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COMPATIBLE STRUCTURE IN IDEAL m-SPACES

AHMAD AL–OMARI

Abstract. In this paper, an extensive study of ideal on m-spaces (X,m) is given and some new
types of sets are introduced with the help of local functions. Several characterizations of these sets

are also discussed through this paper. Moreover, characterizations of fψ-operator and ψ-codense on

the m are obtained and the notion of ψ-compatibility with an ideal I is investigated.

1. Introduction and Preliminaries

An ideal I on a space X is a nonempty collection of subsets of X which satisfies the following
properties:

(1) A ∈ I and B ⊆ A implies that B ∈ I .
(2) A ∈ I and B ∈ I imply that A ∪B ∈ I .

An ideal topological space is a topological space (X, τ) with an ideal I on X and we denote it by
(X, τ,I ) (see [7, 8]).

Definition 1.1 ([12]). A subfamily m of the power set P(X) of a nonempty set X is called a minimal
structure (briefly, m-structure) on X if m satisfies the following conditions:

(1) ∅ ∈ m and X ∈ m.
(2) The union of any family of subsets belonging to m belongs to m.

By (X,m) we denote a nonempty set X with a minimal structure m on X and call it an m-space.
Each member of m is said to be m-open and the complement of an m-open set is said to be m-closed.
For a point x ∈ X, the family {U : x ∈ U and U ∈ m} is denoted by m(x).

Let (X,m) be an m-space and A be a subset of X. The m-closure mCl(A) and the m-interior
m Int(A) of A [9] are defined as follows:

(1) mCl(A) = ∩{F ⊂ X : A ⊂ F,X \ F ∈ m}.
(2) m Int(A) = ∪{U ⊂ X : U ⊂ A,U ∈ m}.

Definition 1.2 ([11]). Let (X,m,I ) be an ideal m-space. For a subset A of X, the minimal local
function A∗(I , m) of A is defined as follows:

A∗(I ,m) = {x ∈ X : U ∩A /∈ I for every U ∈ m(x)}.

Hereafter, A∗(I , m) is denoted simply by A∗. An ideal m-space (X,m,I ) is said to be
I -resolvable if X has two disjoint I -dense subsets, where a subset A of X is I -dense if A∗ = X.
Also, papers [1–5] introduce some property related to the ideal m-spaces.

Definition 1.3 ([6]). Let (X,m) be an m-space. A function ψ : m → P(X) is called a ψ-operation
on m if ψ(U) ⊆ U for every proper subset U ∈ m and ψ(X) = X. A subset A of X is said to be
ψ-open if there exists a proper subset U ∈ m such that A ⊆ ψ(U) or A = ψ(X) = X. We put
Ψm = {A ⊆ X : A ⊆ ψ(U) for some proper subset U ∈ m or A = X}. Then Ψm is the family of all
ψ-open sets. The complement of a ψ-open set is said to be ψ-closed.

In this paper, the characterizations of fψ-operator and ψ-codense on them are given and the notion
of ψ-compatibility with an ideal I is investigated.
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Lemma 1.1 ([6]). Let (X,m) be an m-space. For Ψm, the following properties hold:

(1) ∅, X ∈ Ψm.
(2) If Aα ∈ Ψm for each α ∈ Λ, then ∩α∈ΛAα ∈ Ψm.

Definition 1.4 ([6]). Let (X,m,I ) be an ideal m-space. For a subset A of X, we define the following
set: Aψ(I ,m) = {x ∈ X : A ∩ U /∈ I for every U ∈ Ψm(x)}, where Ψm(x) = {U ∈ Ψm : x ∈ U}. In
case there is no confusion Aψ(I ,m) is briefly denoted by Aψ and is called the ψ-local function of A
with respect to I and m.

We set Intψ(A) = ∪{U : U ⊆ A, U ∈ Ψm} and Clψ(A) = ∩{F : A ⊆ F,X − F ∈ Ψm}.

Lemma 1.2 ([6]). Let (X,m) be an m-space, I and J be ideals on X and let A and B be subsets
of X. Then the following properties hold:

(1) If A ⊆ B, then Aψ ⊆ Bψ.
(2) If I ⊆ J , then Aψ(I ) ⊇ Aψ(J ).
(3) Aψ = Clψ(Aψ) ⊆ Clψ(A).
(4) If A ⊆ Aψ, then Aψ = Clψ(Aψ) = Clψ(A).
(5) If A ∈ I , then Aψ = ∅.
(6) (A ∩B)ψ ⊆ Aψ ∩Bψ.

Corollary 1.1 ([6]). Let (X,m,I ) be an ideal m-space and A,B be subsets of X with B ∈ I . Then
(A ∪B)ψ = Aψ = (A−B)ψ.

Theorem 1.1 ([6]). Let (X,m,I ) be an ideal m-space and A, B be any subsets of X. Then the
following properties hold:

(1) (∅)ψ = ∅.
(2) (Aψ)ψ ⊆ Aψ.
(3) Aψ ∪Bψ = (A ∪B)ψ.

Theorem 1.2 ([6]). Let (X,m,I ) be an ideal m-space, Cl∗ψ(A) = Aψ ∪A and A, B be subsets of X.
Then

(1) Cl∗ψ(∅) = ∅.
(2) A ⊆ Cl∗ψ(A).

(3) Cl∗ψ(A ∪B) = Cl∗ψ(A) ∪ Cl∗ψ(B).

(4) Cl∗ψ(A) = Cl∗ψ(Cl
∗
ψ(A)).

(5) If A ⊆ B, then Cl∗ψ(A) ⊆ Cl∗ψ(B).

By Theorem 1.2, we find that Cl∗ψ(A) = A ∪ Aψ is a Kuratowski closure operator. We denote

by Ψ∗
ψ(I ) = Ψ∗

ψ the topology generated by Cl∗ψ, that is, Ψ∗
ψ = {U ⊆ X : Cl∗ψ(X − U) = X − U}.

A subset A of X is said to be Ψ∗
ψ-closed if and only if Aψ ⊆ A.

Theorem 1.3 ([6]). Let (X,m,I ) be an ideal m-space. Then β(Ψm,I ) = {V − I : V ∈ Ψm, I ∈ I }
is a basis for Ψ∗

ψ.

The following example shows that β(Ψm,I ) is not a topology, in general.

Example 1.1. Let X = {a, b, c, d} and m = {∅, X, {a, b}, {a, c, d}} with I = {∅, {a}}. A function
ψ : m → P(X) is defined as ψ(X) = X, ψ({a, b}) = {a}, ψ({a, c, d}) = {c, d} and ψ(∅) = ∅. Then
Ψm = {∅, X, {a}, {c}, {d}, {c, d}} and β(Ψm,I ) = {∅, X, {a}, {c}, {d}, {c, d}, {b, c, d}} and Ψ∗

ψ =

{∅, X, {a}, {c}, {d}, {c, d}, {a, c}, {a, d}, {a, c, d}, {b, c, d}}.

It is clear that m and Ψm are independent, and we have Ψm ⊆ β(Ψm,I ) ⊆ Ψ∗
ψ.

We recall that I is ψ-codense in an ideal m-space if Ψm ∩ I = ∅.

Example 1.2. Let X = {a, b, c, d} and m = {∅, X, {a, b}, {a, c, d}} with I = {∅, {b}}. A function
ψ : m → P(X) is defined as ψ(X) = X, ψ({a, b}) = {a}, ψ({a, c, d}) = {c, d} and ψ(∅) = ∅. Then
Ψm = {∅, X, {a}, {c}, {d}, {c, d}}. It is clear that I is ψ-codense.
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Example 1.3. LetX = {a, b, c, d} andm = {∅, X, {a, b}, {a, c, d}} with I = {∅, {a}, {b}}. A function
ψ : m → P(X) is defined as ψ(X) = X, ψ({a, b}) = {a}, ψ({a, c, d}) = {c, d} and ψ(∅) = ∅. Then
Ψm = {∅, X, {a}, {c}, {d}, {c, d}}. It is clear that I is not ψ-codense.

Theorem 1.4 ([6]). Let (X,m,I ) be an ideal m-space. Then the following properties are equivalent:

(1) I is ψ-codense;
(2) If I ∈ I , then Intψ(I) = ∅;
(3) For every G ∈ Ψm, G ⊆ Gψ;
(4) X = Xψ.

Lemma 1.3. Let (X,m,I ) be an ideal m-space and A,B be subsets of X. Then Aψ − Bψ =
(A−B)ψ −Bψ.

2. fψ-operator in Ideal m-spaces

Definition 2.1. Let (X,m,I ) be an ideal m-space. An operator fψ : P(X) → P(X) is defined as
follows for every A ∈ X, fψ(A) = {x ∈ X : there exists U ∈ Ψm(x) such that U − A ∈ I } and we
observe that fψ(A) = X − (X −A)ψ.

Several basic facts concerning the behavior of the operator fψ are included in the following theorem.
Theorem 2.1. Let (X,m,I ) be an ideal m-space. Then the following properties hold:

(1) If A ⊆ X, then fψ(A) is ψ-open.
(2) If A ⊆ B, then fψ(A) ⊆ fψ(B).
(3) If A,B ∈ P(X), then fψ(A ∩B) = fψ(A) ∩ fψ(B).
(4) If U ∈ Ψ∗

ψ, then U ⊆ fψ(U).

(5) If A ⊆ X, then fψ(A) ⊆ fψ(fψ(A)).
(6) If A ⊆ X, then fψ(A) = fψ(fψ(A)) if and only if (X −A)ψ = ((X −A)ψ)ψ.
(7) If A ∈ I , then fψ(A) = X −Xψ.
(8) If A ⊆ X, then A ∩ fψ(A) = Intψ(A).
(9) If A ⊆ X, I ∈ I , then fψ(A− I) = fψ(A).
(10) If A ⊆ X, I ∈ I , then fψ(A ∪ I) = fψ(A).
(11) If (A−B) ∪ (B −A) ∈ I , then fψ(A) = fψ(B).

Proof. (1) This follows from Lemma 1.2 (3).
(2) This follows from Lemma 1.2 (1).
(3) It follows from (2) that fψ(A ∩ B) ⊆ fψ(A) and fψ(A ∩ B) ⊆ fψ(B). Hence fψ(A ∩ B) ⊆
fψ(A) ∩ fψ(B). Now, let x ∈ fψ(A) ∩ fψ(B). There exist U, V ∈ Ψm(x) such that U − A ∈ I and
V − B ∈ I . Let G = U ∩ V ∈ Ψm(x) and we have G− A ∈ I and G− B ∈ I by the assumption.
Thus G− (A∩B) = (G−A)∪ (G−B) ∈ I by additivity, and hence x ∈ fψ(A∩B). We have shown
fψ(A) ∩ fψ(B) ⊆ fψ(A ∩B) and thus the proof is complete.
(4) If U ∈ Ψ∗

ψ, thenX−U is Ψ∗
ψ-closed which implies (X−U)ψ ⊆ X−U and hence U ⊆ X−(X−U)ψ =

fψ(U).
(5) This follows from (4).
(6) This follows from the facts:

(1) fψ(A) = X − (X −A)ψ.
(2) fψ(fψ(A)) = X − [X − (X − (X −A)ψ)]ψ = X − ((X −A)ψ)ψ.

(7) By Corollary 1.1, we obtain (X −A)ψ = Xψ if A ∈ I .
(8) If x ∈ A ∩ fψ(A), then x ∈ A and there exists a Ux ∈ Ψm(x) such that Ux − A ∈ I . Then by
Theorem 1.3, Ux − (Ux − A) is an Ψ∗

ψ-open neighborhood of x and x ∈ Intψ(A). On the other hand,

if x ∈ Intψ(A), there exists a basic Ψ∗
ψ-open neighborhood Vx − I of x, where Vx ∈ Ψm and I ∈ I ,

such that x ∈ Vx − I ⊆ A which implies Vx −A ⊆ I and hence Vx −A ∈ I . So, x ∈ A ∩ fψ(A).
(9) This follows from Corollary 1.1 and fψ(A − I) = X − [X − (A − I)]ψ = X − [(X − A) ∪ I]ψ =
X − (X −A)ψ = fψ(A).
(10) This follows from Corollary 1.1 and fψ(A ∪ I) = X − [X − (A ∪ I)]ψ = X − [(X − A) − I]ψ =
X − (X −A)ψ = fψ(A).
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(11) Assume (A−B) ∪ (B −A) ∈ I . Let A−B = I and B −A = J . Observe that I, J ∈ I by the
assumption. Observe also that B = (A− I) ∪ J . Thus fψ(A) = fψ(A− I) = Ψ[(A− I) ∪ J ] = fψ(B)
by (9) and (10). □
Corollary 2.1. Let (X,m,I ) be an ideal m-space. Then U ⊆ fψ(U) for every ψ-open set U ∈ Ψm.

Proof. We know that fψ(U) = X − (X −U)ψ. Now, (X −U)ψ ⊆ Clψ(X −U) = X −U , since X −U
is ψ-closed. Therefore U = X − (X − U) ⊆ X − (X − U)ψ = fψ(U). □
Theorem 2.2. Let (X,m,I ) be an ideal m-space and A ⊆ X. Then the following properties hold:

(1) fψ(A) = ∪{U ∈ Ψm : U −A ∈ I }.
(2) fψ(A) ⊇ ∪{U ∈ Ψm : (U −A) ∪ (A− U) ∈ I }.

Proof. (1) This follows immediately from the definition of fψ-operator.
(2) Since I is heredity, it is obvious that ∪{U ∈ Ψm : (U − A) ∪ (A − U) ∈ I } ⊆ ∪{U ∈ Ψm :
U −A ∈ I } = fψ(A) for every A ⊆ X. □
Theorem 2.3. Let (X,m,I ) be an ideal m-space. If σ = {A ⊆ X : A ⊆ fψ(A)}, then σ is a
topology for X and σ = Ψ∗

ψ.

Proof. Let σ = {A ⊆ X : A ⊆ fψ(A)}. First, we show that σ is a topology. Observe that ∅ ⊆ fψ(∅) and
X ⊆ fψ(X) = X, and thus ∅ and X ∈ σ. Now, if A,B ∈ σ, then A∩B ⊆ fψ(A)∩ fψ(B) = fψ(A∩B)
which implies that A ∩ B ∈ σ. If {Aα : α ∈ ∆} ⊆ σ, then Aα ⊆ fψ(Aα) ⊆ fψ(∪Aα) for every α
and hence ∪Aα ⊆ fψ(∪Aα). This shows that σ is a topology. Now, if U ∈ Ψ∗

ψ and x ∈ U , then by

Theorem 1.3, there exist V ∈ Ψm(x) and I ∈ I such that x ∈ V − I ⊆ U . Clearly, V − U ⊆ I so,
V − U ∈ I by the assumption and hence x ∈ fψ(U). Thus U ⊆ fψ(U) and we have shown that
Ψ∗
ψ ⊆ σ. Now, let A ∈ σ, then we have A ⊆ fψ(A), that is, A ⊆ X−(X−A)ψ and (X−A)ψ ⊆ X−A.

This shows that X −A is Ψ∗
ψ-closed and hence A ∈ Ψ∗

ψ. Thus σ ⊆ Ψ∗
ψ and hence σ = Ψ∗

ψ. □

3. Some Properties of ψ-compatible in Ideal m-spaces

Definition 3.1 ([6]). Let (X,m,I ) be an ideal m-space. The m-structure m is said to be ψ-com-
patible with the ideal I , denoted by m ∼ψ I , if for every A ⊆ X, the following holds: if for every
x ∈ A, there exists U ∈ Ψm(x) such that U ∩A ∈ I , then A ∈ I .

Lemma 3.1 ([6]). Let (X,m,I ) be an ideal m-space, then m ∼ψ I if and only if A− Aψ ∈ I for
every A ⊆ X.

Example 3.1. Let X = {a, b, c, d} and m = {∅, X, {a, b}, {a, c, d}} with I = {∅, {a}}. A function
ψ : m → P(X) is defined as ψ(X) = X, ψ({a, b} = {a}, ψ({a, c, d} = {a} and ψ(∅) = ∅. Then
Ψ = {∅, X, {a}}. Since A − Aψ ∈ I for every A ⊆ X, therefore the m-structure m is ψ-compatible
with the ideal I . Also, β(Ψ,I ) = {∅, X, {a}, {b, c, d}} and m∗

ψ = {∅, X, {a}, {b, c, d}}.

Example 3.2. Let X = R and let us consider the m-structure m = {A ⊆ R : 1 /∈ A} ∪ {R} with
the ideal of finite subsets of X which are denoted by IFin. A function ψ : m → P(X) is defined as
ψ(A) = A, for all A ⊆ X . Then Ψ = m = {A ⊆ R : 1 /∈ A} ∪ {R}. Now, for any A ∈ m, Aψ = ∅
or Aψ = {1}. Since for some A ⊆ X we have A − Aψ /∈ IFin, therefore the m-structure m is not
ψ-compatible with the ideal IFin.
Theorem 3.1. Let (X,m,I ) be an ideal m-space, m be ψ-compatible with I is ψ-codense. Let G
be a Ψ∗

ψ-open set such that G = U −A, where U ∈ Ψm and A ∈ I . Then Clψ(Gψ) = Clψ(G) = Gψ =

Uψ = Clψ(U) = Clψ(Uψ).

Proof. (1) Let G = U − A, where U ∈ Ψm and A ∈ I . Since I is ψ-codense, by Theorem 1.4, we
have U ⊆ Uψ. Hence by Lemma 1.2, Uψ = Clψ(Uψ) = Clψ(U).
(2) Since G is Ψ∗

ψ-open, X−G = Cl∗ψ(X−G) and hence (X−G)ψ ⊆ X−G. By Lemma 1.3, Xψ−Gψ ⊆
(X −G)ψ. But Ψm ∩I = ∅ and by Theorem 1.4, Xψ = X and hence X −Gψ ⊆ (X −G)ψ ⊆ X −G.
Therefore G ⊆ Gψ. Hence Clψ(G) ⊆ Clψ(Gψ). Hence by Lemma 1.2, Gψ = Clψ(G) = Clψ(Gψ).
(3) Again, G ⊆ U implies that Gψ ⊆ Uψ. By Lemma 1.3, Gψ = (U − A)ψ ⊇ Uψ − Aψ = Uψ since
A ∈ I . Thus Uψ = Gψ.
By (1), (2) and (3), we obtain the result. □
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Theorem 3.2. Let (X,m,I ) be an ideal m-space. Then m ∼ψ I if and only if fψ(A)−A ∈ I for
every A ⊆ X.

Proof. Necessity. Assume m ∼ψ I and let A ⊆ X. Observe that x ∈ fψ(A) − A ∈ I if and only if
x /∈ A and x /∈ (X − A)ψ if and only if x /∈ A and there exists Ux ∈ Ψm(x) such that Ux − A ∈ I if
and only if there exists Ux ∈ Ψm(x) such that x ∈ Ux − A ∈ I . Now, for each x ∈ fψ(A) − A and
Ux ∈ Ψm(x), Ux ∩ (fψ(A)−A) ∈ I by the assumption and hence fψ(A)−A ∈ I by the assumption
that m ∼ψ I .

Sufficiency. Let A ⊆ X and assume that for each x ∈ A, there exists Ux ∈ Ψm(x) such that
Ux ∩ A ∈ I . Observe that fψ(X − A) − (X − A) = {x : there exists Ux ∈ Ψm(x) such that
x ∈ Ux ∩A ∈ I }. Thus we have A ⊆ fψ(X−A)− (X−A) ∈ I and hence A ∈ I by the assumption
of I . □
Lemma 3.2. Let (X,m,I ) be an ideal m-space such that m ∼ψ I and A ⊆ X, then A is a
Ψ∗
ψ-closed if and only if A = B ∪ I such that B is ψ-closed and I ∈ I .

Proof. If A is a Ψ∗
ψ-closed set, then Aψ ⊆ A which implies that A = A ∪Aψ = (A−Aψ) ∪Aψ. Then

by Lemma 1.2, Aψ is a ψ-closed set and by Lemma 3.1, A− Aψ ∈ I . Conversely, if A = B ∪ I such
that B is an ψ-closed set and I ∈ I , then by Corollary 1.1, we get Aψ = (B ∪ I)ψ = Bψ ∪ Iψ = Bψ ⊆
Clψ(B) = B ⊆ A which implies that A is a Ψ∗

ψ-closed. □
Corollary 3.1. Let (X,m,I ) be an ideal m-space such that m ∼ψ I . Then β(I ,m) is a topology
on X and hence β(I ,m) = Ψ∗

ψ.

Proof. Let A ∈ Ψ∗
ψ. Then by Lemma 3.2, X − A = F ∪ I, where F is ψ-closed and I ∈ I . Then

A = X − (F ∪ I) = (X − F ) ∩ (X − I) = (X − F )− I = V − I, where V = X − F ∈ Ψm. Thus every
ψ-open set is of the form V − I, where V ∈ Ψm and I ∈ I . The result follows by Theorem 1.3. □

Proposition 3.1. Let (X,m,I ) be an ideal m-space with m ∼ψ I , A ⊆ X. If N is a nonempty
ψ-open subset of Aψ ∩ fψ(A), then N −A ∈ I and N ∩A /∈ I .

Proof. If N ⊆ Aψ ∩ fψ(A), then N −A ⊆ fψ(A)−A ∈ I by Theorem 3.2, and hence N −A ∈ I , by
the assumption. Since N ∈ Ψm − {∅} and N ⊆ Aψ, we have N ∩A /∈ I by the definition of Aψ. □

As a consequence of the above proposition, we have the following

Corollary 3.2. Let (X,m,I ) be an ideal m-space with m ∼ψ I . Then fψ(fψ(A)) = fψ(A) for every
A ⊆ X.

Proof. fψ(A) ⊆ fψ(fψ(A)) follows from Theorem 2.1 (5). Since m ∼ψ I , it follows from Theorem 3.2
that fψ(A) ⊆ A ∪ I for some I ∈ I and hence fψ(fψ(A)) = fψ(A) by Theorem 2.1 (10). □

Theorem 3.3. Let (X,m,I ) be an ideal m-space with m ∼ψ I . Then fψ(A) = ∪{fψ(U) : U ∈
Ψm, fψ(U)−A ∈ I }.

Proof. Let Φ(A) = ∪{fψ(U) : U ∈ Ψm, fψ(U) − A ∈ I }. Clearly, Φ(A) ⊆ fψ(A). Now, let
x ∈ fψ(A). Then there exists U ∈ Ψm(x) such that U − A ∈ I . By Corollary 2.1, U ⊆ fψ(U)
and fψ(U)−A ⊆ [fψ(U)−U ]∪ [U −A]. By Theorem 3.2, fψ(U)−U ∈ I and hence fψ(U)−A ∈ I .
Thus x ∈ Φ(A) and Φ(A) ⊇ fψ(A). Consequently, we obtain Φ(A) = fψ(A). □

In [10], Newcomb defines A = B [ mod I ] if (A−B)∪ (B−A) ∈ I and observes that [mod I ] is
an equivalence relation. By Theorem 2.1 (11), we have that if A = B [ mod I ], then fψ(A) = fψ(B).

Definition 3.2. Let (X,m,I ) be an ideal m-space. A subset A of X is called a Baire set with
respect to Ψm and I , if there exists an ψ-open set U ∈ Ψm such that A = U [ mod I ], where the
collection of all Baire sets is denoted by Wr(X,m,I ).
Lemma 3.3. Let (X,m,I ) be an ideal m-space with m ∼ψ I . If U , V ∈ Ψm and fψ(U) = fψ(V ),
then U = V [ mod I ].

Proof. Since U ∈ Ψm, we have U ⊆ fψ(U) and hence U − V ⊆ fψ(U) − V = fψ(V ) − V ∈ I by
Theorem 3.2. Similarly, V − U ∈ I . Now, (U − V ) ∪ (V − U) ∈ I by additivity. Hence U = V
[ mod I ]. □
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Theorem 3.4. Let (X,m,I ) be an ideal m-space with m ∼ψ I . If A, B ∈ Wr(X,m,I ) and
fψ(A) = fψ(B), then A = B [ mod I ].

Proof. Let U, V ∈ Ψm such that A = U [ mod I ] and B = V [ mod I ]. Now, fψ(A) = fψ(U) and
fψ(B) = fψ(V ) by Theorem 2.1(11). Since fψ(A) = fψ(U) implies that fψ(U) = fψ(V ), hence U = V
[ mod I ] by Lemma 3.3. Thus A = B [ mod I ] by transitivity. □

4. ψ-codense in Ideal m-spaces

Lemma 4.1. Let (X,m,I ) be an ideal m-space. If A is a ψ-open set, then it is ψ-codense if and
only if Aψ = Clψ(A).

Proof. Let A be nonempty ψ-open sets, then by Lemma 1.2, we have Aψ ⊆ Clψ(A). Let x ∈ Clψ(A),
then for all ψ-open set Ux containing x, we have Ux ∩ A ̸= ϕ. Again, Ux ∩ A is a nonempty ψ-open
set, so Ux ∩ A /∈ I , since I is ψ-codense. Hence x ∈ Aψ. Therefore Aψ = Clψ(A). Conversely, for
any ψ-open set A, we have Aψ = Clψ(A). Then X = Xψ and this implies that I is ψ-codense by
Theorem 1.4. □
Proposition 4.1. Let (X,m,I ) be an ideal m-space.

(1) If B ∈ Wr(X,m,I )− I , then there exists A ∈ Ψm − {∅} such that B = A [ mod I ].
(2) If I is ψ-codense, then B ∈ Wr(X,m,I )− I if and only if there exists A ∈ Ψm − {∅} such

that B = A [ mod I ].

Proof. (1) Assume B ∈ Wr(X,m,I ) − I , then B ∈ Wr(X,m,I ). Now, if there does not exist
A ∈ Ψm − {∅} such that B = A [ mod I ], we have B = ∅ [ mod I ]. This implies that B ∈ I which
is a contradiction.
(2) Assume there exists A ∈ Ψm − {∅} such that B = A [ mod I ]. Then A = (B − J) ∪ I, where
J = B − A, I = A − B ∈ I . If B ∈ I , then A ∈ I by the assumption and additivity, which
contradicts that I is ψ-codense. □
Proposition 4.2. Let (X,m,I ) be an ideal m-space with I is ψ-codense. If B ∈ Wr(X,m,I )−I ,
then fψ(B) ∩ Intψ(Bψ) ̸= ∅.

Proof. Assume B ∈ Wr(X,m,I ) − I , then by Proposition 4.1(1), there exists A ∈ Ψm − {∅} such
that B = A [ mod I ]. This implies that ∅ ̸= A ⊆ Aψ = ((B − J) ∪ I)ψ = Bψ, where J = B −A, I =
A− B ∈ I by Theorem 1.1 and Corollary 1.1. Also, ∅ ̸= A ⊆ fψ(A) = fψ(B) by Theorem 2.1 (11),
so, A ⊆ fψ(B) ∩ Intψ(Bψ). □

Given an idealm-space (X,m,I ), let U (X,m,I ) denote {A ⊆ X : there existsB ∈ Wr(X,m,I )−
I such that B ⊆ A}.

Proposition 4.3. Let (X,m,I ) be an ideal m-space with I is ψ-codense. The following properties
are equivalent:

(1) A ∈ U (X,m,I ).
(2) fψ(A) ∩ Intψ(Aψ) ̸= ∅.
(3) fψ(A) ∩Aψ ̸= ∅.
(4) fψ(A) ̸= ∅.
(5) Intψ(A) ̸= ∅.
(6) There exists N ∈ Ψm − {∅} such that N −A ∈ I and N ∩A /∈ I .

Proof. (1) ⇒ (2): Let B ∈ Wr(X,m,I ) − I such that B ⊆ A. Then Intψ(Bψ) ⊆ Intψ(Aψ) and
fψ(B) ⊆ fψ(A) and hence Intψ(Bψ) ∩ fψ(B) ⊆ Intψ(Aψ) ∩ fψ(A). By Proposition 4.2, we have
fψ(A) ∩ Intψ(Aψ) ̸= ∅.
(2) ⇒ (3): The proof is obvious.
(3) ⇒ (4): The proof is obvious.
(4) ⇒ (5): If fψ(A) ̸= ∅, then there exists U ∈ Ψm − {∅} such that U − A ∈ I . Since U /∈ I
and U = (U − A) ∪ (U ∩ A), we have U ∩ A /∈ I . By Theorem 2.1, ∅ ̸= (U ∩ A) ⊆ fψ(U) ∩ A =
fψ((U −A) ∪ (U ∩A)) ∩A = fψ(U ∩A) ∩A ⊆ fψ(A) ∩A = Intψ(A). Hence Intψ(A) ̸= ∅.
(5) ⇒ (6): If Intψ(A) ̸= ∅, then by Theorem 1.3, there exists N ∈ Ψm − {∅} and I ∈ I such that
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∅ ̸= N − I ⊆ A. We have N − A ∈ I , N = (N − A) ∪ (N ∩ A) and N /∈ I . This implies that
N ∩A /∈ I .
(6) ⇒ (1): Let B = N ∩ A /∈ I with N ∈ Ψm − {∅} and N − A ∈ I . Then B ∈ Wr(X,m,I ) − I
since B /∈ I and (B −N) ∪ (N −B) = N −A ∈ I . □

Theorem 4.1. Let (X,m,I ) be an ideal m-space, where I is ψ-codense. Then for A ⊆ X,
fψ(A) ⊆ Aψ.

Proof. Suppose x ∈ fψ(A) and x /∈ Aψ. Then there exists a nonempty neighborhood Ux ∈ Ψm(x)
such that Ux ∩ A ∈ I . Since x ∈ fψ(A), by Theorem 2.2, x ∈ ∪{U ∈ Ψm : U − A ∈ I } and there
exists V ∈ Ψm such that x ∈ V and V −A ∈ I . Now, we have Ux ∩V ∈ Ψm(x), Ux ∩V ∩A ∈ I and
(Ux∩V )−A ∈ I by the assumption. Hence by a finite additivity, we have (Ux∩V ∩A)∪(Ux∩V −A) =
(Ux ∩ V ) ∈ I . Since (Ux ∩ V ) ∈ Ψm(x), this contradicts to I is ψ-codense. Therefore x ∈ Aψ. This
implies that fψ(A) ⊆ Aψ. □

Corollary 4.1. Let (X,m,I ) be an ideal m-space, where I is ψ-codense. Then for A ⊆ X, fψ(A) ⊆
Clψ(Aψ).

Theorem 4.2. Let (X,m,I ) be an ideal m-space. Then the following properties are equivalent:

(1) I is ψ-codense.
(2) fψ(∅) = ∅.
(3) If A ⊆ X is ψ-closed, then fψ(A)−A = ∅.
(4) If I ∈ I , then fψ(I) = ∅.

Proof. (1) ⇒ (2): Since I is ψ-codense, by Theorem 2.2, we have fψ(∅) = ∪{U ∈ Ψm : U ∈ I } = ∅.
(2) ⇒ (3): Suppose x ∈ fψ(A) − A, then there exists Ux ∈ Ψm(x) such that x ∈ Ux − A ∈ I and
Ux − A ∈ Ψm. But Ux − A ∈ {U ∈ Ψm : U ∈ I } = fψ(∅) which implies that fψ(∅) = ∅. Hence
fψ(A)−A = ∅.
(3) ⇒ (4): Let I ∈ I and since ∅m is ψ-closed, therefore fψ(I) = fψ(I ∪ ∅) = fψ(∅) = ∅.
(4) ⇒ (1): Suppose A ∈ Ψm∩I , then A ∈ I and by (4), fψ(A) = ∅. Since A ∈ Ψm, by Corollary 2.1,
we have A ⊆ fψ(A) = ∅. Hence I is ψ-codense. □

Theorem 4.3. Let (X,m,I ) be an ideal m-space. Then I is ψ-codense if and only if [fψ(A)]ψ =
Clψ[fψ(A)] for every A ⊆ X.

Proof. Let I be ψ-codense. It is obvious that [fψ(A)]ψ ⊆ Clψ[fψ(A)]. For the reverse inclusion, let
x ∈ Clψ[fψ(A)]. Then for every ψ-open sets Ux containing x, Ux ∩ fψ(A) ̸= ∅ and Ux ∩ fψ(A) ∈ Ψ
implies that Ux∩fψ(A) /∈ I , since I is ψ-codense. Hence x ∈ [fψ(A)]ψ. Thus [fψ(A)]ψ = Clψ[fψ(A)].
Conversely, suppose that [fψ(A)]ψ = Clψ[fψ(A)], for every A ⊆ X. Then for X ⊆ X, [fψ(X)]ψ =
Clψ[fψ(X)]. Hence [X − (X −X)ψ]ψ = Clψ[X − (X −X)ψ] implies that Xψ = Clψ(X) = X. Thus
I is ψ-codense. □

Theorem 4.4. Let (X,m,I ) be an ideal m-space such that m ∼ψ I and I is ψ-codense. Then

(1) (X,Ψm) is Hausdorff or Urysohn if and only if (X,Ψ∗
ψ) is respectively so.

(2) If (X,Ψ∗
ψ) is regular, then Ψm = Ψ∗

ψ.

(3) (X,Ψm) is connected if and only if (X,Ψ∗
ψ) is connected.

Proof. (1) Let (X,Ψ∗
ψ) be Hausdorff and x, y be any two distinct points of X. Then there exist

disjoint Ψ∗
ψ-open sets G and H containing x and y, respectively. Then by Corollary 3.1, G = U − I1

and H = V −I2, where U , V ∈ Ψm and I1, I2 ∈ I . Since U and V are ψ-open sets containing x and y,
respectively, it remains to show that U∩V = ∅. Now, G∩H = [U−I1]∩[V −I2] = [U∩V ]−[I1∪I2] = ∅,
then U∩V ⊆ I1∪I2 and hence [U∩V ]ψ ⊆ [I1∪I2]ψ = [I1]ψ∪[I2]ψ = ∅ by Lemma 1.2 and Theorem 1.1.
Since I is ψ-codense, we have by Lemma 4.1 that U ∩V ⊆ [U ∩V ]ψ = ∅, so, U ∩V = ∅. The converse
is trivial.

Next, let (X,Ψ∗
ψ) be Urysohn and x, y be two distinct points of X. Then there exist Ψ∗

ψ-open sets

G and H containing x and y, respectively, and Cl∗ψ(G) ∩ Cl∗ψ(H) = ∅, where, by Corollary 3.1, we
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can take G = U − I1 and H = V − I2, where U , V ∈ Ψ and I1, I2 ∈ I . Then x ∈ U , y ∈ V and by
Theorem 3.1, Clψ(U) ∩ Clψ(V ) = ∅. Hence (X,Ψm) is Urysohn.

Conversely, if (X,Ψm) is Urysohn, then for x, y ∈ X with x ̸= y, there exist U, V ∈ Ψm such
that Clψ(U) ∩ Clψ(V ) = ∅. Then U, V are Ψ∗

ψ-open and by Theorem 3.1, Clψ(U) = Cl∗ψ(U) and

Clψ(V ) = Cl∗ψ(V ) and hence (X,Ψ∗
ψ) is Urysohn.

(2) For any A ⊆ X, we clearly have Cl∗ψ(A) ⊆ Clψ(A). Let x /∈ Cl∗ψ(A). Then for some Ψ∗
ψ-

open neighbourhood of G of x and G ∩ A = ∅. By regularity of (X,Ψ∗
ψ), there exists H ∈ Ψ∗

ψ with

H = U − I, where U ∈ Ψm and I ∈ I such that x ∈ H ⊆ Cl∗ψ(H) ⊆ G. Now, U ∩A ⊆ Clψ(U)∩A =

Cl∗ψ(H)∩A ⊆ G∩A = ∅ by Theorem 3.1, and hence U ∩A = ∅, where x ∈ U ∈ Ψm, then x /∈ Clψ(A).

Hence Cl∗ψ(A) = Clψ(A) for each A ⊆ X and Ψm = Ψ∗
ψ.

(3) If (X,Ψ∗
ψ) is connected, then so is (X,Ψm). Suppose (X,Ψ∗

ψ) is not connected, then there

exists a nonempty Ψ∗
ψ-clopen set A ̸= X and X = A ∪ (X − A), then X = Xψ = [A ∪ (X − A)]ψ =

Aψ ∪ (X − A)ψ. Now, A and X − A are Ψ∗
ψ-closed, Aψ ∪ (X − A)ψ ⊆ A ∪ (X − A) and hence

Aψ ∪ (X − A)ψ = ∅. Again, as A is Ψ∗
ψ-open, by Theorem 3.1, Aψ = Clψ(A) ̸= ∅. Similarly,

(X − A)ψ = Clψ(X − A) ̸= ∅. Thus X = Clψ(A) ∪ Clψ(X − A) and Clψ(A) ∩ Clψ(X − A) = ∅ and
Clψ(A) ̸= ∅ ≠ Clψ(X −A) and hence (X,Ψm) is not connected. □

We recall that a topological space X is called quasi H-closed (QHC, for short) [13] if every open
cover of X has a finite subcollection, the union of its closures cover of X.

Theorem 4.5. Let (X,m,I ) be an ideal m-space such that I is ψ-codense. Then (X,Ψm) is QHC
if and only if (X,Ψ∗

ψ) is QHC.

Proof. Let (X,Ψm) be QHC and let U = {Uα − Iα : Uα ∈ Ψm, Iα ∈ I , α ∈ Λ} be a Ψ∗
ψ-basic

open cover of X. Then {Uα : α ∈ Λ} is a ψ-open cover of X. By a quasi H-closedness of (X,Ψm),
there exist finitely many α, say, α1, α2, . . . , αn ∈ Λ such that X = ∪ni=1 Clψ(Uαi

). We have to show
that X = ∪ni=1 Cl

∗
ψ(Uαi

− Iαi
). Suppose x ∈ X = ∪ni=1 Clψ(Uαi

) such that x /∈ ∪ni=1 Cl
∗
ψ(Uαi

− Iαi
).

Then x /∈ Cl∗ψ(Uαi − Iαi) for each i = 1, 2, . . . , n, while for some αk ∈ {α1, α2, . . . , αn ∈ Λ},
x ∈ Clψ(Uαk

). Since x /∈ Cl∗ψ(Uαi
− Iαi

), we get Gi = Vi − Ii with Vi ∈ Ψm and Ii ∈ I such
that x ∈ Gi and Gi ∩ [Uαi

− Iαi
] = ∅ for i = 1, 2, . . . , n. Now, x ∈ G = G1 ∩ G2 ∩ · · · ∩ Gn =

[V1 ∩ V2 ∩ · · · ∩ Vn] − [I1 ∪ I2 ∪ · · · ∪ In] ∈ Ψ∗
ψ. Then this implies that G ∩ [Uαk

− Iαk
] = ∅ and

Uαk
∩ [V1 ∩ V2 ∩ · · · ∩ Vn] ̸= ∅ and so, Uαk

∩ [V1 ∩ V2 ∩ · · · ∩ Vn] /∈ I . To arrive at a contradiction, we
only show that Uαk

∩ [V1∩V2∩· · ·∩Vn] ⊆ Iαk
∪ [I1∪I2∪· · ·∪In] ∈ I . Let z ∈ Uαk

∩ [V1∩V2∩· · ·∩Vn].
Then as ∅ = G ∩ [Uαk

− Iαk
] = [(V1 ∩ V2 ∩ · · · ∩ Vn) − (I1 ∪ I2 ∪ · · · ∪ In)] ∩ [Uαk

− Iαk
], we have

z ∈ (I1∪ I2∪· · ·∪ In) or z ∈ Iαk
and hence z ∈ (I1∪ I2∪· · ·∪ In)∪ Iαk

. This completes the proof. □

Definition 4.1. A subset A in an ideal m-space (X,m,I ) is said to be Iψ-dense if Aψ = X.

An ideal m-space is ψ-hyperconnected if every nonempty ψ-open set is Iψ-dense in X.

Proposition 4.4. Let (X,m,I ) be an ideal m-space. Then the following properties are equivalent:

(1) Every nonempty ψ-open set is Iψ-dense;
(2) (X,m,I ) is ψ-hyperconnected and I is ψ-codense.

Proof. (1) ⇒ (2): Since every nonempty ψ-open set is Iψ-dense, then (X,m,I ) is ψ-hyperconnected.
Let A be ψ-open, nonempty and a member of the ideal. By (1), Aψ = X. On the other hand, since
A ∈ I , Aψ = ∅. Hence X = ∅. By the contradiction, I is ψ-codense.
(2) ⇒ (1): Let ∅ ≠ A ∈ Ψm. Let x ∈ X. Due to the ψ-hyperconnectedness of (X,m,I ), every ψ-open
neighborhood V of x meets A. Moreover, A∩V is a ψ-open non-ideal set, since I is ψ-codense. Thus
x ∈ Aψ. This shows that Aψ = X and A is Iψ-dense. □

Definition 4.2. An idealm-space (X,m,I ) is said to be Iψ-resolvable if X has two disjoint Iψ-dense
subsets.

Lemma 4.2. If (X,m,I ) is Iψ-resolvable, then I is ψ-codense.
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Proof. If X = A ∪ B, where A and B are disjoint Iψ-dense, then Aψ = X and Bψ = X. Therefore
Ψm ∩A /∈ I and Ψm ∩B /∈ I . Hence Ψm ∩ I = ∅, and I is ψ-codense. □

Proposition 4.5. Every Iψ-resolvable ideal m-space (X,m,I ) is I -resolvable.

Proof. If X = A ∪ B, where A and B are disjoint Iψ-dense, then Aψ = X and Bψ = X. Therefore
X = Aψ ⊆ A∗ and X = Bψ ⊆ B∗, we get X = A∗ and X = B∗. Hence X = A ∪ B, where A and B
are disjoint I -dense and (X, τ,I ) is I -resolvable. □

The collection of all Iψ-dense in (X,m,I ) is denoted by IψD(X,Ψm). The collection of all
m-dense sets in (X,m) is denoted by D(X,m). Now, we show that the collection of m-dense sets
in m-space (X,Ψ∗

ψ) and the collection of Iψ-dense sets in ideal m-space (X,m,I ) are equal if I is
ψ-codense.

Theorem 4.6. Let (X,m,I ) be an idealm-space. If I is ψ-codense, then IψD(X,Ψm) = D(X,Ψ∗
ψ).

Proof. Let D ∈ IψD(X,Ψm). Then Cl∗ψ(D) = D ∪ Dψ = X, i.e., D ∈ D(X,Ψ∗
ψ). Therefore

IψD(X,Ψm) ⊆ D(X,Ψ∗
ψ).

Conversely, let D ∈ D(X,Ψ∗
ψ). Then Cl∗ψ(D) = D ∪ Dψ = X. We prove that Dψ = X. Let

x ∈ X such that x /∈ Dψ. Therefore there exists ∅ ≠ U ∈ Ψm such that U ∩D ∈ I . Since U /∈ I ,
U∩(X−D) /∈ I , hence U∩(X−D) ̸= ∅. Let x0 ∈ U∩(X−D). Then x0 /∈ D and also x0 /∈ Dψ. Since
x0 ∈ Dψ implies that U ∩D /∈ I , this contradicts to U ∩D ∈ I . Thus x0 /∈ D ∪Dψ = Cl∗ψ(D) = X.
This is a contradiction. Therefore we obtain D ∈ IψD(X,Ψm). Thus D(X,Ψ∗

ψ) ⊆ IψD(X,Ψ).

Hence IψD(X,Ψm) = D(X,Ψ∗
ψ). □

Theorem 4.7. Let (X,m,I ) be an ideal m-space. Then for x ∈ X, X−{x} is Iψ-dense if and only
if fψ({x}) = ∅.

Proof. The proof follows from the definition of Iψ-dense sets, since fψ({x}) = X − (X − {x})ψ = ∅
if and only if X = (X − {x})ψ. □

Proposition 4.6. Let (X,m,I ) be an ideal m-space. A ⊈ Clψ[fψ(A)] if and only if there exist x ∈ A
and a ψ-open set Vx of x for which X −A is relatively with Iψ-dense in Vx.

Proof. Let A ⊈ Clψ[fψ(A)]. There exists x ∈ X such that x ∈ A, but x /∈ Clψ[fψ(A)]. Hence there
exists a ψ-open set Vx of x such that Vx ∩ fψ(A) = ∅. This implies that Vx ∩ [X − (X − A)ψ] = ∅
and so, Vx ⊆ (X − A)ψ. Let U be any nonempty ψ-open set in Vx. Since Vx ⊆ (X − A)ψ, therefore
U ∩ (X − A) /∈ I . This implies that X − A is relatively with Iψ-dense in Vx. The converse part is
obvious by reversing process. □

Proposition 4.7. Let (X,m,I ) be an ideal m-space with I is ψ-codense. Then fψ(A) ̸= ∅ if and
only if A contains a nonempty Ψ∗

ψ-interior.

Proof. Let fψ(A) ̸= ∅. By Theorem 2.2 (1), fψ(A) = ∪{U ∈ Ψm : U − A ∈ I } and there exists a
nonempty set U ∈ Ψm such that U − A ∈ I . Let U − A = P , where P ∈ I . Now, U − P ⊆ A. By
Theorem 1.3, U − P ∈ Ψ∗

ψ and A contains a nonempty Ψ∗
ψ-interior.

Conversely, suppose that A contains a nonempty Ψ∗
ψ-interior. Hence there exist U ∈ Ψm and

P ∈ I such that U − P ⊆ A. So, U − A ⊆ P . Let H = U − A ⊆ P , then H ∈ I . Hence
∪{U ∈ Ψm : U −A ∈ I } = fψ(A) ̸= ∅. □
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