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SOLUTION OF BOUNDARY VALUE PROBLEMS OF THE COUPLED THEORY

OF ELASTICITY FOR A POROUS BODY

IVANE TSAGARELI

Abstract. The boundary value problems of the coupled linear theory of elasticity are solved for
isotropic one-porous solids of specific shape. Special representations of a general solution of a system

of differential equations are constructed by means of elementary functions. With the help of these

representations, the solutions to the problems are presented explicitly, in the form of absolutely and
uniformly convergent series. The question of the uniqueness of regular solutions to the problems

under consideration is investigated.

1. Introduction

Of the theories describing the mechanical properties of single-porous materials, we may single out
the Biot theory of consolidation [1] based on the Darcy law concept and the Nunziato–Cowin theory
[10,17] based on the concept of volume fractions. In the Biot theory, the independent variables are the
displacement vector field and the average fluid pressure in the pore network. Information about the
Biot theory, generalizations of this theory and the main results can be found in [6,7,9,11,12,18,20,30].
In the Nunziato–Cowin theory, the independent variables are the displacement vector field and the
change in the volume fraction of pores. This theory describes materials with empty pores. The main
results in the theories for single-porous materials with voids, as well as the historical development of
the concept of volume fractions, can be found in [5, 6, 8, 13,14,18].

When studying many problems of a physical nature in porous media, we often encounter various
related processes [4, 19]. Therefore, it is natural to consider several related mechanical concepts at
the same time. In the works of Svanadze [21–24], a mathematical model is studied that describes
the coupled phenomena of the concepts of the Darcy law and the volume fraction of pores. It is
shown that this coupled linear model of porous elastic bodies can be established by combining three
variables: the displacement vector field, the change in the pore volume fraction, and the average
fluid pressure. In this theory, the effect of the relationship between fluid pressure in the pores and
the change in the volume fraction of pores is presented. The coupled linear theory of elasticity for
isotropic porous materials, in which the Darcy law concept and the volume fraction are related, is
considered in [2, 3, 15,16,22,25,26].

Along with the generalization and development in various directions of the linear theory of elas-
ticity for porous materials, much attention has recently been paid to mathematical research and the
construction of solutions to boundary value problems for specific areas. It is important to construct so-
lutions to the problems in an explicit form, which makes it possible to effectively carry out a numerical
analysis of the problem under study.

In this article, the Svanadze model [21] is considered in the two-dimensional case, in which the
Darcy law concepts and the area fraction of pores are related. The system of general governing
equations is expressed in terms of the displacement vector field, changes in the area fraction of pores
and fluid pressure in the network of pores. Special representations of the general solution of the
system of differential equations of the theory of elastic materials are constructed by using elementary
functions. This approach allows us to reduce the original system of equations to equations of a simple
structure. Using these representations, one can solve static two-dimensional boundary value problems
of the coupled theory of elasticity for a single-porous body.
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Section 2 presents the basic equations of the coupled theory of elasticity and formulates the main
boundary value problems of statics for a single-porous body.

In Section 3, we construct a general representation of a solution of the system of equations of
coupled elasticity theory by using harmonic, biharmonic and metaharmonic functions.

In Section 4, Green’s identities are established and uniqueness theorems are proved for solutions of
the formulated problems.

In Section 5, the problems posed are solved for an elastic single-porous disk. Solutions of the
problems are obtained in an explicit form, in the form of absolutely and uniformly convergent series.

2. Formulation of Boundary Value Problems

Let a finite isotropic elastic body D, with a closed boundary S, consist of empty pores. Let’s
designate by

∑
(x) the area of a macropoint (areal element) x = (x1, x2), and the area of pores at this

point by
∑

p(x). The value of σ(x), which is determined by the equality σ(x) =
Σp(x)∑

(x) , we call the

relative pore area (pore area share). In general, as a result of deformation of the body, the relative
area of the pores also changes. This change will be denoted by φ(x). Let us formulate the main
boundary value problems of the coupled linear theory of elasticity for one-porous media. Find in the
domain D a regular solution U(x) = (u(x), φ(x), p(x)), where U(x) ∈ C1(D) ∩ C2(D), D = D ∪ S,
satisfying the system of equations of the coupled theory of elasticity for the porous materials [21]:

µ∆u+ (λ+ µ) grad divu+ grad(bφ− βp) = 0,

(α∆− α1)φ− bdivu+mp = 0, (1)

k∆p = 0,

and on the border S one of the conditions

u(z) = f(z), φ(z) = f3(z), p(z) = f4(z) (2)

in problem I,

P(∂z,n)U(z) = f(z),
∂φ(z)

∂n
= f3(z),

∂p(z)

∂n
= f4(z) (3)

in problem II, where u = (u1, u2) is the displacement vector of the point x, x = (x1, x2) ∈ D; φ(x) is
the change in the relative pore area, and p(x) is the average pressure of the liquid in the pores; λ and
µ are the Lame constants, α, α1, β, b,m, k are the constants characterizing the porosity of the body,
z = (z1, z2) ∈ S, n(z) = (n1, n2) is the outer normal to S at the point z; f = (f1, f2), f1, f2, f3 and
f4 are the given functions on S.

R (∂x,n)U(x) =
(
P (∂x,n)U(x), α

∂φ(x)

∂n
,

∂p(x)

∂n

)
(4)

is the stress vector in a porous medium, where

P (∂x,n)U(x) = T (∂x,n)u(x) + bnφ(x)− βnp(x) (5)

and

T (∂x,n)u(x) = µ
∂u

∂n
+ λndiv u+ µ

2∑
i=1

ni gradui (6)

is the stress vector in the classical theory of elasticity.

3. General Representation of the Solution of the System of Equations

Acting on the first equation of system (1) by the operator div, we obtain a system of equations for
the desired values div, φ and p :

µ0∆divu+ b∆φ− β∆p = 0,

−bdivu+ (α∆− α1)φ+mp = 0, (7)

k∆p = 0,
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where µ0 = λ+ 2µ. The determinant of this system has the form det = −µ0αk∆∆(∆+ λ2
1),

λ2
1 = −µ0α1 − b2

µ0α
. (8)

Let us assume that
λ > 0, µ > 0, k > 0, α > 0, µ0α1 > b2. (9)

It is clear that

α1 > 0, λ2
1 < 0, λ1 = i

√
µ0α1 − b2

µ0α
= iλ0, i =

√
−1.

Since system (7) is homogeneous, we write

∆∆(∆ + λ2
1) divu = 0, ∆∆(∆+ λ2

1)φ = 0, ∆∆(∆+ λ2
1)p = 0. (10)

Taking into account (10), from (1)1, we obtain ∆∆2(∆ + λ2
1)u = 0. It follows from this equation

that the solution u(x) contains harmonic, biharmonic and metaharmonic functions. From the second
equation (10) we also conclude that the φ(x) representation contains harmonic and metaharmonic
functions; p(x) is a harmonic function.

By a direct verification, one can make sure that the solutions of equations (1)1 and (1)2 are,
accordingly, represented in the following form:

u(x) =c0u
0(x) + c1u

1(x),

φ(x) =φ1(x) + φ2(x),
(11)

where φ1 is a harmonic function, ∆φ1 = 0, and φ2 is a metaharmonic function with the parameter
λ2
1, (∆ + λ2

1)φ2 = 0; c0 and c1 are still unknown constants; u0 = (u0
1, u

0
2) is a general solution of the

homogeneous equation corresponding to equation (1)1 which can be represented as follows [27]:

u0(x) = grad
[
Φ1(x) + Φ2(x)

]
+ rotΦ3(x) + lΓ(x). (12)

Here, the functions Φ2 and Φ3 are interconnected as follows:

µ0 grad∆Φ2 + µ rot∆Φ3 = 0; (13)

∆Φ1 = 0, ∆∆Φ2 = 0, ∆∆Φ3 = 0; Φ1, Φ2, Φ3 are scalar functions; Γ = (Γ1,Γ2); Γ1 = x2, Γ2 = −x1,
div Γ = 0; l is a desired constant, rot =

(
− ∂

∂x2
, ∂
∂x1

)
.

u1 = (u1
1, u

1
2) is one of the particular solutions of the inhomogeneous equation (1)1:

u1(x) = − 1

µ0
grad

(
− b

λ2
1

φ2 + bφ0 − βp0

)
, (14)

where we choose φ0 and p0 such that ∆φ0 = φ1 and ∆p0 = p. Obviously, φ0 and p0 are biharmonic
functions: ∆∆φ0 = ∆φ1 = 0, ∆∆p0 = ∆p = 0. It is convenient to choose the φ1 function as follows:
φ1 = divu0 ≡ ∆Φ2. Then in (14), we can write: φ0 = Φ2. Now, let us set the values of the coefficients
c0 and c1. We act with the div operator on the first equality in (11) and the resulting expression is
comparable with the divu determined from equation (1)2. Taking into account (9), we get

c0 =
αλ2

1

b
, c1 = 1. (15)

By checking, we make sure that representations (11) satisfy equations (1).

4. Uniqueness Theorems

For a regular solution U(x) = (u(x), φ(x), p(x)), Green’s formulas can be written in the following
form: ∫

D

[
E(u,u) + (bφ− βp) divu

]
dx =

∫
S

u
[
T(∂yn)u+ (bφ− βp)n

]
dyS, (16)

∫
D

[
α| gradφ|2 + | grad p|2 +

[
α1 +

µ0α1 − b2

µ0

]
φ2

]
dx =

∫
S

[
αφ

∂φ

∂n
+ p

∂p

∂n

]
dyS, (17)
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where under conditions (9), the expression

E(u,u) = (λ+ µ)
(∂u1

∂x1
+

∂u2

∂x2

)2

+ µ
(∂u1

∂x1
− ∂u2

∂x2

)2

+ µ
(∂u1

∂x2
+

∂u2

∂x1

)2

is of a non-negative quadratic form. Suppose that each problem posed above admits two solutions.
For the difference of these solutions, the boundary conditions (2) and (3) will take the form:

u(z) = 0, φ(z) = 0, p(z) = 0 (18)

– for task I;

P(∂z,n)U(z) = 0,
∂φ(z)

∂n
= 0 (19)

– for task II, z ∈ S.
Taking into account (9), from (17), we get: φ = 0, grad p = 0. Therefore

φ(x) = φ1 + φ2 = k1, p(x) = k2, φ2(x) = 0, x ∈ D, (20)

k1 and k2 are arbitrary constants. Taking into account (18), from (16), we obtain φ(x)=0, E(u,u)= 0.
The solution of the equation E(u,u) = 0 has the form

u1(x) = −cx2 + q1, u2(x) = cx1 + q2, (21)

where c, q1, q2 are arbitrary constants. Conditions (18) are satisfied if c = q1 = q2 = 0. So, for the
difference of the above solutions, we get: u1(x) = u2(x) = φ(x) = p(x) = 0, x ∈ D.

Theorem 1. Problem I has a unique solution.

In the case of problem II, according to (20), the functions φ(x) and p(x) are constant on D, and
according to (19), they are also constant on S. For the difference of the solutions from (16), we obtain∫

D

[
E(u,u) + (bk1 − βk2) divu

]
dx = 0. (22)

Taking into account (19) and (20), from (5), we obtain

P (∂z, n)U(z) = T (∂z, n)u(z) + (bk1 − βk2)n(z) = 0.

So, for the difference of the solutions, we arrive at the problem of the classical theory of elasticity

µ∆u(x)+ (λ+ µ) grad divu(x) = 0, x ∈ D,

T(∂z,n)u(z) = −(bk1 − βk2)n(z), z ∈ S.

The solution to this problem has the form

u(x) = a1x+ b1, (23)

where a1 = − bk1−βk2

2(λ+µ) , and b1 is a two-component arbitrary vector. By checking, we make sure that

representation (23) satisfies equation (22). So, we have proved

Theorem 2. Two arbitrary solutions of Problem II are the vectors whose components are expressed
by formulas (23) and (20).

5. Problem Solving

Let the body D have the shape of a disk bounded by a circumference S of radius R and center
coinciding with the origin. Let us rewrite representations (11) in polar coordinates as normal and
tangent components:

un =
∂

∂r
(c0Φ1 + c2Φ2 + c3φ2 + c4p4)− c0

1

r
∂θΦ3,

us =
1

r

∂

∂θ
(c0Φ1 + c2Φ2 + c3φ2 + c4p4) + c0

∂

∂r
Φ3 − lr,

φ = φ1 + φ2,

c2 = −α1

b
, c3 =

b

µ0λ2
1

, c4 =
m

b
, r2 = x2

1 + x2
2.

(24)
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Using formula (13), the harmonic, biharmonic and metaharmonic functions contained in (24), in a
circular disk D can be represented as the following series [28,29]:

Φ1 =

∞∑
m=1

( r

R

)m(
Xm3 · νm(θ)

)
, Φ2 =

R2

4

∞∑
m=1

1

m+ 1

( r

R

)m+2(
Xm1 · νm(θ)

)
,

φ1 =

∞∑
m=1

( r

R

)m(
Xm1 · νm(θ)

)
, φ2 =

∞∑
m=1

Im(λ0r)
(
Xm1 · νm(θ)

)
,

Φ3 =
R2µ0

4µ

∞∑
m=1

1

m+ 1

( r

R

)m+2(
Xm1 · sm(θ)

)
, p =

∞∑
m=1

( r

R

)m(
Xm4 · νm(θ)

)
,

p0 =
R2

4

∞∑
m=1

1

m+ 1

( r

R

)m+2(
Xm1 · νm(θ)

)
,

(25)

where Xmk is the sought two-component vector, k = 1, 2, 3, 4, x = (r, θ), r2 = x2
1 + x2

2, νm(θ) =
(cosmθ, sinmθ), sm(θ) = (− sinmθ, cosmθ); Im(λ0r) is the Bessel function of the imaginary argu-
ment.

Problem I.
The boundary conditions (2) in terms of a normal and a tangent component have the form:

un(z) = fn(z), us(z) = fs(z), φ(z) = f3(z), p(z) = f4(z). (26)

Let the functions fn, fs, and f3, f4 be expanded into the Fourier series

fn(z) =
α0

2
+

∞∑
m=1

(
αm · νm(θ)

)
, fs(z) =

β0

2
+

∞∑
m=1

(
βm · sm(θ)

)
,

f3(z) =
γ0
2

+

∞∑
m=1

(
γm · νm(θ)

)
, f4(z) =

δ0
2

+

∞∑
m=1

(
δm · νm(θ)

)
,

where αm = (αm1, αm2), βm = (βm1, βm2), γm = (γm1, γm2) and δm = (δm1, δm2) are the Fourier
coefficients of the functions fn, fs, f3 and f4, respectively;

αm1 =
1

π

2π∫
0

fn(ω) cosmωdω, αm2 =
1

π

2π∫
0

fn(ω) sinmωdω.

The components of the remaining vectors βm, γm and δm are expressed similarly, m = 0, 1, 2, . . . .
Substitute expressions (25) into (24) and pass to the limit as r → R. From (26), for each m, we

obtain the system of linear algebraic equations. For m = 0, we have

c2
2
X01 + c3λ0I

′
0(λ0R)X02 +

c4
2
X04 =

α0

2
,

c0µ0R

2µ
X01 −RX03 =

β0

2
,

X01 + I0(λ0R)X02 =
γ0
2
, X04 =

δ0
2
,

(27)

where X03 = l, I ′m(λ0r) =
∂

∂(λ0r)
Im(λ0r). For each m = 1, 2, . . . , we obtain

R [c2µ(m+ 2) + c0µ0m]

4µ(m+ 1)
Xm1 + c3λ0I

′
m(λ0R)Xm2 +

c0m

R
Xm3 +

c4R(m+ 2)

4(m+ 1)
Xm4 = αm,

R [c2µ+ c0m(m+ 2)]

4µ(m+ 1)
Xm1 +

c3m

R
Im(λ0R)Xm2 +

c0m

R
Xm3 +

c4m

R
Xm4 = βm, (28)

Xm1 + Im(λ0R)Xm2 = γm, Xm4 = δm.

The determinants of systems (27) and (28) are nonzero, since, by Theorem 1, problem I has a unique
solution. Let us substitute the solutions of systems (27) and (28) into formulas (25). We substitute the
obtained values of the solutions into formulas (12) and (14), and assume that φ0 = Φ2. Formulas (11)
and (14) determine the solution of the original problem I, i.e., the values of the functions u(x), φ(x)
and p(x).
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Problem II.
Using representations (11) and (25), problem II is solved similarly. The boundary conditions (3)

in terms of a normal and a tangent component have the form:

P(∂z,n)U(z)n = fn(z), P(∂z,n)U(z)s = fs(z),

α
∂

∂r
φ(z)

r=R
= f3(z),

∂

∂r
p(z)

r=R
= f4(z),

(29)

where

P(∂x,n)U(x)n = µ0
∂

∂r
un(x) +

λ

r

∂

∂θ
us(x) + bφ(x)− βp(x),

P(∂x,n)U(x)s = µ
[ ∂

∂r
us(x) +

1

r

∂

∂θ
un(x)

]
, x ∈ D.

(30)

Let the functions fn, fs and f3, f4 be expanded into Fourier series, where αm, βm, γm and δm are the
Fourier coefficients of the functions fn, fs, f3 and f4, respectively. We substitute expressions (24) and
(25) into (29) and pass to the limit as r → R. For each m, with respect to the sought for values of
Xmk, we obtain a system of linear algebraic equations, k = 1, 2, 3, 4. For m = 0, we have(1

2
c2µ0 + b

)
X01 +

[
c3µ0λ

2
0I

′′
0 (λ0R) + bI0(λ0R)

]
X02(1

2
µ0 − β

)
+X04 =

α0

2
,

c0
2
X01 − µX03 =

β0

2
, (31)

αλ0I
′
0(λ0R)X02 =

γ0
2
, 0 ·X04 =

δ0
2
.

Under the boundary conditions (3), for the harmonic function p(z), we have:

δ0 =
1

2π

2π∫
0

f4(ω)dω =
1

2πR

∫
S

∂

∂n
pdl = 0,

(dl is the length element of the circumference S, dl = Rdω). Then from the last equation of system
(31), we obtain: 0 ·X04 = 0, i.e., X04 is an arbitrary constant.

For each m = 1, 2, . . . , we obtain[c2µ0(m+ 2)

4
+

c0µ0Rm

4µ
− c2λm

2

4(m+ 1)
− c0λµ0m(m+ 2)

4µ(m+ 1)
+ b

]
Xm1

+
[
c3λ

2
0I

′′
m(λ0R)− c3λm

2

R2
Im(λ0R) + bIm(λ0R)

]
Xm2

+
[c0µ0m(m− 1)

R2
− c0λm

2

R2

]
Xm3 +

[c0µ0(m+ 2)

4
− c4λm

2

4(m+ 1)
− β

]
Xm4 = αm,[c0µ0(m+ 2)

4µ
+

c0µ0m
2

4µ(m+ 1)
+

c2m

4
+

c2m(m+ 2)

4(m+ 1)
+ b

]
Xm1 (32)

+
c3m

R2
[2RI ′m(λ0R)−mIm(λ0R)]Xm2

+
1

R2

[
2c3mRλ0I

′
m(µ0R)− c3m

2

R2
Im(λ0R)

]
Xm3 +

c4m
4

[
1 +

m+ 2

m+ 1

]
Xm4 =

βm

µ
,

m

R
Xm1 + λ0I

′
m(λ0R)Xm2 =

γm
α

,
m

R
Xm4 = δm.

Let us substitute the solutions of systems (31) and (32) into formulas (25). We substitute the
obtained values of the solutions into formulas (12) and (14). Formulas (11) and (14) determine the
solution of the original problem II, i.e., the values of the functions u(x), φ(x) and p(x).

In order for the resulting series to converge absolutely and uniformly, it suffices to require: in
problem I: f ∈ C3(S), f ∈ C3(S); in problem II: f ∈ C2(S), f ∈ C2(S).
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6. Concluding Remarks

In the present paper, the coupled linear theory of elasticity for isotropic porous solids is considered.
The system of general governing equations is expressed in terms of the displacement vector field,
changes in the area fraction of pores and fluid pressure in the network of pores. The following results
are presented: a) A general representation of the solution of the system of equations of the coupled
theory of elasticity is constructed by using elementary functions. b) The boundary value problems of
the coupled linear theory of elasticity in the two-dimensional case are solved for isotropic, one-porous
solids of specific shape. c) For a regular solution of the system of basic differential equations, Green’s
formulas are obtained and the uniqueness theorems for solutions to the problems posed are proved. d)
The stated problems are solved for an elastic one-porous disk. Solutions to the problems are obtained
in an explicit form, in the form of absolutely and uniformly convergent series. e) The application
of the method under consideration makes it possible to study a wide class of problems for systems
of equations of the coupled theory of elasticity or thermoelasticity for materials with one or double
porosity; build explicit solutions of the main boundary value problems not only for a circle, but also
for a ring, a plane with a round hole, etc. f) It is expected that the proposed method can be applied
primarily to the problems in mechanics, as well as to the problems of computational and applied
mathematics.
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