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TRIGONOMETRIC APPROXIMATION BY DEFERRED VORONOI–NÖRLUND

AND BY DEFERRED RIESZ MEANS IN THE WEIGHTED SPACE Lp
w

XHEVAT Z. KRASNIQI

Abstract. The degree of approximation of functions belonging to the generalized Lipschitz classes,
is obtained by deferred Voronoi–Nörlund and deferred Riesz transforms of partial sums of a trigono-

metric Fourier series in the weighted Lebesgue spaces. Some results as particular cases are derived.

1. Introduction

The degree of approximation of an integrable 2π-periodic function f(x) ∈ Lip(α, p) by n-th partial
sums

Sn(f ;x) =
a0
2

+

n∑
k=1

ak cos kx+ bk sin kx

of its Fourier series (at the point x)

f(x) ∼ a0
2

+

∞∑
k=1

ak cos kx+ bk sin kx

in Lp-norm (p ∈ [1,∞)), has been studied by E. S. Quade (see [33]), who examined the range of values
of α and p for which the degree of approximation is of order O(n−α). His results can be considered
as a very good starting point for continuation of the publication of many of their generalisations
obtained recently by other researchers. For example, after Quade’s results, some other results are
presented by Sahney and Rao in [34], Khan in [22], and Mohapatra and Russell in [31]. Later on, more
systematic results gives by Chandra in [4] by using generalized de la Vallé-Poussin means, Nörlund
means [5], Riesz means [6], Borel means [7] and [11], Euler means [9], Nörlund and Riesz means [8],
and once again by Nörlund and Riesz means in [10]. In the same spirit, Leindler [28] has weakened
the monotonicity conditions in Chandra’s results. More information on replacing the monotonicity
conditions in Chandra’s results can be found in the paper of Szal [36]. The interested reader can find
other results obtained by Mital et al. [29, 30], Smita and Munjal [35], Khatri and Mishra [23], and
Jena et al. [21].

While studying the approximation of functions f(x) ∈ Lip(α, p) in the Lp-norm, other authors
attempted (successfully) to obtain the counterparts of the above-mentioned results in different setting.
For example, such a setting is the generalized Lebesgue space Lp(x) (see [24]). It is a known fact that
if p(x) = p is a constant (p ∈ [1,∞)), then the space Lp(x) is isometrically isomorphic to the ordinary
Lebesgue space Lp. To my best knowledge, it was Guven and Israfilov [18], who defined the Lipschitz
class Lip(α, p(x)) and proved that Theorem 1 (cases (i) and (ii)) of [28] also holds true, when the Lp(x)-
norm is used instead of the Lp-norm. Then some generalizations of it (also the case (v) of Theorem 1
of [28] is examined) with different conditions are given by the present author in [26]. Similar results
on this topic can be found in [12,20] and [16].

Now, for our intention, we need to recall the weighted Lebesgue space Lp
w. A measurable 2π−periodic

function w : [0, 2π] → [0,∞] is said to be a weight function if the set w−1({0,∞}) has the Lebesgue
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measure zero. The space Lp
w = Lp

w[0, 2π], where p ∈ [1,∞) and w is a weight function, contains all
measurable 2π−periodic functions f for which

∥f∥p,w :=

( 2π∫
0

|f(x)|pw(x)dx
)1/p

< ∞.

Let p ∈ (1,∞). A weight function w belongs to the class Ap if

sup
I

(
1

|I|

∫
I

w(x)dx

)(
1

|I|

∫
I

[w(x)]−1/p−1dx

)p−1

< ∞,

where supremum is taken over all intervals I with length |I| ≤ 2π (see [32]).
Assumming p ∈ (1,∞), w ∈ Ap and f ∈ Lp

w, the modulus of continuity of the function f is defined
by

Ω(f, δ)p,w = sup
|h|≤δ

∥△h(f)∥p,w, δ > 0,

where

△h(f ;x) =
1

h

h∫
0

|f(x+ t)− f(x)|dt.

The modulus of continuity Ω(f, δ)p,w, defined by Ky [27], is a nondecreasing, nonnegative, contin-
uous function such that

lim
δ→0

Ω(f, δ)p,w = 0, Ω(f1 + f2, δ)p,w ≤ Ω(f1, δ)p,w +Ω(f2, δ)p,w.

Guven [15] defined the Lipschitz class Lip(α, p, w), 0 < α ≤ 1, by

Lip(α, p, w) = {f ∈ Lp
w : Ω(f, δ)p,w = O(δα), δ > 0} ,

and gave the weighted versions of Chandra’s results [10] and the respective Leindler’s results [28],
whenever p ∈ (1,∞).

Before we recall Guven’s results, we need first some preliminaries. Whenever is necessary, we use
the n−th partial sums of Fourier series of f(x) at the point x, in the form

Sn(f ;x) =

n∑
k=0

Ak(f ;x),

where
A0(f ;x) :=

a0
2
, Ak(f ;x) := ak cos kx+ bk sin kx, (k = 1, 2, . . . ).

Let (pn)
∞
n=0 be a sequence of positive real numbers. We consider two transformations (the so-called

Nörlund and Riesz transforms) of the sums Sn(f ;x) defined by

Nn(f ;x) =
1

Pn

n∑
m=0

pn−mSm(f ;x)

and

Rn(f ;x) =
1

Pn

n∑
m=0

pmSm(f ;x),

where Pn :=
∑n

m=0 pm, p−1 := P−1 := 0.
The following results are already known.

Theorem 1.1 ([15]). Let 1 < p < ∞, w ∈ Ap, 0 < α ≤ 1, and let (pn)
∞
n=0 be a monotonic sequence

of positive real numbers such that
(n+ 1)pn = O(Pn).

Then for every f ∈ Lip(α, p, w), the estimate

∥f −Nn(f)∥p,w = O(n−α), n = 1, 2, . . .

holds.
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Theorem 1.2 ([15]). Let 1 < p < ∞, w ∈ Ap, 0 < α ≤ 1, and let (pn)
∞
n=0 be a sequence of positive

real numbers satisfying the relation

n−1∑
m=0

∣∣∣ Pm

m+ 1
− Pm+1

m+ 2

∣∣∣ = O
(

Pn

n+ 1

)
.

Then for every f ∈ Lip(α, p, w), the estimate

∥f −Rn(f)∥p,w = O(n−α), n = 1, 2, . . .

is satisfied.

The degree of approximation in the Lp
w-norm, not worse than the above degrees, is obtained for

a class, more general, than the class Lip(α, p, w) by the present author [25], by Guven [17] and by
Jafarov by using some specific means [20]; some more general results are obtained very recently by
Avsar and Yildirir [3].

In order to reveal our intention, we recall some notations and notions.
Let a = (an) and b = (bn) be the sequences of non-negative integers with the conditions

an < bn, n = 1, 2, . . . (1.1)

and

lim
n→∞

bn = +∞. (1.2)

The deferred Cesàro mean (see [1]) determined by a and b is defined as

Dn := Db
a :=

San+1 + San+2 + · · ·+ Sbn

bn − an
,

where (Sm) is a sequence of real or complex numbers.
Since each Db

a with conditions (1.1) and (1.2) satisfies the Silverman–Toeplitz conditions, each Db
a

is regular. It should be noted here that Db
a involves the means of deferred terms of (Sm), except the

case, where an = 0 for all n. Moreover, Dn
n−1 is the identity transformation and Dn

0 is the well-known
(C, 1) transformation.

Very recently, the authors of [14] have introduced some new deferred means with conditions (1.1)
and (1.2). Indeed, let (pn) be a sequence of positive real numbers written as follows:

Db
aNn(f ;x) =

1

P bn−an−1
0

bn∑
m=an+1

pbn−mSm(f ;x)

and

Db
aRn(f ;x) =

1

P bn
an+1

bn∑
m=an+1

pmSm(f ;x),

where

P bn−an−1
0 :=

bn−an−1∑
m=0

pm ̸= 0, P bn
an+1 :=

bn∑
m=an+1

pm ̸= 0.

These two methods are called the deferred Woronoi–Nörlund means, (Db
aN, p), and the deferred

Riesz means, (Db
aR, p), respectively. In the special case for bn = n and an = 0 for all n ≥ 0, the

methods Db
aNn(f ;x) and Db

aRn(f ;x) give us the classical well-known Woronoi–Nörlund and Riesz
means, respectively. Moreover, for pm = 1 for all n ≥ 0, both of them lead to the deferred Cesàro
means

Db
a(f ;x) =

1

bn − an

bn∑
m=an+1

Sm(f ;x)

of Sm(f ;x).
Let us point out here that if bn = n, an = 0, and pn = 1 for all n ≥ 0 for these two methods,

then they coincide with the Cesàro method (C, 1). In a particular case of this, when an = 0, (bn) is a
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strictly increasing sequence of positive integers with b0 = 0 and pn = 1, then they give us the Cesàro
submethod which is obtained by deleting a set of rows from the Cesàro matrix (for details, see in [2]).

The aim of this paper is to prove the versions of Theorems 1.1–1.2 by using the Woronoi–Nörlund
means, (Db

aN, p), and the deferred Riesz means, (Db
aR, p), respectively. In our results, the degree

of approximation of functions belonging to the generalized Lipschitz class Lip(α, p, w) is of order
O((bn − an)

−α), which is, in general, not worse than O(n−α). The importance of our results also
comes from the paper of R. P. Agnew (see [1]) who verified that the deferred Cesàro transformation
has some properties not possessed by the classical Cesàro transformation. To achieve this aim, we
need first to recall some helpful statements given in the next section.

2. Auxiliary Lemmas

The following statements are needed for the proofs of our results.

Lemma 2.1 ([15]). Let 1 < p < ∞, 0 < α ≤ 1, and w ∈ Ap. Then the estimate

∥f − Sn(f)∥p,w = O
(
n−α

)
, n = 1, 2, . . . ,

holds for every f ∈ Lip(α, p, w).

Lemma 2.2 ([15]). Let 1 < p < ∞ and w ∈ Ap. Then for f ∈ Lip(1, p, w) the estimate

∥Sn(f)− σn(f)∥p,w = O
(
n−1

)
, (n = 1, 2, . . . ),

holds.

Now, we need to recall two known classes of sequences.
A positive sequence c := (cn) is called almost monotone decreasing (increasing) if there exists a

constant K := K(c), depending only on the sequence c such that for all n ≥ m

cn ≤ Kcm (cn ≥ Kcm).

To symbolize these classes, we denote them by c ∈ AMDS and c ∈ AMIS, respectively. The
following lemma has a key role in the proof of our main results.

Lemma 2.3. Let (pn) ∈ AMDS or (pn) ∈ AMIS and

bnpbn−an−1 = O
(
P bn−an−1
0

)
. (2.1)

Then
bn−an−1∑

m=0

pbn−an−1−m(an + 1 +m)−α = O
(
(bn − an)

−αP bn−an−1
0

)
for 0 < α < 1.

Proof. Let r denote the integral part of bn−an−1
2 and (pn) ∈ AMDS. Then we have

bn−an−1∑
m=0

pbn−an−1−m(an + 1 +m)−α

=

r∑
m=0

pbn−an−1−m(an + 1 +m)−α +

bn−an−1∑
m=r+1

pbn−an−1−m(an + 1 +m)−α

= O (pbn−an−1−r)

r∑
m=0

(an + 1 +m)−α + (an + r + 2)−α
bn−an−1∑
m=r+1

pbn−an−1−m

= O (pbn−an−1−r)

bn−an∑
m=1

(an +m)−α +O
(
b−α
n

) bn−an−1∑
m=0

pbn−an−1−m

= O
(
(bn)

1−α
)
pbn−an−1−r +O

(
(bn)

−α
)
P bn−an−1
0

= O
(
(bn − an)

−α
)
P bn−an−1
0 .
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Now, let (pn) ∈ AMIS and (2.1) be satisfied. Then we have

bn−an−1∑
m=0

pbn−an−1−m(an + 1 +m)−α

=

r∑
m=0

pbn−an−1−m(an + 1 +m)−α +

bn−an−1∑
m=r+1

pbn−an−1−m(an + 1 +m)−α

= O (pbn−an−1)

bn−an∑
m=1

(an +m)−α + (an + r + 2)−α
bn−an−1∑
m=r+1

pbn−an−1−m

= O
(
P bn−an−1
0

bn

)
O
(
(bn)

1−α
)
+O

(
(bn + an)

−αP bn−an−1
0

)
= O

(
(bn − an)

−αP bn−an−1
0

)
. □

Remark 2.1. If we put bn = n+1 and an = 0 for all n = 1, 2, . . . in Lemma 2.3, we obtain Lemma 4
from [28].

3. Main Results

Our first main result is the following

Theorem 3.1. Let p ∈ (1,∞), w ∈ Ap and f ∈ Lip(α, p, w). If one of the conditions

(i) 0 < α < 1, and (pn) ∈ AMDS
(ii) 0 < α < 1, (pn) ∈ AMIS, and (2.1) holds

(iii) α = 1,
∑bn−an−1

j=1 |∆(pj)| = O
(

P bn−an−1
0

bn−an

)
, and (2.1) holds

(iv) α = 1,
∑bn−an−1

j=1 j |∆(pj)| = O
(
P bn−an−1
0

)
is true, where ∆(pj) = pj − pj+1, then

∥f −Db
aNn(f)∥p,w = O((bn − an)

−α), (n = 1, 2, . . . ).

Proof. Let 0 < α < 1. Using Lemma 2.1 and Lemma 2.3, the cases (i) and (ii) can be proved
simultaneously. Namely, since

f(x) =
1

P bn−an−1
0

bn−an−1∑
m=0

pbn−an−1−mf(x),

we can write

f(x)−Db
aNn(f ;x) =

1

P bn−an−1
0

bn−an−1∑
m=0

pbn−an−1−m[f(x)− San+1+m(f ;x)], .

whence, using Lemma 2.1 and Lemma 2.3, we get

∥f −Db
aNn(f)∥p,w ≤ 1

P bn−an−1
0

bn−an−1∑
m=0

pbn−an−1−m∥f − San+1+m(f)∥p,w

=
1

P bn−an−1
0

O
( bn−an−1∑

m=0

pbn−an−1−m(an + 1 +m)−α

)
=

1

P bn−an−1
0

O
(
(bn − an)

−αP bn−an−1
0

)
= O

(
(bn − an)

−α
)
.

(iii) Obviously, here we have to consider the case α = 1. Namely, the use of Abel’s transformation
gives

Db
aNn(f ;x) =

bn−an−1∑
m=0

pbn−an−1−mSan+1+m(f ;x)
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=
1

P bn−an−1
0

{
bn−an−2∑

m=0

[San+m+1(f ;x)− San+m+2(f ;x)]

m∑
j=0

pbn−an−1−j

+ Sbn(f ;x)

bn−an−1∑
j=0

pbn−an−1−j

}

=
1

P bn−an−1
0

{
bn−an−2∑

m=0

Aan+m+2(f ;x)
(
P

bn−an−1−(m+1)
0 − P bn−an−1

0

)
+ Sbn(f ;x)P

bn−an−1
0

}

=
1

P bn−an−1
0

bn−an−2∑
m=0

P
bn−an−1−(m+1)
0 Aan+m+2(f ;x)

−
bn−an−2∑

m=0

Aan+m+2(f ;x) +

bn∑
m=0

Am(f ;x)

=
1

P bn−an−1
0

bn−an−1∑
m=1

P bn−an−1−m
0 Aan+m+1(f ;x)

+

bn∑
m=0

Am(f ;x)−
bn∑

m=an+2

Am(f ;x)

=
1

P bn−an−1
0

bn−an−1∑
m=1

P bn−an−1−m
0 Aan+m+1(f ;x) +

an+1∑
m=0

Am(f ;x)

=
1

P bn−an−1
0

bn−an−1∑
m=0

P bn−an−1−m
0 Aan+1+m(f ;x) + San

(f ;x).

We use the obvious equality

Sbn(f ;x) =
1

P bn−an−1
0

bn−an−1∑
m=0

P bn−an−1
0 Aan+1+m(f ;x) +

an∑
m=0

Am(f ;x)

and Abel’s transformation to obtain

Sbn(f ;x)−Db
aNn(f ;x)

=
1

P bn−an−1
0

bn−an−1∑
m=1

P bn−an−1
0 − P bn−an−1−m

0

m
mAan+1+m(f ;x)

=
1

P bn−an−1
0

{
bn−an−2∑

m=1

∆

(
P bn−an−1
0 − P bn−an−1−m

0

m

) m∑
j=1

jAan+1+j(f ;x)

+
P bn−an−1
0 − P 0

0

bn − an − 1

bn−an−1∑
j=1

jAan+1+j(f ;x)

}

=
1

P bn−an−1
0

bn−an−1∑
m=1

∆

(
P bn−an−1
0 − P bn−an−1−m

0

m

) m∑
j=1

jAan+1+j(f ;x)

+
1

bn − an

bn−an−1∑
j=1

jAan+1+j(f ;x),

where ∆(cn,m) := cn,m − cn,m+1, and we agree with P−1
0 := 0.
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Hence, we have

∥Sbn(f)−Db
aNn(f)∥p,w

≤ 1

P bn−an−1
0

bn−an−1∑
m=1

∣∣∣∣∆(
P bn−an−1
0 − P bn−an−1−m

0

m

)∣∣∣∣ ∥∥∥∥ m∑
j=1

jAan+1+j(f)

∥∥∥∥
p,w

+
1

bn − an

∥∥∥∥ bn−an−1∑
j=1

jAan+1+j(f)

∥∥∥∥
p,w

.

Elementary calculations imply

Sbn−an−1(f ;x)−Db
a(f ;x) = Sbn−an−1(f ;x)−

1

bn − an

bn−an−1∑
j=0

San+1+j(f ;x)

=
1

bn − an

bn−an−1∑
j=0

(Sbn−an−1(f ;x)− San+1+j(f ;x))

=
1

bn − an

bn−an−1∑
j=0

( bn−an−1∑
m=an+2+j

Am(f ;x)

)

=
1

bn − an

bn−an−1∑
j=1

jAan+1+j(f ;x),

or
bn−an−1∑

j=1

jAan+1+j(f ;x) = (bn − an)[Sbn−an−1(f ;x)−Db
a(f ;x)].

Thus, Lemma 2.3 gives∥∥∥∥ bn−an−1∑
j=1

jAan+1+j(f ;x)

∥∥∥∥
p,w

= (bn − an)∥Sbn−an−1(f ;x)−Db
a(f ;x)∥p,w = O(1),

and therefore

∥Sbn(f)−Db
aNn(f)∥p,w

= O
(

1

P bn−an−1
0

bn−an−1∑
m=1

∣∣∣∣∆(
P bn−an−1
0 − P bn−an−1−m

0

m

)∣∣∣∣+ 1

bn − an

)
.

Moreover, the equality

∆

(
P bn−an−1
0 − P bn−an−1−m

0

m

)
=

bn−an−1∑
j=bn−an−m

pj −mpbn−an−1−m

m(m+ 1)

holds true.
Now, we prove by induction with respect to m that∣∣∣∣ bn−an−1∑

j=bn−an−m

pj −mpbn−an−1−m

∣∣∣∣ ≤ m∑
j=1

j |pbn−an−j−1 − pbn−an−j | .

Indeed, for m = 1, the equality

|pbn−an−1 − pbn−an−2| = |pbn−an−2 − pbn−an−1|

is true.
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Assume that the above inequality holds true for m and we prove it for m+ 1:∣∣∣∣ bn−an−1∑
j=bn−an−(m+1)

pj − (m+ 1)pbn−an−1−(m+1)

∣∣∣∣ = ∣∣∣∣ bn−an−1∑
j=bn−an−m

pj −mpbn−an−1−(m+1)

∣∣∣∣
≤

∣∣∣∣ bn−an−1∑
j=bn−an−m

pj −mpbn−an−1−m

∣∣∣∣+m
∣∣pbn−an−1−m − pbn−an−1−(m+1)

∣∣
≤

m∑
j=1

j |pbn−an−j−1 − pbn−an−j |+ (m+ 1)
∣∣pbn−an−1−m − pbn−an−1−(m+1)

∣∣
=

m+1∑
j=1

j |∆(pbn−an−j)| .

Using this inequality and assumptions of our theorem, we obtain

∥Sbn(f)−Db
aNn(f)∥p,w

= O
(

1

P bn−an−1
0

bn−an−1∑
m=1

1

m(m+ 1)

m∑
j=1

j |∆(pbn−an−j)|+
1

bn − an

)

= O
(

1

P bn−an−1
0

bn−an−1∑
j=1

j |∆(pbn−an−j)|
∞∑

m=j

1

m(m+ 1)
+

1

bn − an

)

= O
(

1

P bn−an−1
0

bn−an−1∑
j=1

|∆(pbn−an−j)|+
1

bn − an

)
= O

(
1

bn − an

)
.

To complete the proof of our theorem, we have to consider the remaining case (iv). First, we show
that under the assumption

bn−an−1∑
j=1

j |∆(pj)| = O
(
P bn−an−1
0

)
,

the inequality

Kan,bn :=

bn−an−1∑
m=1

∣∣∣∣∆(
P bn−an−1
0 − P bn−an−1−m

0

m

)∣∣∣∣ = O
(
P bn−an−1
0

bn − an

)
(3.1)

holds true.
We already have showen, during the proof of the case (iii), that

Ka,b ≤
bn−an−1∑

m=1

1

m(m+ 1)

m∑
j=1

j |∆(pbn−an−j)|

=

r∑
m=1

(·) +
bn−an−1∑
m=r+1

(·) =: K1
a,b +K2

a,b.

As during this paper, we take r to be the integral part of bn−an−1
2 . Then, by Abel’s transformation

and assumption on (iv), we obtain

K1
a,b =

r∑
m=1

1

m(m+ 1)

m∑
j=1

j |∆(pbn−an−j)|

≤
r∑

j=1

j |∆(pbn−an−j)|
∞∑
r=j

1

r(r + 1)
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=

r∑
j=1

|∆(pbn−an−j)|

=

pbn−an−1∑
j=bn−an−r

|∆(pj)|

≤ 2

bn − an + 1

pbn−an−1∑
j=1

j |∆(pj)| = O
(
P bn−an−1
0

bn − an

)
.

Now, we can write

K2
a,b ≤

bn−an−1∑
m=r

1

m(m+ 1)

[ r∑
j=1

j |∆(pbn−an−j)|+
m∑
j=r

j |∆(pbn−an−j)|
]
:= K21

a,b +K22
a,b.

Moreover, based on our assumption, we get

K21
a,b ≤

bn−an−1∑
m=r

1

m(m+ 1)

m∑
j=bn−an−r

j |∆(pj)|

≤
bn−an−1∑

m=r

1

m+ 1

m∑
j=bn−an−1

|∆(pj)|

≤ bn − an − 1− (r − 1)

r + 1

bn−an−1∑
j=bn−an−r

j

j
|∆(pj)|

≤ 1

bn − an

bn−an−1∑
j=1

j |∆(pj)| = O
(
P bn−an−1
0

bn − an

)
and

K22
a,b ≤

bn−an−1∑
m=r

1

m+ 1

m∑
j=r

|∆(pbn−an−j)|

≤ 1

r + 1

bn−an−1∑
m=r

m∑
j=r

|∆(pbn−an−j)|

= O
( 1

bn − an

)[
|∆(p1)|+ 2|∆(p2)|+ · · ·+ (bn − an − r)|∆(pbn−an−r)|

]
= O

(
1

bn − an

bn−an−1∑
j=1

j |∆(pj)|
)

= O
(
P bn−an−1
0

bn − an

)
which show that (3.1) holds true.

So, we have proved that

∥Sbn(f)−Db
aNn(f)∥p,w = O((bn − an)

−α)

and using Lemma 2.1, we obtain

∥f −Db
aNn(f)∥p,w ≤ ∥f − Sbn(f)∥p,w + ∥Sbn(f)−Db

aNn(f)∥p,w = O((bn − an)
−α).

The proof is completed. □

Theorem 3.2. Let 1 < p < ∞, w ∈ Ap, 0 < α ≤ 1, and let (pn)
∞
n=0 be a sequence of positive real

numbers satisfying the relation

bn−an−3∑
m=0

∣∣∣∣ Pm+an+1
an+1

an + 2 +m
−

Pm+an+2
an+1

an + 3 +m

∣∣∣∣ = O
(
P bn−1
an+1

bn

)
. (3.2)
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Then for every f ∈ Lip(α, p, w), the estimate

∥f −Db
aRn(f)∥p,w = O

(
(bn − an)

−α
)
, n = 1, 2, . . .

is satisfied.

Proof. Let 0 < α < 1. First of all, we can write

f(x)−Db
aRn(f ;x) =

1

P bn
an+1

bn−an−1∑
m=0

pan+1+m[f(x)− San+1+m(f ;x)].

Using Lemma 2.1,

∥f −Db
aRn(f)∥p,w ≤ 1

P bn
an+1

bn−an−1∑
m=0

pan+1+m∥f − San+1+m(f)∥p,w

≤ 1

P bn
an+1

bn−an−1∑
m=0

pan+1+mO((an + 1 +m)−α). (3.3)

We use the summation by parts to obtain (P 0
an+1 := 0):

bn−an−1∑
m=0

pan+1+m(an + 1 +m)−α

=

bn−an−2∑
m=0

[
(an + 1 +m)−α − (an + 2 +m)−α

]
Pm+an+1
an+1 + b−α

n P bn
an+1

= O(1)

bn−an−2∑
m=0

(an + 2 +m)−1−αPm+an+1
an+1 +

P bn
an+1

(bn − an)α
. (3.4)

Using the summation by parts again and condition (3.2), we get

bn−an−2∑
m=0

(an + 2 +m)−α Pm+an+1
an+1

an + 2 +m

≤
bn−an−3∑

m=0

∣∣∣∣ Pm+an+1
an+1

an + 2 +m
−

Pm+an+2
an+1

an + 3 +m

∣∣∣∣ m∑
j=0

(an + 2 + j)−α

+
P bn−1
an+1

bn

bn−an−2∑
j=0

(an + 2 + j)−α

=

bn−an−3∑
m=0

∣∣∣∣ Pm+an+1
an+1

an + 2 +m
−

Pm+an+2
an+1

an + 3 +m

∣∣∣∣O (
(an + 2 +m)1−α

)
+

P bn−1
an+1

bn
O
(
b1−α
n

)
= O

(
P bn−1
an+1

bn
(bn − 1)1−α

)
+O

(
P bn−1
an+1

bαn

)
= O

(
P bn
an+1

(bn − an)α

)
, (3.5)

whence (3.3), (3.4) and (3.5) imply

∥f −Db
aRn(f)∥p,w = O

(
1

(bn − an)α

)
.

Now, we consider the case α = 1. Indeed, the use of the summation by parts gives

Db
aRn(f ;x) =

1

P bn
an+1

bn−an−1∑
m=0

pan+1+mSan+1+m(f ;x)
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=
1

P bn
an+1

[
bn−an−2∑

m=0

(San+1+m(f ;x)− San+2+m(f ;x))

m∑
j=0

pan+1+j

+ Sbn(f ;x)

bn−an−1∑
j=0

pan+1+j

]

= − 1

P bn
an+1

[
bn−an−2∑

m=0

Aan+2+m(f ;x)P an+1+m
an+1 − Sbn(f ;x)P

bn
an+1

]
or

Db
aRn(f ;x)− Sbn(f ;x) = − 1

P bn
an+1

bn−an−2∑
m=0

P an+1+m
an+1 Aan+2+m(f ;x).

We use the summation by parts again to obtain

bn−an−2∑
m=0

P an+1+m
an+1 Aan+2+m(f ;x)

=

bn−an−2∑
m=0

P an+1+m
an+1

an + 2 +m
(an + 2 +m)Aan+2+m(f ;x)

=

bn−an−3∑
m=0

(
P an+1+m
an+1

an + 2 +m
−

P an+2+m
an+1

an + 3 +m

) m∑
j=0

(an + 2 + j)Aan+2+j(f ;x)

+
P bn−1
an+1

bn

bn−an−2∑
j=0

(an + 2 + j)Aan+2+j(f ;x),

whence, using the equality

m∑
j=0

(an + 2 + j)Aan+2+j(f ;x) =

m+an+2∑
j=an+2

jAj(f ;x)

=

m+an+2∑
j=0

jAj(f ;x)−
an+1∑
j=0

jAj(f ;x)

= (m+ an + 3)(Sm+an+2(f ;x)− σm+an+2(f ;x))

− (an + 2)(San+1(f ;x)− σan+1(f ;x)),

we get ∥∥∥∥ bn−an−2∑
m=0

P an+1+m
an+1 Aan+2+m(f)

∥∥∥∥
p,ω

≤
bn−an−3∑

m=0

∣∣∣∣ P an+1+m
an+1

an + 2 +m
−

P an+2+m
an+1

an + 3 +m

∣∣∣∣ ∥∥∥∥ m∑
j=0

(an + 2 + j)Aan+2+j(f)

∥∥∥∥
p,ω

+
P bn−1
an+1

bn

∥∥∥∥ bn−an−2∑
j=0

(an + 2 + j)Aan+2+j(f)

∥∥∥∥
p,ω

≤
bn−an−3∑

m=0

(m+ an + 3)

∣∣∣∣ P an+1+m
an+1

an + 2 +m
−

P an+2+m
an+1

an + 3 +m

∣∣∣∣ ∥Sm+an+2(f)− σm+an+2(f)∥p,ω

+

bn−an−3∑
m=0

(an + 2)

∣∣∣∣ P an+1+m
an+1

an + 2 +m
−

P an+2+m
an+1

an + 3 +m

∣∣∣∣ ∥San+1(f)− σan+1(f)∥p,ω
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+
P bn−1
an+1

bn

[
(bn + 1) ∥Sbn(f)− σbn(f)∥p,ω + (an + 2) ∥San+1(f)− σan+1(f)∥p,ω

]
.

Consequently, using Lemma 2.2 and condition (3.2), we have

∥∥Db
aRn(f)− Sbn(f)

∥∥
p,ω

=
1

P bn
an+1

O
( bn−an−3∑

m=0

∣∣∣∣∣ P an+1+m
an+1

an + 2 +m
−

P an+2+m
an+1

an + 3 +m

∣∣∣∣∣+ P bn−1
an+1

bn

)
= O

( 1

bn

)
= O

( 1

bn − an

)
.

Finally, the latest estimate and Lemma 2.1 imply

∥f −Db
aRn(f)∥p,w ≤ ∥f − Sbn(f)∥p,w + ∥Sbn(f)−Db

aRn(f)∥p,w = O
( 1

bn − an

)
.

The proof is completed. □

4. Few Remarks and Corollaries

As we have seen, for pm = 1, for all n ≥ 0, the Voronoi–Nörlund and the deferred Riesz means
reduce to the deferred Cesàro means

Db
a(f ;x) =

1

bn − an

bn∑
m=an+1

Sm(f ;x)

of Sm(f ;x). So, both Theorems 3.1–3.2 imply the deviation

∥f −Db
a(f)∥p,w = O

(
(bn − an)

−α
)

(n = 1, 2, . . . ).

Moreover, if bn = n, an = 0, and pn = 1, for all n ≥ 1, then Db
a(f ;x) means coincide with the

Cesàro means σn(f ;x) =
1
n

∑n
j=1 Sm(f ;x). Even in this case, we clearly have

∥f − σn(f)∥p,w = O
(
n−α

)
(n = 1, 2, . . . ).

Remark 4.1. If we take an = 0 and bn = n (n = 1, 2, . . . ) in our theorems, then we obtain the results
proved in [15].

Let us suppose that F is a subset of N and consider F as the range of a strictly increasing sequence
of positive integers, say F = (λ(n))∞1 .

The polynomials

Nλ
n (f ;x) =

1

Pλ(n)

λ(n)∑
k=0

pλ(n)−ksk(f ;x),

and

Rλ
n(f ;x) =

1

Qλ(n)

λ(n)∑
k=0

qksk(f ;x),

introduced in [13], are the particular case (for an = 0 and bn = λ(n)) of the means Db
aNn(f ;x) and

Db
aRn(f ;x), respectively. Therefore Theorem 3.1 implies:

Corollary 4.1 ([20]). Let p ∈ (1,∞), w ∈ Ap and f ∈ Lip(α, p, w). If one of the conditions

(i) 0 < α < 1, and (pn) ∈ AMDS
(ii) 0 < α < 1, (pn) ∈ AMIS, and (λ(n) + 1)pλ(n) = Pλ(n) holds

(iii) α = 1,
∑λ(n)−1

j=1 |∆(pj)| = O
(

Pλ(n)

λ(n)

)
, and (2.1) holds

(iv) α = 1,
∑λ(n)−1

j=1 j |∆(pj)| = O
(
Pλ(n)

)
is true, where ∆(pj) = pj − pj+1, then

∥f −Nλ
n (f)∥p,w = O((λ(n))−α), (n = 1, 2, . . . ).
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Moreover, for pk = qk = 1, k = 0, 1, . . . , λ(n), we obtain the polynomials (see [2, p. 195])

Cλ
n(f ;x) =

1

λ(n) + 1

λ(n)∑
k=0

sk(f ;x),

which for λ(n) = n, as a particular case, they reduce to the ordinary Cesàro mean.
So, under the appropriate conditions, the deviation

∥f − Cλ
n(f)∥p,w = O

(
(λ(n))−α

)
(n = 1, 2, . . . )

is also implied from our results.
Finally, Theorem 3.2 implies the following

Corollary 4.2. Let 1 < p < ∞, w ∈ Ap, 0 < α ≤ 1, and let (pn)
∞
n=0 be a sequence of positive real

numbers satisfying the relation

λ(n)−3∑
m=0

∣∣∣∣Pm+1
1

m+ 2
− Pm+2

1

m+ 3

∣∣∣∣ = O
(
P

λ(n)−1
1

λ(n)

)
.

Then for every f ∈ Lip(α, p, w), the estimate

∥f −Rλ
n(f)∥p,w = O

(
(λ(n))−α

)
, n = 1, 2, . . .

is satisfied.
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