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THERMO-ELASTIC AND THERMO-PIEZO-ELASTIC INTERACTION CRACK

TYPE BOUNDARY-TRANSMISSION PROBLEMS WITH REGARD TO THE

MICROROTATION

OTAR CHKADUA1,2 AND ANNA DANELIA2

Abstract. The paper studies three-dimensional interaction crack type boundary-transmission prob-

lems of pseudo-oscillations between thermo-elastic and thermo-piezo-elastic bodies taking micro-

rotations into account. The model under consideration is based on the Green–Naghdi theory of
thermo-piezo-electricity without energy dissipation. This theory permits the thermal waves to prop-

agate only with a finite speed. The system of partial differential equations of pseudo-oscillations is

obtained from the corresponding dynamical model by the Laplace transform. Using the potential
theory and the method of boundary pseudodifferential equations, we prove the existence, uniqueness

and regularity of solutions.

1. Introduction

In the present paper, we consider a boundary-transmission problem for a composed elastic struc-

ture consisting of two contacting bodies occupying two three-dimensional adjacent regions Ω(1) and

Ω(2) with a common contacting interface, being a proper part of the boundaries ∂Ω(1) and ∂Ω(2) (see
Figure 1). We analyze the case in which contacting elastic bodies are subject to different mathe-
matical models. In particular, we consider Green–Naghdi’s model of thermo-piezo-electricity without
energy dissipation in Ω(1) and the model of isotropic homogeneous couple-stress thermo-elasticity in
Ω(2). Theoretical study of such problems attracts great attention due to the widespread application
of modern sensing and actuating devices based on the ability to transform mechanical, electric and
thermal energies from one form to another. Therefore the mathematical models that take into ac-
count coupling effects between thermo-mechanical and electric fields in elastic composites became very
popular over the last decades (see, e.g., [1, 26,27,30] and references therein).

A remarkable feature of the Green–Naghdi model is a finite speed of heat propagation in contrast to
an infinite speed of heat transfer occurring in the classical heat equation theory. Complete historical
and bibliographical notes in this direction can be found in [19], where the dynamical equations of
the thermo-piezo-electricity without energy dissipation are derived on the basis of the Green–Naghdi
theory established in [15,16] and obtained by Eringen in [12,13].

We investigate a general boundary-transmission problem for the above described two-component
elastic structure with the appropriate boundary and transmission conditions which cover the conditions
arising in the case of interfacial cracks. In each region we consider the corresponding system of partial
differential equations of pseudo-oscillations containing a complex parameter τ . These systems are
obtained from the corresponding dynamical models by the Laplace transform.

Using the potential method and the theory of pseudodifferential equations on manifolds with a
boundary, we study the interface crack boundary-transmission problems and prove the uniqueness
and existence of solutions in appropriate function spaces. Further, we analyze regularity of solu-
tions and characterize singularities of the corresponding thermo-mechanical and electric fields near
the exceptional curves (crack edges, lines, where the different type boundary conditions collide, and
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interface edges). In the upcoming papers, we are doing to apply the obtained results to the study of
asymptotic properties of solutions of the corresponding dynamical problems.

Note that in [8] we have investigated the mixed type boundary value problems of the theory of
thermo-piezo-electricity without energy dissipation with interior cracks.

The present investigation can be considered as a continuation of papers [4,7,10,11,22] and [24], but
it turned out to be more difficult as far as it refers to the interaction between different dimensional
physical fields (for the 9-dimensional field in Ω(1) and 7-dimensional field in Ω(2) see the problem
setting in Subsection 2.4).

The paper is organized as follows. In Section 2, we describe the geometrical structure of the elastic
composite body consisting of two interacting components, write down the governing pseudo-oscillation
equations of Green–Naghdi’s model of thermo-piezo-electricity without energy dissipation (PTEME
model) and homogeneous isotropic couple-stress thermo-elasticity (CSTE model), formulate the in-
terface crack type boundary-transmission problem and prove the uniqueness theorem in appropriate
function spaces. In Section 3, we reduce equivalently the boundary-transmission problem to the
system of boundary pseudo-differential equations, investigate the mapping properties of the corre-
sponding pseudodifferential operator and prove the invertibility of the pseudodifferential operator in
appropriate Bessel potential and Besov spaces. Further, we prove the theorem on the existence and
some regularity results of solutions to the original interface crack boundary-transmission problem.

In Appendix, for the reader’s convenience, we collected some auxiliary results used in the main text
of the paper.

2. Formulation of the Interface Crack Boundary-Transmission Problem

2.1. Geometrical configuration of the composite. Let Ω(1) and Ω(2) be the bounded disjoint
domains of the three-dimensional Euclidean space R3 with boundaries ∂Ω(1) and ∂Ω(2), respectively.
Moreover, let ∂Ω(1) and ∂Ω(2) have a nonempty, simply connected intersection Γ := ∂Ω(1) ∩ ∂Ω(2) of
positive measure. From now on, Γ will be referred to as an interface. Throughout the paper, n = n(1)

and ν = n(2) stand for the outward unit normal vectors to ∂Ω(1) and to ∂Ω(2), respectively. Clearly,
n(x) = −ν(x) for x ∈ Γ.
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Figure 1. Composed body.

Further, let Γ = ΓT ∪ ΓC , where ΓC is an open, simply connected proper part of Γ. Moreover,
ΓT ∩ ΓC = ∅ and ∂Γ ∩ ΓC = ∅.

We set S
(2)
N := ∂Ω(2) \ Γ and S(1) := ∂Ω(1) \ Γ. Further, we denote by S

(1)
D some open, nonempty,

proper sub-manifold of S(1) and put S
(1)
N := S(1) \S(1)
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boundary surfaces (see Figure 1):

∂Ω(1) = ΓT ∪ ΓC ∪ S(1)
N ∪ S(1)

D , ∂Ω(2) = ΓT ∪ ΓC ∪ S(2)
N .

In the sequel, for simplicity, we assume that ∂Ω(2), ∂Ω(1), ∂S
(2)
N , ∂ΓT , ∂ΓC , ∂S

(1)
D , ∂S

(1)
N are

C∞-smooth and ∂Ω(2) ∩ S(1)
D = ∅.

The superscript (·)⊤ denotes transposition operation.
Throughout the paper, the summation over the repeated indices is meant from 1 to 3, unless

otherwise stated.

2.2. CSTE model. Suppose the domain Ω2 is filled with a homogeneous isotropic thermo-elastic
material. The corresponding system of differential equations of pseudo-oscillations with respect to the
sought vector function U (2) obtained from the dynamical equations of the linear model of thermo-
elasticity with microrotation has the following form (see [20]):

(µ(2) + κ(2))∂j∂ju
(2)
i + (λ(2) + µ(2))∂i∂ju

(2)
j − ρ2τ

2u
(2)
i + κ(2)εijk∂jϕ

(2)
k

− τβ
(2)
0 ∂iϑ

(2) = −ρ2f (2)i , i = 1, 2, 3, (2.1)

γ(2)∂j∂jϕ
(2)
i + (α(2) + β(2))∂j∂iϕ

(2)
j − τ2I

(2)
0 ϕ

(2)
i + κ(2)εijk∂ju

(2)
k

− 2κ(2)ϕ
(2)
i = −ρ2X(2)

i , i = 1, 2, 3, (2.2)

k(2)∂j∂jϑ
(2) − τ2a(2)ϑ(2) − τβ

(2)
0 ∂ju

(2)
j = − 1

T0
ρ2Q

(2), (2.3)

where τ = σ + iω is a complex parameter, U (2) = (u
(2)
1 , u

(2)
2 , u

(2)
3 , ϕ

(2)
1 , ϕ

(2)
2 , ϕ

(2)
3 , ϑ(2))⊤, u(1) =

(u
(1)
1 , u

(1)
2 , u

(1)
3 )⊤ is the displacement vector, ϕ(2) = (ϕ

(2)
1 , ϕ

(2)
2 , ϕ

(2)
3 )⊤ is the vector of microrotation,

ϑ(2) is the temperature and (f
(2)
1 , f

(2)
2 , f

(2)
3 ) is the external body force per unit mass, Q(2) is the

external rate of supply of heat per unit mass, X
(2)
i is the external body couple per unit mass, T0 is

the initial reference temperature. We employ the notation ∂ = ∂x = (∂1, ∂2, ∂3), ∂j = ∂/∂xj .

The coefficients λ(2), µ(2), κ(2), α(2), β(2), γ(2) are the elastic constants, β
(2)
0 , a(2), k(2) are the

thermal constants and I
(2)
0 is the coefficient of inertia, εijk is the Levi–Civita symbol (see [20]).

Due to the positiveness of internal energy, the coefficients of system (2.1)–(2.3) must satisfy the
following conditions:

κ(2) > 0, κ(2) + 2µ(2) > 0, κ(2) + 2µ(2) + 3λ(2) > 0,

γ(2) > |β(2)|, β(2) + γ(2) + 3α(2) > 0, (2.4)

a(2) > 0, k(2) > 0, ρ2 > 0, I
(2)
0 > 0, β

(2)
0 > 0,

where ρ2 is the mass density of Ω(2).
Denote by

A(2)(∂x, τ) = [A
(2)
ij (∂x, τ)]7×7

the matrix differential operator generated by the left-hand side expressions in (2.1)–(2.3),

A
(2)
ij (∂, τ) = δij(µ

(2) + κ(2))∂l∂l + (λ(2) + µ(2))∂i∂j − τ2ρ2δij , A
(2)
i,j+3(∂, τ) = −κ(2)εijl∂l,

A
(2)
i7 (∂, τ) = −τβ(2)

0 ∂i, A
(2)
i+3,j(∂, τ) = −κ(2)εijl∂l,

A
(2)
i+3,j+3(∂, τ)=δijγ

(2)∂l∂l+(α(2)+β(2))∂i∂j−(2κ(2)+τ2I
(2)
0 )δij , A

(2)
i+3,7(∂, τ)=0,

A
(2)
7j (∂, τ) = −τβ(2)

0 ∂j , A
(2)
7,j+3(∂, τ)=0, A

(2)
77 (∂, τ) = k(2)∂l∂l − τ2a(2), i, j = 1, 2, 3.

The system of equations (2.1)–(2.3) can be written in the matrix form

A(2)(∂x, τ)U
(2) = F (2),

where

U (2) = (u
(2)
1 , u

(2)
2 , u

(2)
3 , ϕ

(2)
1 , ϕ

(2)
2 , ϕ

(2)
3 , ϑ(2))⊤,
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F (2) = −
(
ρ2f

(2)
1 , ρ2f

(2)
2 , ρ2f

(2)
3 , ρ2X

(2)
1 , ρ2X

(2)
2 , ρ2X

(2)
3 ,

1

T0
ρ2Q

(2)
)⊤

and A(2)(∂x, τ) is the 7-dimensional matrix differential operator corresponding to system (2.1)–(2.3).
The stress differential operator of thermo-elasticity is defined as follows:

T (2) = T (2)(∂x, ν, τ) := [T (2)
ij (∂x, ν, τ)]7×7,

where

T (2)
ij (∂, ν, τ) = λ(2)νi∂j + µ(2)νj∂i + δij(µ

(2) + κ(2))νk∂k, T (2)
i,j+3(∂, ν, τ) = −κ(2)εijknk,

T (2)
i7 (∂, ν, τ) = −τβ(2)

0 νi, T (2)
i+3,j(∂, ν, τ) = 0,

T (2)
i+3,j+3(∂, ν, τ) = α(2)νi∂j + β(2)νj∂i + δijγ

(2)νk∂k, T (2)
i+3,7(∂, ν, τ) = ν

(2)
2 εlikνl∂k,

T (2)
7j (∂, ν, τ) = 0, T (2)

7,j+3(∂, ν, τ) = −ν(2)2 εljkνl∂k,

T (2)
77 (∂, ν, τ) = k(2)νl∂l, i, j = 1, 2, 3.

By A(2,0)(−iξ) with ξ ∈ R3 we denote the principal homogeneous symbol matrix of the operator
A(2)(∂x, τ),

A(2,0)(−iξ) = −A(2,0)(ξ) = −[A
(2,0)
ij (ξ)]3×3

= −


[δij(µ

(2) + κ(2))|ξ|2 + (λ(2) + µ(2))ξiξj ]3×3 [0]3×3 [0]3×1

[0]1×3 [δijγ
(2)|ξ|2 + (α(2) + β(2))ξiξj ]3×3

[0]1×3 [0]3×3 k(2)|ξ|2


7×7

.

Inequalities (2.4) imply that the matrix A(2,0)(ξ) is positive definite, i.e., there is a positive constant
C depending only on the material parameters such that(

A(2,0)(ξ)ζ · ζ
)
=

(
−A(2,0)(−iξ)ζ · ζ

)
≥ C|ξ|2|ζ|2 for all ξ ∈ R3 and for all ζ ∈ C7.

Here and in what follows, the central dot denotes the scalar product in the space of complex-valued
vectors Cm and the overline denotes complex conjugation.

2.3. PTEME model. The domain Ω1 is filled with a thermo-electro-elastic material. The corre-
sponding system of differential equations of pseudo-oscillations with respect to the sought vector
function U (1) has the following form (see [19]):

(µ(1) + κ(1))∂j∂ju
(1)
i + (λ(1) + µ(1))∂i∂ju

(1)
j − ρ1τ

2u
(1)
i + κ(1)εijk∂jϕ

(1)
k

+ λ
(1)
0 ∂iφ

(1) − τβ
(1)
0 ∂iϑ

(1) = −ρ1g(1)i , i = 1, 2, 3, (2.5)

γ(1)∂j∂jϕ
(1)
i + (α(1) + β(1))∂j∂iϕ

(1)
j − τ2I

(1)
0 ϕ

(1)
i + κ(1)εijk∂ju

(1)
k

− 2κ(1)ϕ
(1)
i = −ρ1X(1)

i , i = 1, 2, 3, (2.6)

(a
(1)
0 ∂j∂j − ξ

(1)
0 )φ(1) − j

(1)
0 τ2φ(1) − λ

(1)
2 ∂j∂jψ

(1) + ν
(1)
1 ∂j∂jϑ

(1)

+ c
(1)
0 τϑ(1) − λ

(1)
0 ∂ju

(1)
j = −ρ1F (1), (2.7)

λ
(1)
0 ∂j∂jφ

(1) + χ(1)∂j∂jψ
(1) + ν

(1)
3 ∂j∂jϑ

(1) = −g(1), (2.8)

k(1)∂j∂jϑ
(1) − τ2a(1)ϑ(1) − τβ

(1)
0 ∂ju

(1)
j − τc

(1)
0 φ(1) + ν

(1)
1 ∂j∂jφ

(1)

− ν
(1)
3 ∂j∂jψ

(1) = − 1

T0
ρ1Q

(1), (2.9)

where U (1) = (u
(1)
1 , u

(1)
2 , u

(1)
3 , ϕ

(1)
1 , ϕ

(1)
2 , ϕ

(1)
3 , φ(1), ψ(1), ϑ(1))⊤, u(1) = (u

(1)
1 , u

(1)
2 , u

(1)
3 )⊤ is the displace-

ment vector, ϕ(1) = (ϕ
(1)
1 , ϕ

(1)
2 , ϕ

(1)
3 )⊤ is the vector of microrotation, φ(1) is the microstretch, ψ(1) is

the electric field potential, ϑ(1) is the temperature and (g
(1)
1 , g

(1)
2 , g

(1)
3 ) is the external body force per
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unit mass, Q(1) is the external rate of supply of heat per unit mass, X
(1)
i is the external body couple

per unit mass, F (1) is the microstretch body force, g(1) is the density of free charge.
Denote by

A(1)(∂x, τ) = [A
(1)
ij (∂x, τ)]9×9

the matrix differential operator generated by the left-hand side expressions in (2.5)–(2.9),

A
(1)
ij (∂, τ) = δij(µ

(1) + κ(1))∂l∂l + (λ(1) + µ(1))∂i∂j − τ2ρ1δij , A
(1)
i,j+3(∂, τ) = −κ(1)εijl∂l,

A
(1)
i7 (∂, τ) = λ

(1)
0 ∂i, A

(1)
i8 (∂, τ) = 0, A

(1)
i9 (∂, τ) = −τβ(1)

0 ∂i, A
(1)
i+3,j(∂, τ) = −κ(1)εijl∂l,

A
(1)
i+3,j+3(∂, τ) = δijγ

(1)∂l∂l + (α(1) + β(1))∂i∂j − (2κ(1) + τ2I
(1)
0 )δij , A

(1)
i+3,j+6(∂, τ) = 0,

A
(1)
7j (∂, τ) = −λ(1)0 ∂j , A

(1)
7,j+3(∂, τ) = 0, A

(1)
77 (∂, τ) = a

(1)
0 ∂l∂l − (ξ

(1)
0 + τ2j

(1)
0 ),

A
(1)
78 (∂, τ) = −λ(1)2 ∂l∂l, A

(1)
79 (∂, τ) = ν

(1)
1 ∂l∂l + τc

(1)
0 ,

A
(1)
8j (∂, τ) = 0, A

(1)
8,j+3(∂, τ) = 0, A

(1)
87 (∂, τ) = λ

(1)
2 ∂l∂l, A

(1)
88 (∂, τ) = χ(1)∂l∂l,

A
(1)
89 (∂, τ) = ν

(1)
3 ∂l∂l, A

(1)
9j (∂, τ) = −τβ(1)

0 ∂j , A
(1)
9,j+3(∂, τ) = 0,

A
(1)
97 (∂, τ) = ν

(1)
1 ∂l∂l − τc

(1)
0 , A

(1)
98 (∂, τ) = −ν(1)3 ∂l∂l, A

(1)
99 (∂, τ) = k(1)∂l∂l − τ2a(1), i, j = 1, 2, 3.

The system of equations (2.5)–(2.9) can be written in the matrix form

A(1)(∂x, τ)U
(1) = F (1),

where

U (1) = (u
(1)
1 , u

(1)
2 , u

(1)
3 , ϕ

(1)
1 , ϕ

(1)
2 , ϕ

(1)
3 , φ(1), ψ(1), ϑ(1))⊤,

F (1) = −
(
ρ2g

(1)
1 , ρ2g

(1)
2 , ρ2g

(1)
3 , ρ2X

(1)
1 , ρ2X

(1)
2 , ρ2X

(1)
3 , ρ2F

(1), g(1),
1

T0
ρ2Q

(1)
)⊤

and A(1)(∂x, τ) is the 9-dimensional matrix differential operator corresponding to system (2.5)–(2.9).
The stress differential operator of thermo-electro-elasticity is defined as follows:

T (1) = T (1)(∂x, ν, τ) := [T (1)
ij (∂x, ν, τ)]9×9,

where

T (1)
ij (∂, n, τ) = λ(1)ni∂j + µ(1)nj∂i + δij(µ

(1) + κ(1))nk∂k, T (1)
i,j+3(∂, n, τ) = −κ(1)εijknk,

T (1)
i7 (∂, n, τ) = λ

(1)
0 ni, T (1)

i8 (∂, n, τ) = 0, T (1)
i9 (∂, n, τ) = −τβ(1)

0 ni, T (1)
i+3,j,(∂, n, τ) = 0,

T (1)
i+3,j+3(∂, n, τ) = α(1)ni∂j + β(1)nj∂i + δijγ

(1)nk∂k, T (1)
i+3,7(∂, n, τ) = b

(1)
0 εliknl∂k,

T (1)
i+3,8(∂, n, τ) = λ

(1)
1 εliknl∂k, T (1)

i+3,9(∂, n, τ) = ν
(1)
2 εliknl∂k, T (1)

7j (∂, n, τ) = 0,

T (1)
7,j+3(∂, n, τ) = −b(1)0 εljknl∂k, T (1)

77 (∂, n, τ) = a
(1)
0 nk∂k, T (1)

78 (∂, n, τ) = −λ(1)2 nk∂k,

T (1)
79 (∂, n, τ) = ν

(1)
1 nk∂k, T (1)

8j (∂, n, τ) = 0, T (1)
8,j+3(∂, n, τ) = −λ(1)1 εljknl∂k,

T (1)
87 (∂, n, τ) = λ

(1)
2 nk∂k, T (1)

88 (∂, n, τ) = χ(1)nk∂k, T (1)
89 (∂, n, τ) = ν

(1)
3 nk∂k,

T (1)
9j (∂, n, τ) = 0, T (1)

9,j+3(∂, n, τ) = −ν(1)2 εljknl∂k, T (1)
97 (∂, n, τ) = ν

(1)
1 nk∂k,

T (1)
98 (∂, n, τ) = −ν(1)3 nk∂k, T (1)

99 (∂, n, τ) = k(1)nl∂l, i, j = 1, 2, 3.

The coefficients λ(1), µ(1), κ(1), λ
(1)
0 , β

(1)
0 , α(1), β(1), γ(1, λ

(1)
1 , ν

(1)
1 , a

(1)
0 , λ

(1)
2 , ν

(1)
2 , ξ

(1)
0 , c

(1)
0 , a(1), k(1),

ν
(1)
3 , b

(1)
0 , χ(1) are constitutive constants, and I

(1)
0 is the coefficient of inertia, j

(1)
0 is the microstretch

inertia, εijk is the Levi–Civita symbol (see [8]).
Due to the positiveness of internal energy, the coefficients of the system (2.5)–(2.9) must satisfy

the following conditions:

κ(1) > 0, κ(1) + 2µ(1) > 0, κ(1) + 2µ(1) + 3λ(1) > 0,



32 O. CHKADUA AND A. DANELIA

ξ
(1)
0 (κ(1) + 2µ(1) + 3λ(1)) > 3(λ

(1)
0 )2,

γ(1) > |β(1)|, a
(2)
0 k(1) − (ν

(1)
1 )2 > 0, β(1) + γ(1) + 3α(1) > 0,

χ(1) > 0, a(1) > 0, k(1) > 0, a
(1)
0 > 0, a

(1)
0 (γ(1) − β(1)) > 2(b

(1)
0 )2,

(γ(1) − β(1))[a
(1)
0 k(1) − (ν

(1)
1 )2] + 4b

(1)
0 ν

(1)
1 ν

(1)
2 − 2a

(1)
0 (ν

(1)
2 )2 − 2k(1)(b

(1)
0 )2 > 0,

ρ1 > 0, I
(1)
0 > 0, j

(1)
0 > 0, β

(1)
0 > 0,

where ρ1 is the mass density.

2.4. Formulation of the interface crack boundary-transmission problem. By W r
p , H

s
p and

Bs
p,q with r ⩾ 0, s ∈ R, 1 < p <∞, 1 ⩽ q ⩽ ∞, we denote the Sobolev–Slobodetskii, Bessel potential,

and Besov function spaces, respectively, (see, e.g., [29]). Recall that Hr
2 = W r

2 = Br
2,2, H

s
2 = Bs

2,2,

W t
p = Bt

p,p, and H
k
p = W k

p , for any r ⩾ 0, for any s ∈ R, for any positive and non-integer t, and for
any non-negative integer k.

Let M0 be a smooth surface without boundary. For a proper sub-manifold M ⊂ M0, we denote

by H̃s
p(M) and B̃s

p,q(M) the following subspaces of Hs
p(M0) and B

s
p,q(M0), respectively,

H̃s
p(M) =

{
g : g ∈ Hs

p(M0), supp g ⊂ M
}
,

B̃s
p,q(M) =

{
g : g ∈ Bs

p,q(M0), supp g ⊂ M
}
,

while Hs
p(M) and Bs

p,q(M) stand for the spaces of restrictions on M of functions from Hs
p(M0) and

Bs
p,q(M0), respectively,

Hs
p(M) =

{
rMf : f ∈ Hs

p(M0)
}
, Bs

p,q(M) =
{
rMf : f ∈ Bs

p,q(M0)
}
,

where rM is the restriction operator onto M.
Now, we formulate the interface crack boundary-transmission problem: Find vector functions

U (1) = (u(1), φ(1), ϕ(1), ψ(1), ϑ(1))⊤ = (u
(1)
1 , . . . , u

(1)
9 )⊤ : Ω(1) → C9,

U (2) = (u(2), ϕ(2), ϑ(2))⊤ = (u
(2)
1 , . . . , u

(2)
7 )⊤ : Ω(2) → C7,

belonging, respectively, to the spaces [W 1
p (Ω

(1))]9 and [W 1
p (Ω

(2))]7 with 1 < p <∞ and satisfying
(i) the systems of partial differential equations :

A(1)(∂x, τ)U
(1) = 0 in Ω(1), (2.10)

A(2)(∂x, τ)U
(2) = 0 in Ω(2), (2.11)

(ii) the boundary conditions : {
T (1)(∂x, n, τ)U

(1)
}+

= Q(1) on S
(1)
N , (2.12){

T (2)(∂x, ν, τ)U
(2)

}+
= Q(2) on S

(2)
N , (2.13){

U (1)
}+

= f (1) on S
(1)
D , (2.14)

{u(1)7 }+ = f7 on ΓT , (2.15)

{u(1)8 }+ = f8 on ΓT , (2.16)

(iii) the transmission conditions on ΓT :{
u
(1)
j

}+

−
{
u
(2)
j

}+
= fj on ΓT , j = 1, 6, (2.17){

u
(1)
9

}+

−
{
u
(2)
7

}+
= f9 on ΓT , (2.18){[

T (1)(∂x, n, τ)U
(1)

]
j

}+
+
{
[T (2)(∂x, ν, τ)U

(2)]j
}+

= Fj , on ΓT , j = 1, 6, (2.19){[
T (1)(∂x, n, τ)U

(1)
]
9

}+
+
{
[T (2)(∂x, ν, τ)U

(2)]7
}+

= F7, on ΓT , (2.20)
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(iv) the interfacial crack conditions on ΓC :{
T (1)(∂x, n, τ)U

(1)
}+

= Q̃(1) on ΓC , (2.21){
T (2)(∂x, ν, τ)U

(2)
}+

= Q̃(2) on ΓC , (2.22)

where n = −ν on Γ,

Q(1) = (Q
(1)
1 , . . . , Q

(1)
9 )⊤ ∈

[
B

− 1
p

p,p (S
(1)
N )

]9
,

Q̃(1) = (Q̃
(1)
1 , . . . , Q̃

(1)
9 )⊤ ∈

[
B

− 1
p

p,p (ΓC)
]9
,

Q(2) =
(
Q

(2)
1 , . . . , Q

(2)
7

)⊤ ∈
[
B

− 1
p

p,p (S
(2)
N )

]7
,

Q̃(2) =
(
Q̃

(2)
1 , . . . , Q̃

(2)
7

)⊤ ∈
[
B

− 1
p

p,p (ΓC)
]7
, (2.23)

f (1) = (f
(1)
1 , . . . , f

(1)
9 )⊤ ∈

[
B

1− 1
p

p,p (S
(1)
D )

]9
,

f =
(
f1, . . . , f9

)⊤ ∈
[
B

1− 1
p

p,p (ΓT )
]9
,

F =
(
F1, . . . , F7

)⊤ ∈
[
B

− 1
p

p,p (ΓT )
]7
.

Note that, in addition, the functions Fj , Q
(1)
j , Q̃

(1)
j , Q̃

(2)
j and Q

(2)
j have to satisfy some evident

compatibility conditions (see Subsection 3.1, inclusions (3.22), (3.23)).
We have the following uniqueness theorem for p = 2.

Theorem 2.1. Let Ω(1) and Ω(2) be the Lipschitz domains and either τ = σ+iω with σ > 0, or τ = 0.
Then the interface crack boundary transmission problem (2.10)–(2.23) has at most one solution pair

(U (1), U (2)) in the space [W 1
2 (Ω

(1))]9 × [W 1
2 (Ω

(2))]7, provided mesS
(1)
D > 0.

Proof. Proof of the theorem is quite similar to that of Theorem 1.1 in [5]. □

Later we will prove the uniqueness theorem for p ̸= 2. To prove the existence of solutions to
the above formulated interface crack boundary-transmission problem, we use the potential method
and the theory of pseudodifferential equations. To this end, we introduce the following single layer
potentials:

V (1)
τ (h(1))(x) =

∫
∂Ω(1)

Γ(1)(x− y, τ)h(1)(y) dyS,

V (2)
τ (h(2))(x) =

∫
∂Ω(2)

Γ(2)(x− y, τ)h(2)(y) dyS,

where Γ(1)(x, τ) and Γ(2)(x, τ) are the fundamental matrices of the differential operators A(1)(∂x, τ)

and A(2)(∂x, τ), respectively, h
(1) = (h

(1)
1 , . . . , h

(1)
9 )⊤ and h(2) = (h

(2)
1 , . . . , h

(2)
7 )⊤ are the density

vector functions. The explicit expressions of the fundamental matrices Γ(1)(x, τ) and Γ(2)(x, τ) and
their properties can be found in [6] and [7].

We introduce also the following boundary integral operators generated by the single layer potentials

H(1)
τ (h(1))(z) =

∫
∂Ω(1)

Γ(1)(z − y, τ)h(1)(y) dyS, z ∈ ∂Ω(1), (2.24)

K(1)
τ (h(1))(z) =

∫
∂Ω(1)

T (1)(∂z, n(z), τ)Γ
(1)(z − y, τ)h(1)(y) dyS, z ∈ ∂Ω(1), (2.25)

H(2)
τ (h(2))(z) =

∫
∂Ω(2)

Γ(2)(z − y, τ)h(2)(y) dyS, z ∈ ∂Ω(2), (2.26)
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K(2)
τ (h(2))(z) =

∫
∂Ω(2)

T (2)(∂z, n(z), τ)Γ
(2)(z − y, τ)h(2)(y) dyS, z ∈ ∂Ω(2). (2.27)

Note that H(1)
τ and H(2)

τ are pseudodifferential operators of order −1, while K(1)
τ and K(2)

τ are pseu-
dodifferential operators of order 0, i.e., singular integral operators (for details see Appendix).

Now, we formulate several auxiliary lemmas proved in [7].

Lemma 2.2. Let Re τ = σ > 0 and 1 < p < ∞. An arbitrary solution vector U (2) ∈ [W 1
p (Ω

(2)) ]7 to

the homogeneous equation A(2)(∂, τ)U (2) = 0 in Ω(2) can be uniquely represented by the single layer
potential

U (2) = V (2)
τ

([
P (2)
τ

]−1
χ(2)

)
in Ω(2),

where

P (2)
τ := −2−1 I7 +K(2)

τ , χ(2) =
{
T (2)U (2) }+ ∈

[
B

− 1
p

p,p (∂Ω
(2))

]7
, (2.28)

and K(2)
τ is defined by (2.27).

For the mapping properties and invertibility of the operator P
(2)
τ in appropriate function spaces

see Theorem 4.4.

Lemma 2.3. Let Re τ = σ > 0 and

P (1)
τ := −2−1 I9 +K(1)

τ + βH(1)
τ , (2.29)

where K(1)
τ and H(1)

τ are defined by (2.25) and (2.24), respectively, and β is a smooth real-valued scalar
function on S(1), not vanishing identically and satisfying the conditions

β ⩾ 0, supp β ⊂ S
(1)
D . (2.30)

Then the operators

P (1)
τ :

[
Hs

p(∂Ω
(1))

]9 →
[
Hs

p(∂Ω
(1))

]9
,

P (1)
τ :

[
Bs

p,q(∂Ω
(1))

]9 →
[
Bs

p,q(∂Ω
(1))

]9
are invertible for all 1 < p <∞, 1 ⩽ q ⩽ ∞, and for all s ∈ R.

As a consequence, we have the following

Lemma 2.4. Let Re τ = σ > 0 and 1 < p < ∞. An arbitrary solution U (1) ∈ [W 1
p (Ω

(1)) ]9 to

the homogeneous equation A(1)(∂x, τ)U
(1) = 0 in Ω(1) can be uniquely represented by the single layer

potential

U (1) = V (1)
τ

( [
P (1)
τ

]−1
χ
)

in Ω(1),

where

χ = {T (1)U (1)}+ + β {U (1)}+ ∈ [B
− 1

p
p,p (∂Ω

(1)) ]9.

3. The Existence and Regularity Results

3.1. Reduction to boundary equations. Let us return to problem (2.10)–(2.23) and derive the
equivalent boundary integral formulation. Keeping in mind (2.23), let

G(1) :=

{
Q(1) on S

(1)
N ,

Q̃(1) on ΓC ,
G(2) :=

{
Q(2) on S

(2)
N ,

Q̃(2) on ΓC ,

G(1) ∈
[
H−1/2(S

(1)
N ∪ ΓC)

]9
, G(2) ∈

[
H−1/2(S

(2)
N ∪ ΓC)

]7
,

(3.1)

and

G
(1)
0 = (G

(1)
01 , . . . , G

(1)
09 )

⊤ ∈
[
B

− 1
p

p,p (∂Ω
(1))

]9
,

G
(2)
0 = (G

(2)
01 , . . . , G

(2)
07 )

⊤ ∈
[
B

− 1
p

p,p (∂Ω
(2))

]7 (3.2)
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be some fixed extensions of the vector functions G(1) and G(2), respectively, onto ∂Ω(1) and ∂Ω(2)

preserving the space. It is evident that arbitrary extensions of the same vector functions can then be
represented as

G(1) ∗ = G
(1)
0 + ψ + h(1), G(2) ∗ = G

(2)
0 + h(2),

where

ψ := (ψ1, . . . , ψ6)
⊤ ∈

[
B̃

− 1
p

p,p (S
(1)
D )

]9
,

h(1) := (h
(1)
1 , . . . , h

(1)
6 )⊤ ∈

[
B̃

− 1
p

p,p (ΓT )
]9
,

h(2) := (h
(2)
1 , . . . , h

(2)
4 )⊤ ∈

[
B̃

− 1
p

p,p (ΓT )
]7 (3.3)

are arbitrary vector functions.
We look for a solution pair (U (1), U (2)) of the mixed boundary-transmission problem (2.10)–(2.23)

in the form of single layer potentials

U (1) = (u
(1)
1 , . . . , u

(1)
9 )⊤ = V (1)

τ

(
[P (1)

τ ]−1
[
G

(1)
0 + ψ + h(1)

] )
in Ω(1), (3.4)

U (2) = (u
(2)
1 , . . . , u

(2)
7 )⊤ = V (2)

τ ( [P (2)
τ ]−1

[
G

(2)
0 + h(2)

] )
in Ω(2), (3.5)

where P
(1)
τ and P

(2)
τ are given by (2.29) and (2.28), and h(1), h(2) and ψ are the unknown vector

functions satisfying inclusions (3.3).
Keeping in mind (2.30), we see that the homogeneous differential equations (2.10), (2.11), the

boundary conditions (2.12), (2.13) and the crack conditions (2.21), (2.22) are satisfied automatically.
The remaining boundary and transmission conditions (2.17)–(2.20) lead to the system of pseudo-

differential equations for the unknown vector functions ψ, h(1) and h(2)

r
S
(1)
D

[
H(1)

τ [P (1)
τ ]−1

(
G

(1)
0 + ψ + h(1)

) ]
= f (1) on S

(1)
D , (3.6)

rΓT

[
H(1)

τ [P (1)
τ ]−1 (G

(1)
0 + ψ + h(1))

]
j
= fj on ΓT , j = 7, 8, (3.7)

r
ΓT

[
H(1)

τ [P (1)
τ ]−1 (G

(1)
0 + ψ + h(1))

]
j
− r

ΓT

[
H(2)

τ [P (2)
τ ]−1(G

(2)
0 + h(2))

]
j
= fj on ΓT ,

j = 1, 6, (3.8)

r
ΓT

[
H(1)

τ [P (1)
τ ]−1 (G

(1)
0 + ψ + h(1))

]
9
− r

ΓT

[
H(2)

τ [P (2)
τ ]−1(G

(2)
0 + h(2))

]
7
= f9 on ΓT , (3.9)

r
ΓT

[G
(1)
0 + ψ + h(1)]j +rΓT

[G
(2)
0 + h(2)]j=Fj on ΓT , j=1, 6, (3.10)

rΓT
[G

(1)
0 + ψ + h(1)]9+rΓT

[G
(2)
0 + h(2)]7 = F7 on ΓT . (3.11)

After some rearrangement we get the system of pseudodifferential equations

r
S
(1)
D

[
H(1)

τ [P (1)
τ ]−1

(
ψ + h(1)

) ]
= f̃ (1) on S

(1)
D , (3.12)

r
ΓT

[
H(1)

τ [P (1)
τ ]−1 (ψ + h(1))

]
j
= f̃j on ΓT , j = 7, 8, (3.13)

r
ΓT

[
H(1)

τ [P (1)
τ ]−1 (ψ + h(1))

]
j
− r

ΓT

[
H(2)

τ [P (2)
τ ]−1(h(2))

]
j
= f̃j on ΓT , j = 1, 6, (3.14)

r
ΓT

[
H(1)

τ [P (1)
τ ]−1 (ψ + h(1))

]
9
− r

ΓT

[
H(2)

τ [P (2)
τ ]−1(h(2))

]
7
= f̃9 on ΓT , (3.15)

r
ΓT
h
(1)
j +r

ΓT
h
(2)
j = F̃j on ΓT , j=1, 6, (3.16)

r
ΓT
h
(1)
9 +r

ΓT
h
(2)
7 = F̃7 on ΓT , (3.17)

where

f̃
(1)
k := f

(1)
k − r

S
(1)
D

[
H(1)

τ [P (1)
τ ]−1G

(1)
0

]
k
∈ B

1− 1
p

p,p (S
(1)
D ), k = 1, 6, (3.18)

f̃j := fj − r
ΓT

[
H(1)

τ [P (1)
τ ]−1G

(1)
0

]
j
∈ B

1− 1
p

p,p (ΓT ), j = 7, 8, (3.19)

f̃j := fj + r
ΓT

[
H(2)

τ [P (2)
τ ]−1G

(2)
0

]
j
− r

ΓT

[
H(1)

τ [P (1)
τ ]−1G

(1)
0

]
j
∈ B

1− 1
p

p,p (ΓT ), j = 1, 6, (3.20)
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f̃9 := f9 + r
ΓT

[
H(2)

τ [P (2)
τ ]−1G

(2)
0

]
7
− r

ΓT

[
H(1)

τ [P (1)
τ ]−1G

(1)
0

]
9
∈ B

1− 1
p

p,p (ΓT ), (3.21)

F̃j := Fj − r
ΓT
G

(1)
0j −r

ΓT
G

(2)
0j ∈r

ΓT
B̃

− 1
p

p,p (ΓT ), j=1, 6, (3.22)

F̃7 := F7 − r
ΓT
G

(1)
09 −r

ΓT
G

(2)
07 ∈r

ΓT
B̃

− 1
p

p,p (ΓT ). (3.23)

Inclusions (3.22), (3.23) are the compatibility conditions for the mixed boundary-transmission problem

under consideration. Therefore, in what follows, we assume that F̃j are extended from ΓT onto the

manifold ∂Ω(2) ∪ ∂Ω(1) \ ΓT by zero, i.e., F̃j ∈ B̃
− 1

p
p,p (ΓT ), j = 1, 7.

Let us introduce the Steklov–Poincaré type matrix pseudodifferential operators

A(1)
τ := H(1)

τ [P (1)
τ ]−1, A(2)

τ := H(2)
τ

(
P (2)
τ

)−1

and

B(2)
τ :=



(A
(2)
τ )11 . . . (A

(2)
τ )16 0 0 (A

(2)
τ )17

. . . . . . . . . 0 0 . . .

(A
(2)
τ )61 . . . (A

(2)
τ )66 0 0 (A

(2)
τ )67

0 0 0 0 0 0

0 0 0 0 0 0

(A
(2)
τ )71 . . . (A

(2)
τ )73 0 0 (A

(2)
τ )77


9×9

.

Taking into account equations (3.16) and (3.17), we can rewrite equations (3.13), (3.14), (3.15) in a
matrix form and, consequently, the whole system (3.12)–(3.17) can be rewritten as follows:

r
S
(1)
D

A(1)
τ (ψ + h(1)) = f̃ (1) on S

(1)
D , (3.24)

r
ΓT

A(1)
τ (ψ + h(1)) + r

ΓT
B(2)
τ h(1) = g̃ on ΓT , (3.25)

rΓT
h
(1)
j + rΓT

h
(2)
j = F̃j on ΓT , j = 1, 6, (3.26)

r
ΓT
h
(1)
9 + r

ΓT
h
(2)
7 = F̃7 on ΓT , (3.27)

where

f̃ (1) := (f̃
(1)
1 , . . . , f̃

(1)
9 )⊤ ∈

[
B

1− 1
p

p,p (S
(1)
D )

]9
, (3.28)

g̃ := (g̃1, . . . , g̃9)
⊤ ∈

[
B

1− 1
p

p,p (ΓT )
]9
, (3.29)

g̃j := f̃j + r
ΓT

[
H(2)

τ [P (2)
τ ]−1 F̃

]
j
, j = 1, 6, (3.30)

g̃7 = f̃7, g̃8 = f̃8, g̃9 = f̃9 + r
ΓT

[
H(2)

τ [P (2)
τ ]−1 F̃

]
7
,

F̃ := (F̃1, . . . , F̃7)
⊤ ∈

[
B̃

− 1
p

p,p (ΓT )
]7
. (3.31)

It is easy to see that the simultaneous equations (3.12)–(3.17) and (3.24)–(3.27), where the right-hand
sides are defined by equalities (3.18)–(3.23) and (3.28)–(3.31), are equivalent in the following sense:

if the triplet (ψ, h(1), h(2)) ∈ [H̃− 1
2 (S

(1)
D )]9 × [B̃

− 1
p

p,p (ΓT )]
9 × [B̃

− 1
p

p,p (ΓT )]
7 solves system (3.24)–(3.27),

then (ψ, h(1), h(2)) solves system (3.12)–(3.17), and vice versa.

3.2. The existence theorems and regularity of solutions. Here, we show that the system of
pseudodifferential equations (3.24)–(3.27) is uniquely solvable in appropriate function spaces. To this
end, let us introduce the notation

Nτ :=


r
S
(1)
D

A(1)
τ r

S
(1)
D

A(1)
τ r

S
(1)
D

[ 0 ]9×7

rΓT
A(1)

τ rΓT
[A(1)

τ + B(2)
τ ] rΓT

[ 0 ]9×7

r
ΓT

[ 0 ]7×9 r
ΓT
I7×9 r

ΓT
I7


25×25

,
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I7×9 :=



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1


7×9

.

Further, let

Φ : = (ψ, h(1), h(2))⊤, Y := (f̃ , g̃, F̃ )⊤,

Xs
p :=

[
B̃s

p,p(S
(1)
D )

]9 × [
B̃s

p,p(ΓT )
]9 × [

B̃s
p,p(ΓT )

]7
,

Ys
p :=

[
Bs+1

p,p (S
(1)
D )

]9 × [
Bs+1

p,p (ΓT )
]9 × [

B̃s
p,p(ΓT )

]7
,

Xs
p,q :=

[
B̃s

p,q(S
(1)
D )

]9 × [
B̃s

p,q(ΓT )
]9 × [

B̃s
p,q(ΓT )

]7
,

Ys
p,q :=

[
Bs+1

p,q (S
(1)
D )

]9 × [
Bs+1

p,q (ΓT )
]9 × [

B̃s
p,q(ΓT )

]7
.

Note that

Xs
2 = Xs

2,2, Ys
2 = Ys

2,2, ∀s ∈ R.
System (3.24)–(3.27) can be rewritten as follows:

Nτ Φ = Y, (3.32)

where Φ ∈ Xs
p is the sought for vector function and Y ∈ Ys

p is the given vector function.
Due to Theorems 4.3 and 4.4, the operator Nτ has the following mapping properties:

Nτ : Xs
p → Ys

p,

Nτ : Xs
p,q → Ys

p,q,
(3.33)

for all s ∈ R, 1 < p < ∞, 1 ⩽ q ⩽ ∞. As it will become clear later, the operator (3.33) is not
invertible for all s ∈ R. The interval a < s < b of invertibility depends on p and on some parameters
γ′ and γ′′ (see (3.40)–(3.42)), which are determined by the eigenvalues of special matrices constructed

by means of the principal homogeneous symbol matrices of the operators A(1)
τ and A(1)

τ + B(2)
τ . Note

that the numbers γ′ and γ′′ determine also Hölder’s smoothness exponents for the solutions to the

original mixed boundary-transmission problem in the neighbourhood of the exceptional curves ∂S
(1)
D ,

∂ΓC and ∂Γ.
We start with the following

Theorem 3.1. Let the conditions

1 < p <∞, 1 ⩽ q ⩽ ∞,
1

p
− 1 + γ′′ < s+

1

2
<

1

p
+ γ′ (3.34)

be satisfied with γ′ and γ′′ given by (3.42). Then the operators (3.33) are invertible.

Proof. We prove the theorem in several steps. First, we show that (3.33) are Fredholm operates with
a zero index and afterwards we establish that the corresponding null-spaces are trivial.

Step 1. Let us note that the operators

r
S
(1)
D

A(1)
τ :

[
B̃s

p,p(ΓT )
]9 →

[
Bs+1

p,p (S
(1)
D )

]9
,

r
ΓT

A(1)
τ :

[
B̃s

p,q(S
(1)
D )

]9 →
[
Bs+1

p,q (ΓT )
]9 (3.35)

are compact, since S
(1)
D and ΓT are disjoint, S

(1)
D ∩ ΓT = ∅. Further, we establish that the operators

r
S
(1)
D

A(1)
τ :

[
H̃

− 1
2

2 (S
(1)
D )

]9 →
[
[H

1
2
2 (S

(1)
D )

]9
,

rΓT

[
A(1)

τ + B(2)
τ

]
:
[
H̃

− 1
2

2 (ΓT )
]9 →

[
H

1
2
2 (ΓT )

]9 (3.36)
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are strongly elliptic Fredholm pseudodifferential operators of order −1 with a zero index. We note
that the principal homogeneous symbol matrices of these operators are strongly elliptic.

Using Green’s formula and Korn’s inequality, for an arbitrary solution vector U (1)∈ [H1
2 (Ω

(1))]9 to
the homogeneous equation

A(1)(∂x, τ)U
(1) = 0 in Ω(1),

by the standard arguments, we derive (see, e.g., [6, 7])

Re
〈
[U (1)]+, [T (1)U (1)]+

〉
∂Ω(1)

⩾ c1 ∥U (1) ∥2[H1
2 (Ω

(1))]9 − c2 ∥U (1) ∥2[H0
2 (Ω

(1))]9 , (3.37)

where ⟨·, ·⟩
∂Ω(1)

denotes the duality pairing between the spaces
[
H

1
2 (∂Ω(1))

]9
and

[
H− 1

2 (∂Ω(1))
]9
.

Substitute here U (1) = V
(1)
τ ([P

(1)
τ ]−1ζ) with ζ ∈ [H

− 1
2

2 (∂Ω(1))]9. Due to the equality

ζ = P (1)
τ [H(1)

τ ]−1{U (1)}+

and the boundedness of the operators involved, we have

∥ζ∥2
[H

− 1
2

2 (∂Ω(1))]9
⩽c∗∥{U (1)}+∥2

[H
1
2
2 (∂Ω(1))]9

with some positive constant c∗. By the properties of single layer potentials, we have{
U (1)

}+
= H(1)

τ

[
P (1)
τ

]−1
ζ,

{
T (1)U (1)

}+
=

(
− 1

2
I9 +K(1)

τ

)[
P (1)
τ

]−1
ζ.

By the trace theorem, from (3.37), we deduce

Re ⟨H(1)
τ [P (1)

τ ]−1ζ,
(
− 2−1 I9 +K(1)

τ + βH(1)
τ

)[
P (1)
τ

]−1
ζ⟩

∂Ω(1)
⩾ c′1 ∥ ζ ∥2

[H
− 1

2
2 (∂Ω(1))]9

+
∥∥βH(1)[P (1)

τ ]−1ζ
∥∥2
[H

1
2
2 (∂Ω(1))]9

− c2
∥∥V (1)

τ ([P (1)
τ ]−1ζ)

∥∥2
[H0

2 (Ω
(1))]9

.

Thus we have

Re ⟨H(1)
τ [P (1)

τ ]−1ζ, ζ⟩
∂Ω(1)

⩾ c′1 ∥ ζ ∥2
[H

− 1
2

2 (∂Ω(1))]9

+
∥∥βH(1)[P (1)

τ ]−1ζ
∥∥2
[H

1
2
2 (∂Ω(1))]9

− c2
∥∥V (1)

τ ([P (1)
τ ]−1ζ)

∥∥2
[H0

2 (Ω
(1))]9

.

In particular, in view of Theorem 4.1, for arbitrary ζ ∈ [H̃
− 1

2
2 (S

(1)
D )]9, we have

∥U (1) ∥2[H0
2 (Ω

(1))]9 ⩽ c∗∗ ∥ ζ ∥2
[H̃

− 3
2

2 (S
(1)
D )]9

,

and, consequently,

Re
〈
r
S
(1)
D

H(1)
τ [P (1)

τ ]−1ζ, ζ
〉
∂Ω(1)

⩾ c′1 ∥ ζ ∥2
[H̃

− 1
2

2 (S
(1)
D )]9

− c′′2 ∥ ζ ∥2
[H̃

− 3
2

2 (S
(1)
D )]9

. (3.38)

From (3.38), it follows that

r
S
(1)
D

A(1)
τ = r

S
(1)
D

H(1)
τ [P (1)

τ )]−1 :
[
H̃

− 1
2

2 (S
(1)
D )

]9 →
[
H

1
2
2 (S

(1)
D )

]9
is a strongly elliptic pseudodifferential Fredholm operator with index zero (see [18,21]).

Then the same is true for the operator (3.36), since the principal homogeneous symbol matrix of

the operator B(2)
τ is nonnegative (see [23]). Therefore, the operator (3.33) is Fredholm with index zero

for s = −1/2, p = 2 and q = 2 due to the compactness of operators (3.35).
Step 2. With the help of the uniqueness Theorem 2.1, due to the representation formulas (3.4) and

(3.5) with G
(1)
0 = 0 and G

(2)
0 = 0, we can easily show that the operator (3.33) is injective for s = −1/2,

p = 2 and q = 2. Since its index is zero, we conclude that it is surjective. Thus the operator (3.33) is
invertible for s = −1/2, p = 2 and q = 2.
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Step 3. To complete the proof, for the general case, we proceed as follows. The following blockwise
lower triangular matrix pseudodifferential operator

N (0)
τ :=


r
S
(1)
D

A(1)
τ r

S
(1)
D

[ 0 ]9×9 r
S
(1)
D

[ 0 ]9×7

r
ΓT

[ 0 ]9×9 r
ΓT

[A(1)
τ + B(2)

τ ] r
ΓT

[ 0 ]9×7

r
ΓT

[ 0 ]7×9 r
ΓT
I7×9 r

ΓT
I7


25×25

is a compact perturbation of the operator Nτ . Let us analyze the properties of the diagonal entries

r
S
(1)
D

A(1)
τ : [ B̃s

p,q(S
(1)
D ) ]9 →

[
Bs+1

p,q (S
(1)
D )

]9
,

rΓT

[
A(1)

τ + B(2)
τ

]
:
[
B̃s

p,q(ΓT )]
9 →

[
Bs+1

p,q (ΓT )
]9
.

Let

S1(x, ξ1, ξ2) := S(A(1)
τ ;x, ξ1, ξ2)

be the principal homogeneous symbol matrix of the operator A(1)
τ and let λ

(1)
j (x) (j = 1, 9) be the

eigenvalues of the matrix

D1(x) :=
[
S1(x, 0,+1)

]−1
S1(x, 0,−1), x ∈ ∂S

(1)
D .

Similarly, let

S2(x, ξ1, ξ2) = S(A(1)
τ + B(2)

τ ;x, ξ1, ξ2)

be the principal homogeneous symbol matrix of the operator A(1)
τ + B(2)

τ and let λ
(2)
j (x) (j = 1, 9) be

the eigenvalues of the corresponding matrix

D2(x) :=
[
S2(x, 0,+1)

]−1
S2(x, 0,−1), x ∈ ∂ΓT . (3.39)

Note that the curve ∂ΓT is the union of the curves, where the interface intersects the exterior boundary
∂Γ, and the crack edge ∂ΓC , ∂ΓT = ∂Γ ∪ ∂ΓC .

Further, we set

γ′1 := inf
x∈∂S

(1)
D , 1⩽j⩽9

1

2π
arg λ

(1)
j (x), γ′′1 := sup

x∈∂S
(1)
D , 1⩽j⩽9

1

2π
arg λ

(1)
j (x), (3.40)

γ′2 := inf
x∈∂ΓT , 1⩽j⩽9

1

2π
arg λ

(2)
j (x), γ′′2 := sup

x∈∂ΓT , 1⩽j⩽9

1

2π
arg λ

(2)
j (x). (3.41)

Note that γ′i and γ
′′
i (i = 1, 2) depend on the material parameters in general and does not depend on

the geometry of the curves ∂S
(1)
D , ∂ΓT . Since some of the eigenvalues equal to 1, we have γ′i ∈ (− 1

2 , 0],

γ′′i ∈ [0, 12 ) i = 1.2 (cf. [8, 9]).
Let’s introduce the notation

γ′ := min {γ′1, γ′2}, γ′′ := max {γ′′1 , γ′′2 }, (3.42)

then

−1

2
< γ′ ≤ 0 ≤ γ′′ <

1

2
. (3.43)

From Theorem 4.5, we conclude that if the parameters r1, r2 ∈ R, 1 < p <∞, 1 ⩽ q ⩽ ∞, satisfy the
conditions

1

p
− 1 + γ′′1 < r1 +

1

2
<

1

p
+ γ′1,

1

p
− 1 + γ′′2 < r2 +

1

2
<

1

2
γ′2,

then the operators

r
S
(1)
D

A(1)
τ :

[
H̃r1

p (S
(1)
D )

]9 →
[
Hr1+1

p (S
(1)
D )

]9
,

r
S
(1)
D

A(1)
τ :

[
B̃r1

p,q(S
(1)
D )

]9 →
[
Br1+1

p,q (S
(1)
D )

]9
,

rΓT

[
A(1)

τ + B(2)
τ

]
:
[
H̃r2

p (ΓT )
]9 →

[
Hr2+1

p (ΓT )
]9
,
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r
ΓT

[
A(1)

τ + B(2)
τ

]
:
[
B̃r2

p,q(ΓT )
]9 →

[
Br2+1

p,q (ΓT )
]9

are the Fredholm operators with zero index.
Therefore, if conditions (3.34) are satisfied, then the above operators are Fredholm ones with a zero

index. Consequently, operators (3.33) are Fredholm with zero index and invertible due to the results
obtained in Step 2 (see [2]) . □

Now we formulate the basic existence and uniqueness results for the interface crack boundary-
transmission problem under consideration.

Theorem 3.2. Let inclusions (2.23) and compatibility conditions (3.22), (3.23) hold and let

4

3− 2γ′′
< p <

4

1− 2γ′
(3.44)

with γ′ and γ′′ be defined in (3.42). Then the interface crack boundary-transmission problem (2.10)–
(2.22) has a unique solution

(U (1), U (2)) ∈
[
W 1

p (Ω
(1))

]9 × [W 1
p (Ω

(2)) ]7,

which can be represented by the formulas

U (1) = V (1)
τ

(
[P (1)

τ ]−1
[
G

(1)
0 + ψ + h(1)

] )
in Ω(1), (3.45)

U (2) = V (2)
τ

( [
P (2)
τ

]−1 [
G

(2)
0 + h(2)

] )
in Ω(2), (3.46)

where the densities ψ, h(1) and h(2) are to be determined from system (3.6)–(3.11) (or from system

(3.24)–(3.27)), while G
(1)
0 and G

(2)
0 are some fixed extensions of the vector functions G(1) and G(2),

respectively, onto ∂Ω(1) and ∂Ω(2), preserving the space (see (3.1) and (3.2)).

Moreover, the vector functions G
(1)
0 + ψ + h(1) and G

(2)
0 + h(2) are defined uniquely by the above

systems and are independent of the extension operators.

Proof. From Theorems 4.1, 4.2 and 3.1 with p satisfying (3.44) and s = −1/p it follows immediately
that the pair (U (1), U (2)) ∈ [W 1

p (Ω
(1))]9 × [W 1

p (Ω
(2))]7 given by (3.45), (3.46) represents a solution to

the interface crack boundary-transmission problem (2.10)–(2.22). Next, we show the uniqueness of
solutions.

Due to inequalities (3.43), we have

p = 2 ∈
( 4

3− 2γ′′
,

4

1− 2γ′

)
.

Therefore the unique solvability for p = 2 is a consequence of Theorem 2.1.
To show the uniqueness result for all other values of p from the interval (3.44), we proceed as

follows. Let a pair

(U (1), U (2)) ∈
[
W 1

p (Ω
(1))

]9 × [W 1
p (Ω

(2)) ]7

with p satisfying (3.44), be a solution to the homogeneous interface crack boundary-transmission
problem. Then it is evident that{

U (1)
}+ ∈

[
B

1− 1
p

p,p (∂Ω(1))
]9
,

{
U (2)

}+ ∈
[
B

1− 1
p

p,p (∂Ω(2))
]7
,{

T (1)U (1)
}+ ∈

[
B

− 1
p

p,p (∂Ω
(1))

]9
,

{
T (2)U (2)

}+ ∈
[
B

− 1
p

p,p (∂Ω
(2))

]7
.

By Lemmas 2.2 and 2.3, the vectors U (2) and U (1) in Ω(2) and Ω(1), respectively, are representable in
the form

U (2) = V (2)
τ

( [
P (2)
τ

]−1
h(2)

)
in Ω(2), h(2) =

{
T (2)U (2)

}+
,

U (1) = V (1)
τ

(
[P (1)

τ ]−1 χ
)

in Ω(1), χ =
{
T (1)U (1)

}+
+ β

{
U (1)

}+
.

Moreover, due to the homogeneous boundary and transmission conditions, we have

h(2) ∈
[
B̃

− 1
p

p,p (ΓT )
]7
, χ = h(1) + ψ ∈ [B

− 1
p

p,p (S
(1))

]9
, h(1) ∈

[
B̃

− 1
p

p,p (ΓT )
]9
, ψ ∈

[
B̃

− 1
p

p,p (S
(1)
D )

]9
.
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By the same arguments as above, we arrive at the homogeneous system

Nτ Φ = 0 with Φ := (ψ, h(1), h(2))⊤ ∈ X
− 1

p
p .

Due to Theorem 3.1, Φ = 0 and we conclude that U (2) = 0 in Ω(2) and U (1) = 0 in Ω(1).
The last assertion of the theorem is trivial and is an easy consequence of the fact that if the single

layer potentials (3.45)and (3.46) vanish identically in Ω(2) and Ω(1), then the corresponding densities
vanish, as well. □

The following regularity result is true.

Theorem 3.3. Let the inclusions (2.23) and the compatibility conditions (3.22), (3.23) hold and let
for 1 < r <∞, 1 ⩽ q ⩽ ∞,

4

3− 2γ′′
< p <

4

1− 2γ′
,

1

r
− 1

2
+ γ′′ < s <

1

r
+

1

2
+ γ′, (3.47)

with γ′ and γ′′ defined in (3.42).
Further, let U (1) ∈ [W 1

p (Ω
(1))]9 and U (2) ∈ [W 1

p (Ω
(2))]7 be a unique solution pair to the interface

crack boundary-transmission problem (2.10)–(2.22). Then the following items hold:
(i) if

Q
(1)
k ∈ Bs−1

r,r (S
(1)
N ), Q

(2)
j ∈ Bs−1

r,r (S
(2)
N ), f

(1)
k ∈ Bs

r,r(S
(1)
D ), fk ∈ Bs

r,r(ΓT ), Fj ∈ Bs−1
r,r (ΓT ),

Q̃
(2)
j ∈ Bs−1

r,r (ΓC), Q̃
(1)
k ∈ Bs−1

r,r (ΓC), k = 1, 9, j = 1, 7,

and the compatibility conditions

F̃j := Fj − r
ΓT
G

(1)
0j − r

ΓT
G

(2)
0j ∈ r

ΓT
B̃s−1

r,r (ΓT ), j = 1, 6,

F̃7 := F7 − rΓT
G

(1)
09 − rΓT

G
(2)
07 ∈ rΓT

B̃s−1
r,r (ΓT ),

are satisfied, then

U (1) ∈ [H
s+ 1

r
r (Ω(1)) ]9, U (2) ∈ [H

s+ 1
r

r (Ω(2)) ]7;

(ii) if

Q
(1)
k ∈ Bs−1

r,q (S
(1)
N ), Q

(2)
j ∈ Bs−1

r,q (S
(2)
N ), f

(1)
k ∈ Bs

r,q(S
(1)
D ), fk ∈ Bs

r,q(ΓT ), Fj ∈ Bs−1
r,q (ΓT ),

Q̃
(2)
j ∈ Bs−1

r,q (ΓC), Q̃
(1)
k ∈ Bs−1

r,q (ΓC), k = 1, 9, j = 1, 7,

and the compatibility conditions

F̃j := Fj − r
ΓT
G

(1)
0j − r

ΓT
G

(2)
0j ∈ r

ΓT
B̃s−1

r,q (ΓT ), j = 1, 6,

F̃7 := F7 − r
ΓT
G

(1)
09 − r

ΓT
G

(2)
07 ∈ r

ΓT
B̃s−1

r,q (ΓT ),

are satisfied, then

U (1) ∈
[
B

s+ 1
r

r,q (Ω(1))
]9
, U (2) ∈

[
B

s+ 1
r

r,q (Ω(2))
]7
;

(iii) if α > 0 is not an integer and

Q
(1)
k ∈ Bα−1

∞,∞(S
(1)
N ), Q

(2)
j ∈ Bα−1

∞,∞(S
(2)
N ), f

(1)
k ∈ Cα(S

(1)
D ), fk ∈ Cα(ΓT ),

Fj ∈ Bα−1
∞,∞(ΓT ), Q̃

(2)
j ∈ Bα−1

∞,∞(ΓC), Q̃
(1)
k ∈ Bα−1

∞,∞(ΓC), k = 1, 9, j = 1, 7,

and the compatibility conditions

F̃j := Fj − rΓT
G

(1)
0j − rΓT

G
(2)
0j ∈ rΓT

B̃α−1
∞,∞(ΓT ), j = 1, 6,

F̃7 := F7 − rΓT
G

(1)
09 − rΓT

G
(2)
07 ∈ rΓT

B̃α−1
∞,∞(ΓT ),

are satisfied, then

U (1) ∈
⋂

α ′<κ

[
Cα ′

( Ω(1) )
]9
, U (2) ∈

⋂
α ′<κ

[
Cα ′

( Ω(2) )
]7
,

where κ = min{α, γ ′ + 1
2} > 0.
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Proof. It is word for word repeats the proof of Theorem 5.22 in [6]. □

4. Appendix

4.1. Properties of potentials and boundary operators. Here, we collect some theorems describ-
ing the mapping properties of potentials and the corresponding boundary integral (pseudodifferential)
operators. The proof of these theorems can be found in references [6–8,17].

Theorem 4.1. Let 1 < p < ∞, 1 ⩽ q ⩽ ∞, s ∈ R. Then the single layer potentials can be extended
to the following continuous operators:

V (2)
τ :

[
Bs

p,q(∂Ω
(2))

]7→[
B

s+1+ 1
p

p,q (Ω(2))
]7
, V (1)

τ :
[
Bs

p,q(∂Ω
(1))

]9→[
H

s+1+ 1
p

p (Ω(1))
]9
,

V (2)
τ :

[
Hs

p(∂Ω
(2))

]7→[
H

s+1+ 1
p

p (Ω(2))
]7
, V (1)

τ :
[
Hs

p(∂Ω
(1))

]9→[
H

s+1+ 1
p

p (Ω(1))
]9
.

Theorem 4.2. Let 1 < p < ∞, 1 ⩽ q ⩽ ∞, s ∈ R, h(2) ∈
[
H− 1

2 (∂Ω(2))
]7
, h(1) ∈

[
H− 1

2 (∂Ω(1))
]9
.

Then {
V (2)
τ (h(2))

}+
=

{
V (2)
τ (h(2))

}−
= H(2)

τ (h(2)) on ∂Ω(2),{
T (2)(∂, ν, τ)V (2)

τ (h(2))
}±

=
[
∓ 2−1I7 +K(2)

τ

]
(h(2)) on ∂Ω(2),{

V (1)
τ (h(1))

}+
=

{
V (1)
τ (h(1))

}−
= H(1)

τ (h(1)) on ∂Ω(1),{
T (1)(∂, n, τ)V (1)

τ (h(1))
}±

=
[
∓ 2−1I9 +K(1)

τ

]
(h(1)) on ∂Ω(1),

where Ik stands for the k × k unit matrix.

The operatorsH(1)
τ , H(2)

τ , K(1)
τ and K(2)

τ possess the following mapping and the Fredholm properties.

Theorem 4.3. Let 1 < p <∞, 1 ⩽ q ⩽ ∞, s ∈ R. The operators

H(2)
τ :

[
Hs

p(∂Ω
(2))

]7 →
[
Hs+1

p (∂Ω(2))
]7
, H(1)

τ :
[
Hs

p(∂Ω
(1))

]9 →
[
Hs+1

p (∂Ω(1))
]9
,

H(2)
τ :

[
Bs

p,q(∂Ω
(2))

]7 →
[
Bs+1

p,q (∂Ω(2))
]7
, H(1)

τ :
[
Bs

p,q(∂Ω
(1))

]9 →
[
Bs+1

p,q (∂Ω(1))
]9
,

K(2)
τ :

[
Hs

p(∂Ω
(2))

]7 →
[
Hs

p(∂Ω
(2))

]7
, K(1)

τ :
[
Hs

p(∂Ω
(1))

]9 →
[
Hs

p(∂Ω
(1))

]9
,

K(2)
τ :

[
Bs

p,q(∂Ω
(2))

]7 →
[
Bs

p,q(∂Ω
(2))

]7
, K(1)

τ :
[
Bs

p,q(∂Ω
(1))

]9 →
[
Bs

p,q(∂Ω
(1))

]9
.

are continuous.

Theorem 4.4. Let 1 < p <∞, 1 ⩽ q ⩽ ∞, s ∈ R and τ = σ + i ω. The operators

H(2)
τ :

[
Hs(∂Ω(2))

]7→[
Hs+1(∂Ω(2))

]7
, H(1)

τ :
[
Hs(∂Ω(1))

]9→[
Hs+1(∂Ω(1))

]9
,

H(2)
τ :

[
Bs

p,q(∂Ω
(2))

]7→[
Bs+1

p,q (∂Ω(2))
]7
, H(1)

τ :
[
Bs

p,q(∂Ω
(1))

]9→[
Bs+1

p,q (∂Ω(1))
]9

are invertible if σ > 0, or τ = 0.
The operators

±2−1 I7 +K(2)
τ :

[
Hs

p(∂Ω
(2))

]7 →
[
Hs

p(∂Ω
(2))

]7
,

±2−1 I7 +K(2)
τ :

[
Bs

p,q(∂Ω
(2))

]7 →
[
Bs

p,q(∂Ω
(2))

]7
,

2−1 I9 +K(1)
τ :

[
Hs

p(∂Ω
(1))

]9 →
[
Hs

p(∂Ω
(1), )

]9
,

2−1 I9 +K(1)
τ :

[
Hs(∂Ω(1))

]9 →
[
Hs(∂Ω(1))

]9
are invertible if σ > 0.

The operators

−2−1 I9 +K(1)
τ :

[
Hs(∂Ω(1))

]9 →
[
Hs(∂Ω(1))

]9
,

−2−1 I9 +K(1)
τ :

[
Bs

p,q(∂Ω
(1))

]9 →
[
Bs

p,q(∂Ω
(1))

]9
are Fredholm ones with the index equals to zero for any τ ∈ C.
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4.2. Fredholm properties of pseudodifferential operators on manifolds with boundary.
Let M be a compact, n-dimensional, smooth, nonselfintersecting manifold with the smooth boundary
∂M ̸= ∅ and let A(x,D) be a strongly elliptic N × N matrix pseudodifferential operator of order
ν ∈ R on M. Denote by S(A;x, ξ) the principal homogeneous symbol matrix of the operator A(x,D)
in some local coordinate system (x ∈ M, ξ ∈ Rn \ {0}).

Let λ1(x), . . . , λN (x) be the eigenvalues of the matrix[
S(A;x, 0, . . . , 0,+1)

]−1 [
S(A;x, 0, . . . , 0,−1)

]
, x ∈ ∂M,

and introduce the notation

δj(x) = Re
[
(2π i)−1 lnλj(x)

]
, j = 1, . . . , N.

Here, ln ζ denotes the branch of the logarithmic function, analytic in the complex plane cut along
(−∞, 0]. Note that the numbers δj(x) do not depend on the choice of the local coordinate system

and the strong inequality −1/2 < δj(x) < 1/2 holds for all x ∈ M, j = 1, N , due to the strong

ellipticity of A. In a particular case, where S(A;x, ξ) is a positive definite matrix for every x ∈ M
and ξ ∈ Rn \{0}, we have δ1(x) = · · · = δN (x) = 0, since the eigenvalues λ1(x), . . . , λN (x) are positive
for all x ∈ M.

The Fredholm properties of strongly elliptic pseudo-differential operators on manifolds with a
boundary are characterized by the following theorem (see [2, 3, 14,28]).

Theorem 4.5. Let s ∈ R, 1 < p < ∞, 1 ≤ q ≤ ∞, and let A(x,D) be a pseudodifferential operator
of order ν ∈ R with the strongly elliptic symbol S(A;x, ξ), that is, there is a positive constant c0 such
that

ReS(A;x, ξ) η · η ⩾ c0 |η|2
for x ∈ M, ξ ∈ Rn with |ξ| = 1, and η ∈ CN .

Then the operators

A :
[
H̃s

p(M)
]N →

[
Hs−ν

p (M)
]N

A :
[
B̃s

p,q(M)
]N →

[
Bs−ν

p,q (M)
]N (4.1)

are Fredholm and have the trivial index IndA = 0 if

1

p
− 1 + sup

x∈∂M,
1⩽j⩽N

δj(x) < s− ν

2
<

1

p
+ inf

x∈∂M,
1⩽j⩽N

δj(x). (4.2)

Moreover, the null-spaces and indices of the operators (4.1) coincide for all values of the parameter
q ∈ [1,+∞], provided p and s satisfy inequality (4.2).
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