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CAPACITY INEQUALITIES AND LIPSCHITZ CONTINUITY OF MAPPINGS

RUSLAN SALIMOV1, EVGENY SEVOST’YANOV2,3 AND ALEXANDER UKHLOV4

Abstract. In this paper, we consider homeomorphic mappings defined by p-capacity inequalities

in domains of Rn. In the case p = n − 1, we prove the Lipschitz continuity of such mappings, i.e.,
the continuity that extends the result due to F. W. Gehring.

1. Introduction

This article is devoted to the study of mappings defined by capacity (moduli) inequalities, which
have been actively studied in the recent years (see, for example, [1, 2, 4, 6, 14, 20] and [18]). In this

article, we consider homeomorphic mappings φ : Ω → Ω̃, where Ω, Ω̃ are the domains in Rn, defined
by the p-capacity inequalities

capp(φ(F0), φ(F1); Ω̃) ⩽ Kp
p capp(F0, F1; Ω), 1 < p <∞. (1.1)

In the case p = n, we have usual quasiconformal mappings [22] and in the case p ̸= n, this class
of mappings was introduced in [4]. In accordance with [28, 29], we define a homeomorphic mapping

φ : Ω → Ω̃ as the mapping of bounded p-capacitory distortion if inequality (1.1) holds for any
condenser (F0, F1) ⊂ Ω.

The first topic of the article is devoted to the characterization of homeomorphic mappings defined
by p-capacity inequalities (1.1) in terms of the inner p-dilatation. In the case of mappings with the
conformal moduli inequalities of the Poletsky type, the estimates of the inner dilatation were obtained
in [19]. Similar estimates of dilatation in the case of the p-modulus, n − 1 < p ⩽ n, were obtained
in [5] and [7] for respectively homeomorphisms and mappings with a branching. In this article, we
prove:

Let φ : Ω → Ω̃ be a homeomorphic mapping. Then φ is the mapping of bounded p-capacitory distortion,
p > n− 1, if and only if φ ∈W 1

p′,loc(Ω), p
′ = p/(p− n+ 1), has a finite distortion and

ess sup
x∈Ω

(
|J(x, φ)|
l(Dφ(x))p

) 1
p

= Kp <∞, p > n− 1.

The second topic of the article is devoted to the continuity of mappings in the sense of Lipschitz.
In [4], the Lipschitz continuity of the mapping of bounded p-capacitory distortion is proved in the
case n− 1 < p < n and an example that in the case 1 < p < n− 1 the Lipschitz continuity does not
hold, is given. The results of such a type have been obtained for the mappings of finite distortion
with some restrictions (see, e.g., [12, 14] and [17]). In the present article, using the methods of the
composition operators theory [28,29], we study analytical properties of these mappings and prove the
Lipschitz continuity in the limit case p = n− 1.

Let φ : Ω → Ω̃ be a homeomorphic mapping of bounded (n− 1)-capacitory distortion. Then φ belongs
to the Sobolev space L1

∞(Ω).

This result extends the result by F. W. Gehring [4] to the limit case p = n− 1.
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2. Composition Operators and Capacity Inequalities

2.1. Sobolev spaces and composition operators. Let Ω be an open subset of Rn, n ⩾ 2, the
Sobolev space W 1

p (Ω), 1 ⩽ p ⩽ ∞, is defined as a Banach space of locally integrable weakly differen-
tiable functions f : Ω → R equipped with the following norm:

∥f |W 1
p (Ω)∥ = ∥f | Lp(Ω)∥+ ∥∇f | Lp(Ω)∥.

The Sobolev spaceW 1
p,loc(Ω) is defined as a space of functions f ∈W 1

p (U) for every open and bounded

set U ⊂ Ω such that U ⊂ Ω.
The homogeneous seminormed Sobolev space L1

p(Ω), 1 ⩽ p ⩽ ∞, is defined as a space of locally
integrable weakly differentiable functions f : Ω → R equipped with the following seminorm:

∥f | L1
p(Ω)∥ = ∥∇f | Lp(Ω)∥.

Recall that in Lipschitz domains Ω ⊂ Rn, n ⩾ 2, Sobolev spaces W 1
p (Ω) and L

1
p(Ω) coincide (see, for

example, [15]).
In accordance with the non-linear capacity theory [16], we consider the elements of Sobolev spaces

W 1,p(Ω) as classes of equivalence up to a set of p-capacity zero [15].

Let Ω and Ω̃ be the domains in the Euclidean space Rn. Then a homeomorphic mapping φ : Ω → Ω̃
belongs to the Sobolev spaceW 1

p,loc(Ω) (L
1
p(Ω)) if its coordinate functions belong toW

1
p,loc(Ω) (L

1
p(Ω)).

In this case, the formal Jacobi matrix Dφ(x) and its determinant (Jacobian) J(x, φ) are well defined
at almost all points x ∈ Ω. We denote

|Dφ(x)| := max
|v|=1

|Dφ(x) · v| and l(Dφ(x)) := min
|v|=1

|Dφ(x) · v|

the maximal dilatation of the linear operator Dφ(x) and the minimal dilatation of the linear operator
Dφ(x), respectively.

Let Ω and Ω̃ be the domains in Rn, n ⩾ 2. Then a homeomorphic mapping φ : Ω → Ω̃ induces a
bounded composition operator [28,29]

φ∗ : L1
p(Ω̃) → L1

q(Ω), 1 ⩽ q ⩽ p ⩽ ∞,

by the composition rule φ∗(f) = f ◦φ, if for any function f ∈ L1
p(Ω̃), the composition φ∗(f) ∈ L1

q(Ω)
is defined quasi-everywhere in Ω and there exists a constant Kp,q(Ω) <∞ such that

∥φ∗(f) | L1
q(Ω)∥ ⩽ Kp,q(Ω)∥f | L1

p(Ω̃)∥.
The problem of the characterization of mappings that generate bounded composition operators

on Sobolev spaces traces back to the Reshetnyak Problem (1968) and is closely connected with
the quasiconformal mappings theory [24]. The solution of this problem is given by the following
theorem [21] (see also [28,29] and [10] for the case p = ∞).

Recall that a p-distortion of a mapping φ at a point x ∈ Ω is defined as

Kp(x) = inf
{
k(x) : |Dφ(x)| ⩽ k(x)|J(x, φ)|

1
p , x ∈ Ω

}
.

In the case p = n, we have the usual conformal dilatation and in the case p ̸= n, the p-dilatation arises
in [4] (see also [23]).

Theorem 2.1. Let φ : Ω → Ω̃ be a homeomorphic mapping between two domains Ω and Ω̃. Then φ
generates a bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), 1 ⩽ q ⩽ p ⩽ ∞,

if and only if φ is a Sobolev mapping of the class W 1
q,loc(Ω; Ω̃), has a finite distortion and

Kp,q(φ; Ω) = ∥Kp | Lκ(Ω)∥ <∞,

where 1/q − 1/p = 1/κ (κ = ∞, if p = q).

The following theorem gives the properties of mappings, which are inverse to mappings generating
bounded composition operators on Sobolev spaces.
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Theorem 2.2. Let a homeomorphic mapping φ : Ω → Ω̃ between two domains Ω and Ω̃ generate a
bounded composition operator

φ∗ : L1
p(Ω̃) → L1

q(Ω), n− 1 < q ⩽ p <∞.

Then the inverse mapping φ−1 : Ω̃ → Ω generates a bounded composition operator(
φ−1

)∗
: L1

q′(Ω) → L1
p′(Ω̃),

where p′ = p/(p− n+ 1), q′ = q/(q − n+ 1).

2.2. Capacity inequalities. Recall the notion of the variational p-capacity [9]. The condenser in the
domain Ω ⊂ Rn is the pair (F0, F1) of connected closed relatively to Ω sets F0, F1 ⊂ Ω. A continuous
function u ∈ L1

p(Ω) is called an admissible function for the condenser (F0, F1) if the set Fi ∩ Ω is
contained in some connected component of the set Int{x|u(x) = i}, i = 0, 1. We call p-capacity of the
condenser (F0, F1) relatively to domain Ω the value

capp(F0, F1; Ω) = inf ∥u|L1
p(Ω)∥p,

where the greatest lower bond is taken over all admissible for the condenser (F0, F1) ⊂ Ω functions.
If the condenser has no admissible functions, we put the capacity is equal to infinity.

Let φ : Ω → Ω̃ be a homeomorphic mapping between two domains Ω and Ω̃. Then φ is called the
mapping of bounded p-capacitory distortion if the inequality

capp(φ(F0), φ(F1); Ω̃) ⩽ Kp
p capp(F0, F1; Ω), 1 < p <∞ (2.1)

holds for any condenser (F0, F1) ⊂ Ω.

Theorem 2.3. Let φ : Ω → Ω̃ be a homeomorphic mapping. Then φ is the mapping of bounded p-
capacitory distortion, p > n− 1, if and only if φ ∈W 1

p′,loc(Ω), p
′ = p/(p−n+1), has finite distortion

and

ess sup
x∈Ω

(
|J(x, φ)|
l(Dφ(x))p

) 1
p

= Kp <∞, p > n− 1.

Proof. Consider the inverse mapping ψ := φ−1 : Ω̃ → Ω. Inequality (2.1) is equivalent to the inequality

capp(ψ
−1(F0), ψ

−1(F1); Ω̃) ⩽ Kp
p capp(F0, F1; Ω).

So, by [21,26], the inverse mapping φ−1 generates a bounded composition operator(
φ−1

)∗
: L1

p(Ω) → L1
p(Ω̃)

and is a p-quasiconformal mapping φ−1 : Ω̃ → Ω [8, 21]. Hence the mapping φ−1 has the following
properties [21,27]:

1. The mapping φ−1 ∈W 1
p,loc(Ω̃), has finite distortion and(

|Dφ−1(y)|p

|J(y, φ−1)|

) 1
p

⩽ Kp for almost all y ∈ Ω̃.

2. The mapping φ−1 is differentiable a.e. in Ω̃.

3. The mapping φ−1 possesses the Luzin N−1-property if n − 1 < p < n (φ possesses the Luzin
N -property).

4. The mapping φ−1 possesses the Luzin N -property if n < p < ∞ (φ possesses the Luzin N−1-
property).

5. The mapping φ−1 possesses the Luzin N -property and the Luzin N−1-property if p = n [22]
(φ possesses the Luzin N−1-property).

Now, by Theorem 2.2, the mapping φ generates a bounded composition operator

φ∗ : L1
p′(Ω̃) → L1

p′(Ω), p′ = p/(p− n+ 1).
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Hence the mapping φ ∈W 1
p′,loc(Ω), has finite distortion and is differentiable a.e. in Ω [21,26].

Denote Z̃ = {y ∈ Ω̃ : J(y, φ−1) = 0}. The set S̃ ⊂ Ω̃, |S̃| = 0, is the set such that on set Ω̃ \ S̃, the
mapping φ−1 : Ω̃ → Ω has the Luzin N -property [13].

Then by the change of variables formula [3, 13], |φ−1(Z̃ \ S̃)| = 0 and on the set φ−1(S̃ \ Z̃), we
have J(x, φ) = 0 for almost all x ∈ φ−1(S̃ \ Z̃). Hence, for almost all x ∈ Ω \ φ−1(Z̃ ∪ S̃), we have

J(x, φ)| = |J(y, φ−1)|−1, y = φ(x),

and
l(Dφ(x)) = |Dφ−1(y)|−1, y = φ(x).

Hence, by setting (
|J(x, φ)|
l(Dφ(x))p

) 1
p

= 0

on the set Z = {x ∈ Ω : J(x, φ) = 0}, we obtain

ess sup
x∈Ω

(
|J(x, φ)|
l(Dφ(x))p

) 1
p

= ess sup
y∈Ω̃

(
|Dφ−1(φ−1(y))|p

|J((φ−1(y)), φ−1)|

) 1
p

⩽ Kp <∞. □

Remark 2.4. The assertion of Theorem 2.3 is correct in the case 1 ⩽ p ⩽ n − 1 with additional
assumptions that φ ∈W 1

1,loc(Ω) and φ is differentiable a.e. in Ω.

3. On the Lipschitz Continuity of Mapping of Bounded p-capacitory Distortion

Now, we consider the Lipschitz continuity of homeomorphic mappings of bounded p-capacitory
distortion in the case p = n− 1.

Let (F0, F1) be a condenser in the domain Ω ⊂ Rn such that capp(F0, F1; Ω) <∞. Suppose that a

function v belonging to L1
p(Ω) is admissible for the condenser (F0, F1). Then v is called an extremal

function for the condenser (F0, F1) [25] if∫
Ω\(F0∪F1)

|∇v|p dx = capp(F0, F1; Ω).

Note that for any 1 < p <∞ and any condenser (F0, F1) with the capp(F0, F1; Ω) <∞, the extremal
function exists and is unique.

The set of extremal functions for p-capacity of every possible pairs of n-dimensional connected
compacts F0, F1 ⊂ Ω, having smooth boundaries, we denote by the symbol Ep(Ω). Then the following
approximation holds.

Theorem 3.1 ([25]). Let 1 < p <∞. Then there exists a countable collection of functions vi ∈ Ep(Ω),
i ∈ N, such that for every function u ∈ L1

p(Ω) and for any ε > 0, there exists a presentation of u in

the form u = c0 +
∞∑
i=1

civi, for which the inequalities

∥u | L1
p(Ω)∥p ⩽

∞∑
i=1

∥civi | L1
p(Ω)∥p ⩽ ∥u | L1

p(Ω)∥p + ε

hold.

The following theorem was not formulated, but proved in [21] by using the approximation by
extremal functions (see, also, [26]).

Theorem 3.2. Let 1 < p < ∞. A homeomorphism φ : Ω → Ω̃ generates a bounded composition
operator

φ∗ : L1
p(Ω̃) → L1

p(Ω)

if and only if for every condenser (F0, F1) ⊂ Ω̃, the inequality

cap
1
p
p (φ

−1(F0), φ
−1(F1); Ω) ⩽ Kp,p(φ; Ω) cap

1
p
p (F0, F1; Ω̃)
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holds.

Now, using the capacitory characterization of composition operators on Sobolev spaces, we prove
the Lipschitz continuity of homeomorphic mappings of bounded (n − 1)-capacitory distortion that,
extends the result by F. W. Gehring [4].

Theorem 3.3. Let φ : Ω → Ω̃ be a homeomorphic mapping of bounded (n− 1)-capacitory distortion.
Then φ belongs to the Sobolev space L1

∞(Ω).

Proof. Let φ : Ω → Ω̃ be a homeomorphic mapping of bounded (n−1)-capacitory distortion. Consider

the inverse mapping ψ := φ−1 : Ω̃ → Ω. Then inequality (2.1) is equivalent to the inequality

capn−1(ψ
−1(F0), ψ

−1(F1); Ω̃) ⩽ Kn−1
n−1 capn−1(F0, F1; Ω).

So, by Theorem 3.2, the inverse mapping φ−1 generates a bounded composition operator(
φ−1

)∗
: L1

n−1(Ω) → L1
n−1(Ω̃)

and is a (n− 1)-quasiconformal mapping φ−1 : Ω̃ → Ω [8,21]:

ess sup
y∈Ω̃

(
|Dφ−1(y)|n−1

|J(y, φ−1)|

) 1
n−1

= Kn−1(φ
−1; Ω̃) <∞.

Hence, by [11], the mapping φ : Ω → Ω̃ generates a bounded composition operator

φ∗ : L1
∞(Ω̃) → L1

∞(Ω),

and the inequality

∥φ∗(f) | L1
∞(Ω)∥ ⩽ Kn−1

n−1∥f | L1
∞(Ω̃)∥ (3.1)

holds for any function f | L1
∞(Ω̃).

Now, substituting in inequality (3.1) the test functions f = yi, y = 1, . . . , n, where yi is the

i-coordinate of y ∈ Ω̃, we have φi ∈ L1
∞(Ω), i = 1, . . . , n, and

∥φi | L1
∞(Ω)∥ ⩽ Kn−1

n−1 , i = 1, . . . , n.

Hence the mapping φ : Ω → Ω̃ belongs to the Sobolev space L1
∞(Ω). □

4. On the Differentiability of Mapping of Bounded p-capacitory Distortion

Using Theorem 3.3 and [4, Theorem 3], we have the following assertion.

Theorem 4.1. Let φ : Ω → Ω̃ be a homeomorphic mapping of bounded p-capacitory distortion,
n− 1 ⩽ p < n. Then φ is a locally Lipschitz mapping, differentiable a.e. in Ω.

In [4], the following estimate of Jacobians of a mapping of bounded p-capacitory distortion has
been proved.

Lemma 4.2. Let φ : Ω → Ω̃ be a homeomorphic mapping of bounded p-capacitory distortion,
n− 1 ⩽ p < n. Then |J(x, φ)| ⩽ (Kp

p )
n/(n−p) a.e. in Ω.

Using Lemma 4.2, we obtain estimates of the Lipschitz constants of homeomorphic mapping of
bounded p-capacitory distortion.

Corollary 4.3. Let φ : Ω → Ω̃ be a homeomorphic mapping of bounded p-capacitory distortion,
n− 1 ⩽ p < n. Then |Dφ(x)| ⩽ (Kp

p )
1/(n−p) a.e. in Ω.

Proof. Indeed, it is easy to check that

|Dφ(x)|p ⩽ |J(x, φ)|p−n+1

(
|J(x, φ)|
l(Dφ(x))p

)n−1

a.e. in Ω.

By Theorem 2.3, Lemma 4.2 and Remark 2.4, we have

|Dφ(x)|p ⩽ |J(x, φ)|p−n+1

(
|J(x, φ)|
l(Dφ(x))p

)n−1

⩽
(
K

p
n−p
p

)p

a.e. in Ω. □
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Now, using Theorem 4.1, we have

Corollary 4.4. Let φ : Ω → Ω̃ be a homeomorphic mapping of bounded p-capacitory distortion,
n− 1 ⩽ p < n. Then

lim sup
x→x0

|f(x)− f(x0)|
|x− x0|

⩽ (Kp
p )

1/(n−p)

for almost all x0 ∈ Ω.

References

1. M. Cristea, The limit mapping of generalized ring homeomorphisms. Complex Var. Elliptic Equ. 61 (2016), no. 5,
608–622.

2. M. Cristea, On Poleckii-type modular inequalities. Complex Var. Elliptic Equ. 66 (2021), no. 11, 1818–1838.

3. H. Federer, Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer-
Verlag New York, Inc., New York, 1969.

4. F. W. Gehring, Lipschitz mappings and the p-capacity of rings in n-space. In: Advances in the Theory of Riemann

Surfaces (Proc. Conf., Stony Brook, N.Y., 1969), pp. 175–193, Ann. of Math. Stud., no. 66, Princeton Univ. Press,
Princeton, NJ, 1971.

5. A. Golberg, R. Salimov, Topological mappings of integrally bounded p-moduli. Ann. Univ. Buchar. Math. Ser.

3(LXI) (2012), no. 1, 49–66.
6. A. Golberg, R. Salimov, E. Sevost’yanov, Singularities of discrete open mappings with controlled p-module. J. Anal.

Math. 127 (2015), 303–328.

7. A. Golberg, R. Salimov, E. Sevost’yanov, Estimates for Jacobian and dilatation coefficients of open discrete mappings
with controlled p-module. Complex Anal. Oper. Theory 11 (2017), no. 7, 1521–1542.

8. V. Gol’dshtein, L. Gurov, A. Romanov, Homeomorphisms that induce monomorphisms of Sobolev spaces. Israel J.

Math. 91 (1995), no. 1-3, 31–60.
9. V. M. Gol’dshtein, Yu. G. Reshetnyak, Quasiconformal Mappings and Sobolev Spaces. Translated and revised from

the 1983 Russian original. Translated by O. Korneeva. Mathematics and its Applications (Soviet Series), 54. Kluwer
Academic Publishers Group, Dordrecht, 1990.

10. V. Gol’dshtein, A. Ukhlov, About homeomorphisms that induce composition operators on Sobolev spaces. Complex

Var. Elliptic Equ. 55 (2010), no. 8-10, 833–845.
11. V. Gol’dshtein, A. Ukhlov, The spectral estimates for the Neumann-Laplace operator in space domains. Adv. Math.

315 (2017), 166–193.
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