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ON |A|k SUMMABILITY OF FACTORABLE FOURIER SERIES

MEHMET ALI SARIGÖL

Abstract. Some results on the absolute weighted summability of factored Fourier series have re-

cently been proved by Bor [1]. In this paper, using an arbitrary triangle matrix instead of weighted
mean matrix, we extend his results to the absolute matrix summability and give some its applica-

tions.

1. Introduction

Consider an infinite series Σav with the sequence of partial sums s = (sn) and let (pn) be a sequence
of positive numbers with Pn = p0+p1+· · ·+pn → ∞. The series Σav is absolutely weighted summable∣∣N, pn

∣∣
k
, k ≥ 1, if (see [1])

∞∑
n=1

(Pn/pn)
k−1 |Tn − Tn−1|k < ∞,

where T is
(
N, pn

)
-weighted mean of the sequence s, i.e., Tn = (1/Pn)

∑n
v=0 pvsv. This definition was

extended by the author to the matrix summability (see [15, 17, 18]) as: let A = (anv) be a normal
matrix, i.e., a lower triangular matrix of nonzero diagonal entries. A series is summable |A|k, k ≥ 1,
if

∞∑
n=1

|ann|1−k |An(s)−An−1(s)|k < ∞,

where (An(s)) is an A-transform sequence of sequence s, i.e.,

An(s) =

n∑
v=0

anvsv, n ≥ 0.

Note that in a special case, where A is a weighted mean and a Cesàro matrix of order α > −1,
the method |A|k reduces to the methods

∣∣N, pn
∣∣
k
and |C,α, (α− 1) (1− 1/k)|k, k ≥ 1, in Flett’s

notation [8], respectively, where anv = pv/Pn and anv = Eα−1
n−v/E

α
n , 0 ≤ v ≤ n, and zero otherwise.

Here, also

Eα
0 = 0, Eα

n =
(α+ 1) (α+ 2) · · · (α+ n)

n!
∼=

nα

Γ (α+ 1)
, n ≥ 1.

By tn we denote a Cesàro mean (C, 1) of the sequence (nan) and write ∆2λn = ∆(∆λn) , where
∆λn = λn − λn+1 for any sequence λ = (λn) and n ≥ 0. Also, the sequence (λn) is said to be of
bounded variation denoted by (λn) ∈ BV , if (∆λn) is an absolutely convergent series.

Let f be a periodic function with period 2π and Lebesgue integrable over (−π, π). The Fourier
series of f is defined by

f ∼ 1

2
a0 +

∞∑
n=1

an cosnx+ bn sinnx =

∞∑
n=1

cn(x),

where

a0 =
1

π

π∫
−π

f(x)dx, an =
1

π

π∫
−π

f(x) cosnx dx, bn =
1

π

π∫
−π

f(x) sinnx dx,
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and we also write

ϕα(t) =
α

tα

t∫
0

(t− u)α−1ϕ(u)du, α > 0,

where

ϕ(t) =
1

2
[f(x− t) + f(x+ t)] .

Fourier series and summability theory play important role in analysis and applied mathematics,
especially in quantum mechanics and approximation theory. The summability factors of infinite series
and Fourier series are one of their oldest research topics that has intensively been studied by now.
For more information on the topic, the readers may refer to papers [1–4, 6, 7, 10–14, 16–22] et al.The
following results have recently been proved by Bor [1].

Theorem 1.1. Let (pn) be a positive sequence with Pn = p0 + p1 + · · · + pn → ∞ as n → ∞ and
Xn =

∑n
v=0 pv/Pv for n ≥ 0. Then the series Σλvav is summable

∣∣N, pn
∣∣
k
, k ≥ 1, if for λn → 0,

Pn = O(npn), the conditions

∞∑
v=1

vXv

∣∣∆2λv

∣∣ < ∞,

n∑
v=1

pv
Pv

|tv|k

Xk−1
v

= O(Xn) as n → ∞

are satisfied.

Theorem 1.2. The factored Fourier series Σanλn is summable
∣∣N, pn

∣∣
k
, k ≥ 1, if ϕ1(t) ∈ BV and

the conditions of Theorem 1.1 are satisfied.

2. Main Results

In this paper, using an arbitrary triangle matrix instead of a weighted mean matrix, we extend
Theorem 1.1 and Theorem 1.2 to the summability method |A|k, k ≥ 1, and also give some of its
applications.

Let A = (anv) be a normal matrix, we define the normal semi-matrices A = (anv) and Â = (ânv)
by

anv =

n∑
r=v

anv, for n, v ≥ 0,

ânv = anv − an−1,v and â00 = a00 = a00.

Then it may be noticed that Â and A are series-to-series and series-to-sequence transformations,
respectively, and also,

An(s) =

n∑
v=0

anvav and Ân(s) = An(s)−An−1(s), n ≥ 0.

So, we establish the following

Theorem 2.1. Suppose that A is a positive normal matrix such that

(vavv)
−1 = O(1) as n → ∞, (2.1)

anv ≤ an−1,v for 0 ≤ v ≤ n− 1, (2.2)

an0 = 1 for n ≥ 0, (2.3)

n−1∑
v=1

avvân,v+1 = O(ann) as v → ∞. (2.4)



ON |A|k SUMMABILITY OF FACTORABLE FOURIER SERIES 139

The series Σλvav is then summable |A|k, k ≥ 1, if the following conditions:

λn → 0 as n → ∞, (2.5)

ln =

n∑
v=1

avv → ∞ as n → ∞,

∞∑
v=1

vlv
∣∣∆2λv

∣∣ < ∞, (2.6)

n∑
v=1

avv |tv|k

lk−1
v

= O(ln) as n → ∞

are satisfied. Note that condition (2.4) can be omitted for k = 1.
Also, if ϕ1 ∈ BV , then it is well known (see [6]) that tn = O(1), where tn is the Cesàro mean of

(C; 1) of the sequence (nan). Hence, the following result is immediately obtained.

Theorem 2.2. The factored Fourier series Σanλn is summable |A|k, k ≥ 1, if ϕ1(t) ∈ BV and the
conditions of Theorem 1.2 hold.

It may be noticed that in the special case A =
(
N, pn

)
, Theorem 2.1 and Theorem 2.2 are reduced

to Theorem 1.1 and Theorem 1.2, respectively.
We require the following lemma to prove our theorems.

Lemma 2.3. Under the conditions of Theorem 2.1, we have

ân,v ≥ 0 for n, v ≥ 0,

an,v ≤ 1 for n, v ≥ 0, (2.7)

n−1∑
v=1

|anv − an−1,v| = O(ann) as n → ∞, (2.8)

|λn| |ln| = O(1) as n → ∞, (2.9)
∞∑
v=1

lv |∆λv| < ∞, (2.10)

nln |∆λn| = O(1) as n → ∞. (2.11)

Proof. It can be easily obtained by (2.2) and (2.3), and for 0 ≤ v ≤ n− 1,

ânv = an0 − an−1,0 +

v−1∑
r=0

(an−1,r − anr) =

v−1∑
r=0

(an−1,r − anr) ≥ 0,

anv = 1−
v−1∑
r=0

anr ≤ 1,

n−1∑
v=1

|anv − an−1,v| = (1− 1 + an,0 − an−1,0 + ann) ≤ ann.

Also, conditions (2.11), (2.10) and (2.9) are deduced by (2.6) as follow:

nln |∆λn| ≤
∞∑

v=n

vlv
∣∣∆2λv

∣∣ ≤ ∞∑
v=1

vlv
∣∣∆2λv

∣∣ < ∞,

n∑
v=1

lv |∆λv| ≤
n−1∑
v=1

∣∣∆2λv

∣∣ v∑
r=1

lr + |∆λn|
n∑

r=1

lr

≤
n−1∑
v=1

vlv
∣∣∆2λv

∣∣+ nln |∆λn| = O(1) as n → ∞,
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ln |λn| ≤
∞∑

v=n

lv |∆λv| ≤
∞∑
v=1

lv |∆λv| < ∞.

Proof of Theorem 2.1. By An(s), we denote an A-transform of the series Σλvav. We have

An(s) =

n∑
v=0

anv

v∑
r=0

λrar =

n∑
v=0

anvλvav

which implies

Ân(s) = An(s)−An−1(s) =

n∑
v=1

ânvλvav.

Applying Abel’s summation to this sum, we arrive at

n∑
v=1

ânv
v

vλvav =

n−1∑
v=1

∆
( ânvλv

v

) v∑
r=1

rar +
ânnλn

n

n∑
r=1

rar

=

n−1∑
v=1

(v + 1) tv∆
( ânvλv

v

)
+

ânnλn (n+ 1) tn
n

.

By the formula for the difference of the products of sequences (see [9]), we obtain

∆
( ânvλv

v

)
=

λv

v
∆(ânv) + ân,v+1∆

(λv

v

)
= (anv − an−1,v)

λv

v
+ ân,v+1

∆λv

v
+

ân,v+1λv+1

v(v + 1)

and hence

An(s)−An−1(s) =
annλn(n+ 1)tn

n
+

n−1∑
v=1

(anv − an−1,v) tvλv
v + 1

v

+

n−1∑
v=1

ân,v+1∆λvtv
v + 1

v
+

n−1∑
v=1

ân,v+1

v
λv+1tv

= L(1)
n + L(2)

n + L(3)
n + L(4)

n , say.

By Minkowski’s inequality, it suffices to prove the theorem
∞∑

n=1

a1−k
nn

∣∣L(r)
n

∣∣k < ∞, r = 1, 2, 3, 4.

Now, by (2.9) and (2.10), we get
m∑

n=1

a1−k
nn

∣∣L(1)
n

∣∣k =

m∑
n=1

a1−k
nn

∣∣∣annλn(n+ 1)tn
n

∣∣∣k
= O(1)

m∑
n=1

ann |λntn|k = O(1)

m∑
n=1

ann |λn|
|tn|k

lk−1
n

= O(1)

{m−1∑
n=1

∆ |λn|
n∑

v=1

avv |tv|k

lk−1
v

+ |λm|
m∑

v=1

avv |tv|k

lk−1
v

}

= O(1)

{m−1∑
n=1

ln |∆λn|+ |λm| lm
}

= O(1) as n → ∞.

Applying Hölder’s inequality for k > 1 (clearly, k = 1), it follows from (2.8), as in L
(1)
n , that

m+1∑
n=2

a1−k
nn

∣∣L(2)
n

∣∣k = O(1)

m+1∑
n=2

a1−k
nn

{ n−1∑
v=1

|anv − an−1,v| |λvtv|
}k
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= O(1)

m+1∑
n=2

n−1∑
v=1

|anv − an−1,v| |λvtv|k
{

1

ann

n−1∑
v=1

|anv − an−1,v|
}k−1

= O(1)

m+1∑
n=2

n−1∑
v=1

|anv − an−1,v| |λvtv|k

= O(1)

m∑
v=1

|λvtv|k
m∑

n=v+1

(an−1,v − anv)

= O(1)

∞∑
v=1

avv |λvtv|k < ∞.

Also, using (2.4) and (2.7), we have

m+1∑
n=2

a1−k
nn

∣∣L(3)
n

∣∣k = O(1)

m+1∑
n=2

a1−k
nn

{ n−1∑
v=1

avvân,v+1
|∆λvtv|
avv

}k

= O(1)

m+1∑
n=2

n−1∑
v=1

avvân,v+1

( |∆λvtv|
avv

)k
{

1

ann

n−1∑
v=1

avvân,v+1

}k−1

= O(1)

m∑
v=1

avv

( |∆λvtv|
avv

)k m∑
n=v+1

ân,v+1

= O(1)

m∑
v=1

avv

( |∆λvtv|
avv

)k

am,v+1 = O(1)

m∑
v=1

v |∆λv|
avv |tv|k

Xk−1
v

= O(1)

{m−1∑
v=1

∆(v |∆λv|)
v∑

r=1

arr |tr|k

Xk−1
r

+ |m∆λm|
m∑
r=1

arr |tr|k

rXk−1
r

}

= O(1)

{m−1∑
v=1

vMv

∣∣∆2λv

∣∣+ m−1∑
v=1

Mv |∆λv|+mMm |∆λm|
}

= O(1) as n → ∞

by virtue of (2.6), (2.10) and (2.11).

Finally, as in L
(3)
n , it follows from (2.1) that

m+1∑
n=2

a1−k
nn

∣∣L(4)
n

∣∣k = O(1)

m+1∑
n=2

a1−k
nn

{ n−1∑
v=1

avvân,v+1
|λv+1tv|
vavv

}k

= O(1)

m+1∑
n=2

n−1∑
v=1

avvân,v+1

( |λv+1tv|
vavv

)k
{

1

ann

n−1∑
v=1

avvân,v+1

}k−1

= O(1)

m∑
v=1

avv

( |λv+1tv|
vavv

)k m∑
n=v+1

ân,v+1

= O(1)

m∑
v=1

( 1

vavv

)k

avv (|λv+1tv|)k an,v+1

= O(1)

m∑
v=1

|λv+1|
avv |tv|k

lk−1
v

= O(1)

{m−1∑
v=1

|∆λv+1|
v∑

r=1

arr |tr|k

lk−1
r

+ |λm+1|
m∑
r=1

arr |tr|k

lk−1
r

}
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= O(1)

{m−1∑
v=1

|∆λv+1| lv+1 + lm+1 |λm+1|
}

= O(1) as n → ∞.

which completes the proof. □

It should be remarked that to Theorem 2.1 and to Theorem 2.2 can be applied various matrices
other than weighted mean matrices. In fact, we choose the matrix A as the matrix of Cesàro mean of
order 0 < α < 1. Then, as is well known (see [5]),

anv = Eα
n−v/A

α
n and ânv = vEα−1

n−v/nE
α
n .

Also, by considering Eα
n ∼ nα/Γ(α + 1) (see [8]), conditions (2.1), (2.2), (2.3) and (2.4) are easily

verified. Hence the following results are immediately obtained.

Corollary 2.4. i) Let 0 < α < 1. Then the series Σλvav is summable |C,α, (α− 1)(1− 1/k)|k,
k ≥ 1, if condition (2.5) and the following conditions:

∞∑
v=1

v2−α
∣∣∆2λv

∣∣ < ∞,

n∑
v=1

v(α−1)k−2α+1−k |tv|k = O(n1−α) as n → ∞

hold.
ii) Let α = 1. Then the series Σλvav is summable |C, 1|k, k ≥ 1, if condition (2.5) and the following

conditions:
∞∑
v=2

v log v
∣∣∆2λv

∣∣ < ∞,

n∑
v=2

v−1 (log v)
1−k |tv|k = O(log n) as n → ∞

hold.

Corollary 2.5. Let 0 < α ≤ 1. Then the factored Fourier series Σavλv is summable |C,α,
(α− 1)(1− 1/k)|k, k ≥ 1, if ϕ1(t) ∈ BV and the conditions of Corollary 2.4 hold.

Corollary 2.4 (ii) was also given by Mazhar [13].
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21. Ş. Yıldız, On the absolute matrix summability factors of Fourier series. Math. Notes 103 (2018), no. 1-2, 297–303.
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