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SPACE-TIME SPECTRAL METHOD FOR AN OPTIMAL CONTROL PROBLEM

GOVERNED BY A TWO-DIMENSIONAL PDE CONSTRAINT

AREZOU REZAZADEH1 AND MAJID DAREHMIRAKI2

Abstract. In this paper, we solve a two-dimensional optimal control problem with a parabolic
partial differential equation (PDE) constraint. First, the space-time spectral method is used to

discretize time derivative and space derivative. Then the aforementioned problem is transformed

into a solvable algebraic system. Since the spectral methods converge spectrally in both space and
time, they have gained a significant attention in the last few decades. We prove that our method

has exponential rates of convergence in both space and time.

1. Introduction

Many phenomena in nature and industry can be modeled by using partial differential equations.
Among them, we can mention processes such as heat distribution, wave propagation, flow equation.
The goal of the optimal control of PDEs is to move the system state to the desired state with the help
of the control variable. This process can be done by minimizing an appropriate objective function,
including the state variable and control variable. One of the main motivations for solving the optimal
control problems is their applications. Readers can refer to Reference [8] for further understanding.

The optimal control problems of partial differential equations (PDEs) are of interest to researchers
engaged in the field of PDEs and optimization. These problems have many applications in various
industries and sciences, including fluid mechanics, materials engineering, etc. Given their importance,
researchers are always trying to find effective solutions for them, some of which are mentioned in
the following. A. Rezazadeh et al. proposed a solution for the optimal control problem governed by
a parabolic PDE by using the space-time spectral collocation method (see [13]). The reduced basis
method was employed by Rezazadeh et al. (see [14]) to solve fractional PDE constrained optimization.
Artificial neural network was used in [4] for the optimal control of fractional parabolic. Darehmiraki
et al. [5] combined interpolation methods and Barycentric polynomials to solve the optimal control of
elliptic convection diffusion equation. Moving least square and radial basis function were employed
for fractional distributed optimal control problems in [3]. Recently, Shojaeizadeh et al. investigated a
solution for time-fractional convection-diffusion-reaction by compact integrated radial basis functions
[12]. Also, they applied shifted Jacobi polynomials to solve the optimal control problem of fractal-
fractional advection-diffusion-reaction [19].

This paper considers the following parabolic constrained optimization problem [9]:

min J(y, u) =
1

2

T∫
0

∫
Ω

(y − yd)
2dΩdt+

γ

2

T∫
0

∫
Ω

u2dΩdt,

s.t

−yt +∆y = u+ f, in Q, (1.1)

y = 0, on Σ,

y(., 0) = y0, in Ω.
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y ∈ H1(Q) and u ∈ L2(Q) are called a state variable and a control variable, respectively, to be
determined. yd ∈ L2(Q) is the desired state, J(y, u) is called a cost functional. The goal of the
optimal control problems is to come as nearer as possible to the desired state with minimal control
so that the constraints are true. γ ≥ 0 is a given regularization parameter that is used to solve a
well-defined problem. Due to the extra-ordinary ability of the Legender–Galerkin method in solving
partial equation problems, we were motivated to solve the mentioned optimal control problem with the
help of this method. Here, we first extract the necessary and sufficient conditions for the optimality
of the problem and then use the Legender–Galerkin method to solve these conditions numerically.
As far as we know, this is the first time this method has been used to solve the above problem in a
two-dimensional case. The paper is organized as follows.

The optimal conditions of problem (1.1) are derived in Section 2. The space-time spectral colloca-
tion method is discussed in Sections 3 and 4. Description of the Legendre–Galerkin spectral method
is given in Section 5. Multiple lemmas and theorems applied to obtain the error bound are in Section
6 and, lastly, several numerical cases are presented in Section 7 to show the efficiency of the proposed
method.

2. The Optimal System

In this section, the optimal conditions for (1.1) are obtained. The Lagrangian functional L related
to (1.1) is defined as follows:

L(y, u, pΩ, p∂Ω) =
1

2

T∫
0

∫
Ω

(y − yd)
2dΩdt+

γ

2

T∫
0

∫
Ω

u2dΩdt

+

T∫
0

∫
Ω

(−yt +∆y − u− f)pΩdΩdt+

T∫
0

∫
∂Ω

yp∂Ωdsdt.

Using Fréchet derivative and differentiating of L with respect to pΩ, p∂Ω, we have
−yt +∆y = u+ f, in Q,

y = 0, on Σ,

y(., 0) = y0, in Ω.

(2.1)

The adjoint equations are gained by derivative of L with respect to y:
pt +∆p− y = −yd, in Q,

p = 0, on Σ,

p(., T ) = 0 in Ω.

(2.2)

Differentiating L with respect to u, we get the gradient equation:

γu+ p = 0, in Q. (2.3)

These equations are discretized by the Legendre–Galerkin mathod and the spectral collocation method.
For more details, see [1, 2, 6].

3. Chebyshev Spectral Collocation Method

Now, the Chebyshev–Gauss–Lobatto points in Λ = [−1, 1] are introduced as

x̄j = cos
(jπ
N

)
, j = 0, 1, . . . , N.

Differentiating and calculating the polynomial at the Chebyshev–Gauss–Lobatto points, we have

ḠN (x̄) =

N∑
k=0

gkL̄k(x̄), (3.1)
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where gk = g(x̄k) and L̄k are the Lagrange interpolation polynomials defined as follows:

L̄k(x̄) =

N∏
j=0,j ̸=k

x̄− x̄j

x̄k − x̄j
,

assuring

L̄k(x̄j) =

{
0 if j ̸= k,

1 if j = k.

Let Ḡ = [g(x̄0), . . . , g(x̄N )] and Ḡ(m) = [g(m)(x̄0), . . . , g
(m)(x̄N )]T . The m derivative of Ḡ at the

points x̄j is approximated by differentiating equation (3.1). Hence

Ḡ(m) =

N∑
k=0

gkL̄
(m)
k (x̄), m ∈ N. (3.2)

Equation (3.2) can be written as:

Ḡ(m) = D̄(m)Ḡ, m ∈ N,
where

D̄
(m)
jk = L̄

(m)
k (x̄j) j, k = 0, 1, 2, . . . .

D̄(1) = D̄ = (d̄kj) is the first-order Chebyshev differentiation matrix [20] which

d̄kj =


2N2+1

6 , k = j = 0,

− ck
2cj

(−1)j+k

sin((k+j) π
2N ) sin((k−j) π

2N ) , k ̸= j,

− 1
2 cos(

kπ
N )(1 + cot2(kπN )), k = j, k ̸= 0, N,

− 2N2+1
6 , k = j = N,

where

ck =

{
2, k = 0, N,

1, o.w.

Suppose that xj = a− b−a
2 (x̄j + 1) are the Legendre–Gauss–Lobatto points in [a, b] such that

x̄j = 1− 2

b− a
(xj − a),

G(m) = D(m)G, m ∈ N,

G =
[
ḡ
(
1− 2

b− a
(x0 − a)

)
, . . . , ḡ

(
1− 2

b− a
(xN − a)

)]T
,

and

G(m) =
[
Ḡ(m)

(
1− 2

b− a
(x0 − a)

)
, . . . , Ḡ(m)

(
1− 2

b− a
(xN − a)

)]T
,

D
(m)
jk = L̄

(m)
k

(
1− 2

b− a
(xj − a)

)
, j, k = 0, 1, . . . , N,

D
(m)
jk =

(
− 2

b− a

)m

L̄
(m)
k (x̄j), j, k = 0, 1, . . . N.

Thus D(m) = (− 2
b−a )

mD̄(m) is the Chebyshev differentiation matrix for the Chebyshev–

Gauss–Lobatto points in [a, b].

Definition 3.1 ([11]). Assume C = (cij)m×n and D are two arbitrary matrices. The matrix

C ⊗D =


c11D c12D · · · c1nD
c21D c22D · · · c2nD
...

...
. . .

...
cm1D cm2D · · · cmnD
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is called Kronecker product of C and D.

Definition 3.2 ([11]). Let C = (cij)m×n be a given matrix, then vec(C) is a column vector of size
m× n and defined as:

vec(C) = (c11, c12, . . . , c1n, c21, c22, . . . , cm1, . . . , cmn)
T .

4. Spectral Collocation Method for First-order Ordinary Differential Equation

In this section, the first-order initial value problem is solved with a spectral collocation method.

y′ = f(t, y(t)),

y(t0) = y0, t0 ≤ t ≤ T.
(4.1)

Suppose that Nt is a non-negetive integer, zj = cos( jπNt
) are the Chebyshev–Gauss–Lobatto points in

[−1, 1] which 0 ≤ j ≤ Nt. tj = t0 − T−t0
2 (zj + 1) are the Chebyshev–Gauss–Lobatto points in [t0, T ].

We discretize equation (4.1) by the Chebyshev spectral collocation method that is described in
Section 3. Therefore

ĀȲ = F (Y ), (4.2)

where Ā is the first-order differentiation matrix in [t0, T ]. Thus

Ā = − 2

T − t0
D̄(1)(2 : Nt + 1, 1 : Nt + 1),

Ȳ = [y0, Y ]T ,

Y = [y(t1), . . . , y(tN )]T ,

F (Y ) = [f(t1, y(t1)), . . . , f(tNt
, y(tNt

))]T .

Using Ā = [a0, A], Ȳ = [y0, Y ]T and equation (4.2), we achieve

AY + a0y0 = F (Y ).

5. Legendre–Galerkin Spectral Method

Here, the two-dimensional parabolic equations (2.1)–(2.3) are discretized by using the Galerkin–
Legendre spectral method in a space. First, these equations are transformed from [c, d] into [−1, 1] by
the change of variable technique. Then, the Legendre–Galerkin method is applied.

By the following variable transformation [10], we have:

x1 = c− x̄1+1
2 (d− c) , x2 = c− x̄2+1

2 (d− c) ,

ȳ (x̄1, x̄2, t) = y
(
c− x̄1+1

2 (d− c) , c− x̄2+1
2 (d− c) , t

)
,

f̄ (x̄1, x̄2, t) = f
(
c− x̄1+1

2 (d− c) , c− x̄2+1
2 (d− c) , t

)
,

ȳd (x̄1, x̄2, t) = yd
(
c− x̄1+1

2 (d− c) , c− x̄2+1
2 (d− c) , t

)
,

ū (x̄1, x̄2, t) = u
(
c− x̄1+1

2 (d− c) , c− x̄2+1
2 (d− c) , t

)
,

p̄ (x̄1, x̄2, t) = p
(
c− x̄1+1

2 (d− c) , c− x̄2+1
2 (d− c) , t

)
.

Therefore we obtain the following equations:
−ȳt + (− 2

d−c )
2∆ȳ = − 1

γ p̄+ f̄ , in Q̄,

ȳ(., t) = 0, on Σ̄,

ȳ(., 0) = ȳ0,

(5.1)


p̄t + (− 2

d−c )
2∆p̄− ȳ = −ȳd, in Q̄,

p̄(., t) = 0, on Σ̄,

p̄(., T ) = 0,

(5.2)
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where {
Ω̄ = [−1, 1]× [−1, 1], Γ̄ = ∂Ω̄,

Q̄ = Ω̄× (t0, T ), Σ̄ = Γ̄× (0, T ),

Ln(x̄) denotes the nth degree Legendre polynomial [16,18] and

PN = span{L0(x̄), . . . , LN (x̄)}, VN = {v ∈ PN : v(±1) = 0}.

Our purpose is to find the Legendre–Galerkin approximation for systems (5.1) and (5.2) such that
−(ȳNt, v)− ( 2

d−c )
2(∇ȳN ,∇v) + 1

γ (p̄N , v) = (f̄ , v), in Q̄,

ȳN (., t) = 0, on Σ̄,

(ȳN (x̄, ȳ, 0)− ȳ0, v) = 0, ∀v ∈ V 2
N ,

(5.3)


(p̄Nt, v)− ( 2

d−c )
2(∇p̄N ,∇v)− (ȳN , v) = −(ȳd, v), in Q̄,

p̄N (., t) = 0, on Σ̄,

(p̄N (x̄, ȳ, T ), v) = 0, ∀v ∈ V 2
N .

(5.4)

The following Lemma is useful to apply the Legendre–Galerkin spectral method.

Lemma 5.1 ([15]). Let us denote

ck =
1√

4k + 6
, ϕk(x̄) = ck(Lk(x̄)− Lk+2(x̄)),

âjk =

1∫
−1

ϕ′
k(x̄)ϕ

′
j(x̄)dx̄, b̂jk =

1∫
−1

ϕk(x̄)ϕj(x̄)dx̄.

Then

âjk =

{
1, k = j,

0, k ̸= j,
, b̂jk = b̂kj =


ckcj(

2
2j+1 + 2

2j+5 ), k = j,

−ckcj
2

2k+1 , k = j + 2,

0, o.w.

and

VN = span{ϕ0(x̄), . . . , ϕN−2(x̄)}.

Set

ȳN (x̄, ȳ, t) =

N−2∑
k,j=0

α̂k,j(t)ϕk(x̄1)ϕj(x̄2),

p̄N (x̄1, x̄2, t) =
N−2∑
k,j=0

β̂k,j(t)ϕk(x̄1)ϕj(x̄2).

Taking

v = ϕl(x̄1)ϕm(x̄2), l,m = 0, 1, . . . , N − 2,

we obtain

−(ȳNt, ϕl(x̄1)ϕm(x̄2))−
( 2

d− c

)2

(∇ȳN ,∇(ϕl(x̄1)ϕm(x̄2)))

+
1

γ
(p̄N , ϕl(x̄1)ϕm(x̄2)) = (f̄ , ϕl(x̄1)ϕm(x̄2)),

(p̄Nt, ϕl(x̄1)ϕm(x̄2))−
( 2

d− c

)2

(∇p̄N ,∇(ϕl(x̄1)ϕm(x̄2)))

−(ȳN , ϕl(x̄1)ϕm(x̄2)) = −(ȳd, ϕl(x̄1)ϕm(x̄2)),

(ȳN (x̄1, x̄2, 0)− ȳ0, ϕl(x̄1)ϕm(x̄2)) = 0,

(p̄N (x̄1, x̄2, T ), ϕl(x̄1)ϕm(x̄2)) = 0,
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where l,m = 0, 1, . . . , N − 2 and also,

ȳ(., t) = 0, p̄(., t) = 0, on Σ̄.

Suppose that

B = (b̂k,j)k,j=0,1,...,N−2, α = (α̂k,j)k,j=0,1,N−2,

β = (β̂k,j)k,j=0,1,...,N−2, F = (f̄(x̄1, x̄2, t), ϕk(x̄1)ϕj(x̄2))k,j=0,1,...,N−2,

Yd = (ȳd(x̄1, x̄2, t), ϕk(x̄1)ϕj(x̄2))k,j=0,1,...,N−2.

Then we have

−[B ⊗B]vec(α)′ −
( 2

d− c

)2

[B ⊗ IN−1 + IN−1 ⊗B]vec(α) +
1

γ
[B ⊗B]vec(β) = vec(F ),

[B ⊗B]vec(β)′ −
( 2

d− c

)2

[B ⊗ IN−1 + IN−1 ⊗B]vec(β)− [B ⊗B]vec(α) = −vec(Yd).

Through

(ȳ(x̄, ȳ, 0)− ȳ0, ϕl(x̄)ϕm(ȳ)) = 0,

we achieve

[B ⊗B]vec(α(t0) = vec(Y0),

where

Y0 = (ȳ0(x̄1, x̄2, t), ϕk(x̄1)ϕj(x̄2)), (β(T ))k,j = 0, ∀k, j = 0, 1, . . . , N − 2.

Therefore we obtain the following ordinary differential equation system:
−[B ⊗B]vec(α)′ −

(
2

d−c

)2

[B ⊗ IN−1 + IN−1 ⊗B]vec(α) + 1
γ [B ⊗B]vec(β) = vec(F ),

[B ⊗B]vec(β)′ −
(

2
d−c

)2

[B ⊗ IN−1 + IN−1 ⊗B]vec(β)− [B ⊗B]vec(α) = −vec(Yd),

[B ⊗B]vec(α(t0)) = vec(Y0), vec(β(T )) = 0 t0 ≤ t ≤ T.

Now, we can use the space-time spectral collocation method in Section 4.

6. A Priori Error Estimates

In this section, we obtain a priori error bound for problem (5.1), (5.2). Denote

L2(Ω̄) = {v|∥v∥ < ∞}, ∥v∥ = ∥v∥L2 = (v, v)
1
2 ,

Hr(Ω̄) = {v|∥v∥r < ∞}, ∥v∥r = ∥v∥Hr =

( ∑
|α|≤r

∥Dα∥2
) 1

2

.

Let B = L2(Ω̄) or B = Hr(Ω̄). The Bochner space Lp(J ;B) is introduced as follows:

∥v∥Lp;B =


(∫
J

∥v∥pBdt
) 1

p , 1 ≤ p < ∞,

ess supt∈J ∥v∥B , p = ∞.

Suppose that H1
0 (Ω̄) = H1(Ω̄)

⋂
{v|v(∂Ω̄) = 0}. The L2(Ω̄) orthogonal projection P0

N : H1
0 (Ω̄) → V 2

N

is defined by

(P0
Nv − v, ϕ) = 0, ∀ϕ ∈ V 2

N .

Lemma 6.1 ([2, 7]). For s ⩾ 1 and v ∈ Hs(Ω̄)
⋂
H1

0 (Ω̄), the following inequality

|v − P0
Nv|H1(Ω̄) +N∥v − P0

Nv∥L2(Ω̄) ⩽ CN1−s∥v∥Hs(Ω̄)

holds, where C is independent of N .
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Suppose that a(u, v) = (∇u,∇v) is a bilinear form and
∏0

N : H1
0 (Ω̄) → V 2

N is the elliptic projection
such that

a

( 0∏
N

ū− ū, v

)
= 0, ∀v ∈ V 2

N , (6.1)

which is continious and coercive in H1
0 (Ω̄)×H1

0 (Ω̄).

Lemma 6.2 ([10]). The bilinear form (6.1) holds and we have the following inequality:

a(u, v) ⩽ ∥∇u∥∥∇v∥, ∀u, v ∈ H1
0 (Ω̄),

a(u, u) = ∥∇u∥2, ∀u ∈ H1
0 (Ω̄).

Lemma 6.3 ([10]). Assume that ū ∈ Hs(Ω̄
⋂

H1
0 (Ω̄)). Then∥∥∥∥∇( 0∏

N

ū− ū

)∥∥∥∥ ≤ CN1−s∥ū∥s,

∥∥∥∥ 0∏
N

ū− ū

∥∥∥∥ ≤ CN−s∥ū∥s.

Now, we introduce Gronwall’s Lemma.

Lemma 6.4 ([18]). Suppose that f(t) is a non-negetive function on the interval (t0, T ] which is
integrable, and g(t) and F (t) are the continuous functions on (t0, T ]. If F (t) satisfies the inequality

F (t) ⩽ g(t) +

t∫
t0

f(τ)F (τ)dτ, ∀t ∈ [t0, T ],

then we have

F (t) ⩽ g(t) +

t∫
t0

f(s)g(s) exp

( t∫
s

f(τ)dτ

)
ds, ∀t ∈ [t0, T ].

Also, if g is non-decreasing, then we have

F (t) ⩽ g(t) exp

( t∫
t0

f(τ)dτ

)
, ∀t ∈ [t0, T ].

Now, the error of the state and the adjoint variables can be written as:

ȳN − ȳ =

(
ȳN −

0∏
N

ȳ

)
+

( 0∏
N

ȳ − ȳ

)
= θ + ρ,

p̄N − p̄ =

(
p̄N −

0∏
N

p̄

)
+

( 0∏
N

p̄− p̄

)
= θ′ + ρ′,

where

θ = ȳN −
0∏
N

ȳ, ρ =

0∏
N

ȳ − ȳ,

θ′ = p̄N −
0∏
N

p̄, ρ′ =

0∏
N

p̄− p̄.

Lemma 6.5 ([10]). For ρ =
∏0

N u− u and u, ut ∈ L∞(J,Hm(Ω̄)
⋂
H1

0 (Ω̄)), we have

a(ρ, v) = 0, ∀v ∈ V 2
N ,

N∥ρ(t)∥+ |ρ(t)|1 ≤ CN1−m∥u(t)∥L∞(J;Hm(Ω̄), t ∈ J̄ ,

N∥ρt(t)∥+ |ρt(t)|1 ≤ CN1−m∥ut(t)∥L∞(J;Hm(Ω̄), t ∈ J̄ ,
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where C is independent of N .

Let the interpolation operator ĪN from H1(Ω) onto PN , we assure that

ĪNf(x̄) =

N∑
j=0

f(x̄j)L̄j(x̄).

Then we have the following

Lemma 6.6 ([2, 7, 17,18]). For any f ∈ Hs(Ω), s > 1
2 , we have

∥f − INf∥ ⩽ CN−s∥f∥s.

Theorem 6.7. Let ȳ, p̄ be the solutions of equations (5.1), (5.2), ȳN and p̄N be the solutions of
equations(5.3), (5.4), respectively. Assume that ȳ, ȳt, p̄, p̄t ∈ L∞(J,Hs(Ω̄)

⋂
H1

0 (Ω̄). Then

∥ȳN (t)− ȳ(t)∥ ≤ C1N
−s(∥ȳ∥L∞(J,Hs(Ω̄)) + ∥ȳt∥L∞(J,Hs(Ω̄))), for t ∈ J̄ ,

∥p̄N (t)− p̄(t)∥ ≤ C2N
−s(∥p̄∥L∞(J,Hs(Ω̄)) + ∥p̄t∥L∞(J,Hs(Ω̄))), for t ∈ J̄ .

Proof. Since ȳ, ȳN , p̄, p̄N satisfy the following equations:− (ȳt, v)−
(

2
d−c

)2

(∇ȳ,∇v) + 1
γ (p̄, v) =

(
f̄ , v

)
, ∀v ∈ V 2

N ,

(p̄t, v)−
(

2
d−c

)2

(∇p̄,∇v)− (ȳ, v) = − (ȳd, v) , ∀v ∈ V 2
N ,− (ȳNt, v)−

(
2

d−c

)2

(∇ȳN ,∇v) + 1
γ (p̄, v) =

(
f̄ , v

)
, ∀v ∈ V 2

N ,

(p̄Nt, v)−
(

2
d−c

)2

(∇p̄N ,∇v)− (ȳ, v) = − (ȳd, v) , ∀v ∈ V 2
N ,

we have (θt + ρt, v) +
(

2
d−c

)2

(∇θ +∇ρ,∇v) = 0,

− (θ′t + ρ′t, v) +
(

2
d−c

)2

(∇θ′ +∇ρ′,∇v) = 0.

Using Lemma 6.5, we get

(θt, v) + (ρt, v) +
( 2

d− c

)2

a (θ, v) = 0, (6.2)

− (θ′t, v)− (ρ′t, v) +
( 2

d− c

)2

a (θ′, v) = 0. (6.3)

Set v = θ in equation (6.2) and v = θ′ in equation (6.3)

(θt, θ) + (ρt, θ) +
( 2

d− c

)2

a (θ, θ) = 0,

− (θ′t, θ
′)− (ρ′t, θ

′) +
( 2

d− c

)2

a (θ′, θ′) = 0.

Since
(

2
d−c

)2
a (θ, θ) ⩾ 0, we have

(θt, θ) + (ρt, θ) ≤ 0,

(θ′t, θ
′) + (ρ′t, θ

′) ≥ 0.

It is obvious that

−∥x∥∥y∥ ≤ (x, y) ⩽ ∥x∥∥y∥, ∥x∥∥y∥ ⩽
1

2

(
∥x∥2 + ∥y∥2

)
are the Cauchy–Schwarz inequalities.

By the triangle inequality and the Cauchy–Schwarz inequality, we obtain

d

dt
∥θ∥2 ⩽ 2∥ρt∥∥|θ∥ ⩽ ∥ρt∥+ ∥θ∥2,

d

dt
∥θ′∥2 ⩾ −2∥ρ′t∥∥|θ′∥ ⩾ −∥ρ′t∥2 − ∥θ′∥2.
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Integrating over [t0, t] for the first equation and [T, t] for the second equation, we have

t∫
t0

d

dt
∥θ∥2 ≤

t∫
t0

∥ρτ∥2dτ +

t∫
t0

∥θ∥2dτ,

t∫
T

d

dt
∥θ′∥2 ⩽ −

t∫
T

∥ρ′τ∥2dτ −
t∫

T

∥θ′∥2dτ.

So,

∥θ (t) ∥2 ≤ ∥θ (t0) ∥2 +
t∫

t0

(
∥ρτ∥2 + ∥θ∥2

)
dτ,

∥θ′ (t) ∥2 ≤ ∥θ′ (T ) ∥2 +
T∫
t

(
∥ρ′τ∥2 + ∥θ′∥2

)
dτ.

Using the Gronwall inequality, we obtain

∥θ (t) ∥2 ≤
(
∥θ (t0) ∥2 +

t∫
t0

∥ρτ∥2dτ
)
exp (t− t0) ,

∥θ′ (t) ∥2 ≤
(
∥θ′ (T ) ∥2 +

T∫
t

∥ρ′τ∥2dτ
)
exp (T − t) .

Thus

∥θ (t) ∥2 ≤ C1

(
∥θ (t0) ∥2 +

t∫
t0

∥ρτ∥2dτ
)
,

∥θ′ (t) ∥2 ≤ C2

(
∥θ′ (T ) ∥2 +

t∫
T

∥ρ′τ∥2dτ
)
.

Using Lemma 6.1 and Lemma 6.5, we achieve

∥θ (t0) ∥ =

∥∥∥∥P0
N ȳ (t0)−

0∏
N

ȳ (t0)

∥∥∥∥ ≤ ∥P0
N ȳ (t0)− ȳ (t0) ∥+

∥∥∥∥ 0∏
N

ȳ (t0)− ȳ (t0)

∥∥∥∥
≤ CN−s∥ȳ∥L∞(J,Hs(Ω̄)),

∥θ′ (T ) ∥ =

∥∥∥∥P0
N p̄ (T )−

0∏
N

p̄ (T )

∥∥∥∥ = 0.

Therefore

∥θ (t) ∥ ≤ C1N
−s

(
∥ȳ∥L∞(J,Hs(Ω̄)) + ∥ȳt∥L∞(J,Hs(Ω̄))

)
,

∥θ′ (t) ∥ ≤ C2N
−s

(
∥p̄∥L∞(J,Hs(Ω̄)) + ∥p̄t∥L∞(J,Hs(Ω̄))

)
.

Owing to Lemma 6.6,

∥ȳN (t)− ȳ (t) ∥ ≤ C1N
−s

(
∥ȳ∥L∞(J,Hs(Ω̄)) + ∥ȳt∥L∞(J,Hs(Ω̄))

)
,

∥p̄N (t)− p̄ (t) ∥ ≤ C2N
−s

(
∥p̄∥L∞(J,Hs(Ω̄)) + ∥p̄t∥L∞(J,Hs(Ω̄))

)
. □
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7. Numerical Simulations

In this section, numerical samples are presented to investigate the efficiency of the proposed method.
Two distributed optimal control problems are solved.

(a) (b)

Figure 1. Plots of the approximated solutions of y(x, t) (a) and p(x, t) (b) in t = 1s with γ = 10−2

in Example 1.

Example 1. In problem (1.1), we take T = 2, x = (x1, x2) ∈ [0, 1]2 and

f = (π sin(πt)− 2π2 cos(πt)− sin(πt)) sin(πx1) sin(πx2),

yd = (γπ cos(πt)− 2γπ2 sin(πt) + cos(πt)) sin(πx1) sin(πx2).

The initial condition is y0(x1, x2) = sin(πx1) sin(πx2). The exact solutions of the state variable and
adjoint variable are

y(x, t) = cos(πt) sin(πx1) sin(πx2),

p(x, t) = γ sin(πt) sin(πx1) sin(πx2).

This example is similar to the test case of [9].
The graphs of the estimated solutions of y(x, t) and p(x, t) for t = 1 with N = 10 and γ = 10−2

are plotted in Figure 1. Figure 2 illustrates the absolute error functions of the state and adjoint
functions. Tables 1 and 2 illustrate the absolute errors of the state function and the adjoint function
for some values of N and Nt. The reported results illustrate that one can obtain an excellent solution
by increasing the number of the Legendre basis.

Example 2. In problem (1.1), we set T = 1, x ∈ [0, 1]2 and

f = 0,

yd = ((t− 1)2t2 + 2γ(2π4t4 − 4π4t3 + 2(π4 − 3)t2 + 6t− 1)) sin(πx1) sin(πx2).

The initial condition is y0(x1, x2) = y(x1, x2, 0), the exact solutions of the state variable and the
adjoint variable are

y(x, t) = t2(1− t)2 sin(πx1) sin(πx2),

p(x, t) = 2γ(1− t)t(π2t2 − (π2 − 2)t− 1) sin(πx1) sin(πx2).

This example is similar to the test case of [9]. The graphs of the estimated solutions of y(x, t) and
p(x, t) for t = 0.5 with N = 10 and γ = 10−4 are plotted in Figure 3. Figure 4 shows the error
functions of the state and adjoint function with γ = 10−4 . Tables 3 and 4 display the absolute errors
of the state function and the adjoint function for some values of N and Nt. According to the obtained
results, by increasing the number of Legendre basis, the numerical solutions tend to the exact ones.
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(a) (b)

Figure 2. Plots of y − yN (a) and p− pN (b) with γ = 10−2 in Example 1.

Table 1. Absolute error of the state function and the adjoint function at Nt = 10
for Example 1.

N ∥y − yN∥L2 ∥p− pN∥L2

2 0.8979 0.0080
4 0.0183 1.5042×10−4

6 1.7639×10−4 2.9803×10−6

8 9.5746×10−5 4.0753×10−6

10 1.3216×10−4 5.7634×10−6

Table 2. Absolute error of the state function and the adjoint function at N = 10
for Example 1.

Nt ∥y − yN∥L2 ∥p− pN∥L2

2 1.2573 0.0133
4 0.2406 0.0090
6 0.0160 9.3661×10−4

8 6.1613×10−4 4.5300×10−5

10 1.3216×10−4 5.7634×10−6

Table 3. Absolute error of the state function and the adjoint function at Nt = 10
for Example 2.

N ∥y − yN∥ ∥p− pN∥
2 0.0369 7.6006×10−5

4 7.2094 ×10−4 1.8641×10−6

6 7.2338×10−6 1.2197×10−7

8 3.1607×10−6 1.8567×10−7

10 2.6105×10−6 2.6399×10−7
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Table 4. Absolute error of the state function and the adjoint function at N = 10
for Example 2.

Nt ∥y − yN∥ ∥p− pN∥
2 0.0734 8.7849 ×10−5

4 1.6744×10−6 1.6933×10−7

6 2.022×10−6 2.0449×10−7

8 2.3349×10−6 2.3612×10−7

10 2.6105×10−6 2.6399×10−7

(a) (b)

Figure 3. Plots of the approximated solutions of y(x, t) (a) and p(x, t) (b) in t = 0.5s with

γ = 10−4 in Example 2.

(a) (b)

Figure 4. Plots of y − yN (a) and p− pN (b) with γ = 10−4 in Example 2.

8. Conclusion

In this paper, we proposed a high-order space-time spectral method to solve a two-dimensional
parabolic optimal control problem by combining the spectral collocation method for time derivative
and the Legendre–Galerkin method for the space derivative. We have obtained a priori error bound
in the L2-norm for the semidiscrete formulation. Numerical examples are presented to show that the
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convergence rate of our method is of exponential order in both space and time. In our future work, we
intend to apply our technique for three-dimensional cases with even non-classic boundary conditions.
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