[0,+\infty)$,
2. $\psi(0)=0$,
3. $\psi(t s)=\psi(t) \psi(s) \quad$ for all $s, t \in[0,+\infty)$,
4. $\int_{0}^{\frac{1}{h}} x \frac{\psi\left(x^{-2}\right)}{(\log x)^{2 \gamma}} d x=O\left(\frac{1}{h^{2}} \frac{\psi\left(h^{2}\right)}{\left(\log \frac{1}{h}\right)^{2 \gamma}}\right)$.

Theorem 2.2. Let $f \in L_{\mu}^{2}$ and let $\psi$ be a fixed function satisfying the conditions of Definition 2.2. Then the following are equivalent:

1. $f \in S H \operatorname{Lip}(\psi, 2, \gamma)$,
2. $\int_{r}^{+\infty}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda=O\left(\frac{\psi\left(r^{-2}\right)}{(\log 4 r)^{2 \gamma}}\right)$ as; $r \longrightarrow+\infty$.

Proof. 1) $\Rightarrow 2)$. Assume that $f \in S H \operatorname{Lip}(\psi, 2, \gamma)$. Then we have

$$
\left\|T_{h} f(x)-\frac{1}{\Gamma(\mu+1)} f(x)\right\|_{L_{\mu}^{2}}=O\left(\frac{\psi(h)}{\left(\log \frac{1}{h}\right)^{\gamma}}\right) \text { as } h \longrightarrow 0
$$

If $\lambda \in\left[\frac{1}{4 h}, \frac{2}{4 h}\right]$, then $2 \sqrt{\lambda h} \geq 1$, and in a similar manner as in the proof of Theorem 2.1, we obtain

$$
\begin{aligned}
\int_{\frac{1}{4 h}}^{\frac{2}{4 h}}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda & \leq \frac{1}{c^{2}}\left\|T_{h} f(x)-\frac{1}{\Gamma(\mu+1)} f(x)\right\|_{L_{\mu}^{2}}^{2} \\
& =O\left(\frac{\psi\left(h^{2}\right)}{\left(\log \frac{1}{h}\right)^{2 \gamma}}\right)
\end{aligned}
$$

Thus there exists a positive constant $c_{4}>0$ such that

$$
\int_{r}^{2 r}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda \leq c_{4} \frac{\psi\left(r^{-2}\right)}{(\log 4 r)^{2 \gamma}}
$$

Hence

$$
\begin{aligned}
\int_{r}^{+\infty}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda & =\left[\int_{r}^{2 r}+\int_{2 r}^{4 r}+\int_{4 r}^{8 r}+\cdots\right]\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda \\
& \leq c_{4} \frac{\psi\left(r^{-2}\right)}{(\log 4 r)^{2 \gamma}}+c_{4} \frac{\psi\left((2 r)^{-2}\right)}{(\log 8 r)^{2 \gamma}}+c_{4} \frac{\psi\left((4 r)^{-2}\right)}{(\log 16 r)^{2 \gamma}}+\cdots \\
& \leq c_{4} \frac{\psi\left(r^{-2}\right)}{(\log 4 r)^{2 \gamma}}+c_{4} \frac{\psi\left((2 r)^{-2}\right)}{(\log 4 r)^{2 \gamma}}+c_{4} \frac{\psi\left((4 r)^{-2}\right)}{(\log 4 r)^{2 \gamma}}+\cdots \\
& \leq c_{4} \frac{\psi\left(r^{-2}\right)}{(\log 4 r)^{2 \gamma}}\left(1+\psi\left(2^{-2}\right)+\left(\psi\left(2^{-2}\right)\right)^{2}+\left(\psi\left(2^{-2}\right)\right)^{3}+\cdots\right) \\
& \leq c_{4} K \frac{\psi\left(r^{-2}\right)}{(\log 4 r)^{2 \gamma}},
\end{aligned}
$$

where $K=\left(1-\psi\left(2^{-2}\right)\right)^{-1}$. Since by (1) and (3) of Definition 2.2, it follows that $\psi\left(2^{-2}\right)<1$.
This proves that

$$
\int_{r}^{+\infty}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda=O\left(\frac{\psi\left(r^{-2}\right)}{(\log 4 r)^{2 \gamma}}\right) \text { as } r \longrightarrow+\infty .
$$

$2) \Rightarrow 1)$. Now, suppose that

$$
\int_{r}^{+\infty}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda=O\left(\frac{\psi\left(r^{-2}\right)}{(\log 4 r)^{2 \gamma}}\right) \text { as } r \longrightarrow+\infty
$$

By (4) of Definition 2.2, it follows that we have to show that

$$
\int_{0}^{+\infty}\left|1-j_{\mu}(2 \sqrt{\lambda h})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda=O\left(\frac{\psi\left(h^{2}\right)}{\left(\log \frac{1}{h}\right)^{2 \gamma}}\right) \text { as } h \longrightarrow 0
$$

and we write

$$
\int_{0}^{+\infty}\left|1-j_{\mu}(2 \sqrt{\lambda h})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda=I_{1}+I_{2}
$$

where

$$
I_{1}=\int_{0}^{\frac{1}{4 h}}\left|1-j_{\mu}(2 \sqrt{\lambda h})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda
$$

and

$$
I_{2}=\int_{\frac{1}{4 h}}^{+\infty}\left|1-j_{\mu}(2 \sqrt{\lambda h})\right|^{2}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda
$$

First, from (1) of Lemma 1.1, we see that

$$
\begin{aligned}
I_{2} & \leq 4 \int_{\frac{1}{4 h}}^{+\infty}\left|h_{2, \mu}(f)(\lambda)\right|^{2} \lambda^{\mu} d \lambda \\
& =O\left(\frac{\psi\left(h^{2}\right)}{\left(\log \frac{1}{h}\right)^{2 \gamma}}\right) \text { as } h \longrightarrow 0
\end{aligned}
$$

In proving Theorem 2.1, we can see that there exists a positive constant $c_{2}$ such that

$$
I_{1} \leq 2 c_{2} h^{2} \int_{0}^{\frac{1}{4 h}} x \varphi(x) d x
$$

Then

$$
I_{1} \leq c_{4} h^{2} \int_{0}^{\frac{1}{4 h}} x \frac{\psi\left(x^{-2}\right)}{(\log 4 x)^{2 \gamma}} d x
$$

By (4) of Definition 2.2, it follows that

$$
I_{1}=O\left(\frac{\psi\left(h^{2}\right)}{\left(\log \frac{1}{h}\right)^{2 \gamma}}\right)
$$

where $c_{4}$ is a positive constant and this completes the proof.

## References

1. V. A. Abilov, F. V. Abilova, Approximation of functions by Fourier-Bessel sums. (Russian) translated from Izv. Vyssh. Uchebn. Zaved. Mat. 2001, no. 8, 3-9; Russian Math. (Iz. VUZ) 45 (2001), no. 8, 1-7 (2002).
2. E. S. Belkina, S. S. Platonov, Equivalence of $K$-functionals and moduli of smoothness constructed by generalized Dunkl translations. (Russian) translated from Izv. Vyssh. Uchebn. Zaved. Mat. 2008, no. 8, 3-15; Russian Math. (Iz. VUZ) 52 (2008), no. 8, 1-11.
3. R. Daher, M. Boujeddaine, M. El Hamma, Dunkl transform of ( $\beta, \gamma$ )-Dunkl Lipschitz functions. Proc. Japan Acad. Ser. A Math. Sci. 90 (2014), no. 9, 135-137.
4. R. Daher, M. El Hamma, Generalized Bessel transform of $(\beta, \gamma)$-generalized Bessel Lipschitz functions. Proc. Japan Acad. Ser. A Math. Sci. 91 (2015), no. 6, 85-88.
5. R. Daher, M. El Hamma, Dini Lipschitz functions for the generalized Fourier-Bessel transform in the space $L_{\alpha, n}^{2}$. J. Math. Ext. 10 (2016), no. 2, 35-46.
6. I. Ekincioglu, E. Kaya, S. E. Ekincioglu, Fourier-Bessel transforms of Dini-Lipschitz functions on Lebesgue spaces $L_{p, \gamma}\left(\mathbb{R}_{+}^{n}\right)$. Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 69 (2020), no. 1, 847-853.
7. S. El Ouadih, R. Daher, M. El Hamma, Dini Lipschitz functions for the generalized Fourier-Dunkl transform in the space $L_{\alpha, n}^{2}$. Konuralp J. Math. 5 (2017), no. 1, 92-98.
8. A. Gray, G. B. Matthecos, T. M. MacRobert, A Treatise on Bessel functions and their applications to physics. Macmillan, London, 1952.
9. D. T. Haimo, Integral equations associated with Hankel convolutions. Trans. Amer. Math. Soc. 116 (1965), 330-375.
10. N. Hayek, Sobre la transformacion de Hankel. Actas de la VIII Reunión Anual de Matemáticos Epanoles 1967, 47-60.
11. E. Kaya, I. Ekincioglu, Bessel transforms of Dini-Lipschitz functions on Lebesgue spaces $L_{p, \gamma}\left(\mathbb{R}_{+}^{n}\right)$. Int. J. Nonlinear Anal. Appl. 12 (2021), no. 2, 563-568.
12. A. Mahfoud, M. El Hamma, Dini Clifford Lipschitz functions for the first Hankel-Clifford transform in the space $L_{\mu}^{2}$. J. Anal. 30 (2022), no. 2, 909-918.
13. S. P. Malgonde, S. R. Bandewar, On the generalized Hankel-Clifford transformation of arbitrary order. Proc. Indian Acad. Sci. Math. Sci. 110 (2000), no. 3, 293-304.
14. J. M. R. Méndez Pérez, M. M. Socas Robayna, A pair of generalized Hankel-Clifford transformations and their applications. J. Math. Anal. Appl. 154 (1991), no. 2, 543-557.
15. A. Prasad, V. K. Singh, M. M. Dixit, Pseudo-differential operators involving Hankel-Clifford transformation. AsianEur. J. Math. 5 (2012), no. 3, 1250040, 15 pp.
16. G. N. Waston, A Treatise on the Theory of Bessel Functions. Cambridge University Press, Cambrige, 1958.
17. M. S. Younis, Fourier transforms of Dini-Lipschitz functions. Internat. J. Math. Math. Sci. 9 (1986), no. 2, $301-312$.
(Received 06.09.2022)
Department of Mathematics, Faculty of Sciences Aïn Chock, University of Hassan II, Casablanca, Morocco

Email address: mahfoudayoub00@gmail.com


[^0]:    2020 Mathematics Subject Classification. 42A38, 42A16, 42A32.
    Key words and phrases. Second Hankel-Clifford transform; Generalized translation operator; ( $\beta, \gamma$ )-second HankelClifford Lipschitz condition.

