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THE INFLUENCE OF CHANGES ON THE RHEOLOGICAL PROPERTIES OF A

GAS-LIQUID MIXTURE ON THE DYNAMICS OF ITS MOTION, TAKING

INTO ACCOUNT THE HEAT EXCHANGE PROCESS

ELHAN M. ABBASOV1 TARANA S. KENGERLI2∗ AND NARGIZ R. ABDULLAYEVA2

Abstract. A model of non-stationary motion of a gas-liquid mixture in the reservoir-well system

is constructed, taking into account the heat exchange process between the flow of the gas-liquid

mixture in the riser pipe and its environment, and the solutions of boundary value problems are
given. In the first approximation, the influence of changes of the rheological properties of the gas-

liquid mixture depending on temperature on the dynamics of its motion is determined. Analytical

formulas have been obtained that make it possible to determine the dynamics of pressure at the
bottom of the well and the productivity of the reservoir depending on the parameters of the system.

Numerical calculations are carried out for practical values of the system parameters.

1. Introduction

A change in rheological properties may have a significant impact on the dynamics of the motion of a
gas-liquid mixture in the reservoir-well system. The rheological properties of a gas-liquid mixture are
sensitive to changes of the temperature of its environment. When the gas-liquid mixture moves through
the pipeline, heat exchange occurs between the flow of the gas-liquid mixture and its environment.
This leads to a change of the viscosity and density of the gas-liquid mixture and, as a result, to a
change of the dynamics of its movement. In addition, the density of the gas-liquid mixture still strongly
depends on pressure, which also affects the dynamics of its movement. The issue of the influence of
changes in rheological properties on the dynamics of the movement of a gas-liquid mixture is the
subject of works [2, 3, 7, 10–13, 15, 16], but so far it remains poorly understood. The problem of heat
transfer during the motion of a dropping viscous liquid, taking into account the dependence of the
viscosity coefficient on temperature, was posed in 1922 by Acad. L. S. Leibenson [11]. The paper
solves the problem of determining the change in the viscosity of a dropping viscous liquid depending
on the heat exchange process during its stationary movement through the pipeline. And in this work,
the problem of determining the effect of changes in the viscosity and density of the gas-liquid mixture
depending on temperature on the dynamics of its movement in the reservoir-well system is solved.

2. Problem Statement and Methods for Solving it

Consider the motion of the gas-liquid mixture in the riser pipes. Due to the smallness of the liquid
fraction in the mass of the gas-liquid mixture, in the first approximation, we will assume it to be
homogeneous with a reduced density ρm. Then the equation of motion in the gas-liquid mixture of
the pipe and the continuity condition, due to the assumptions made, are described by the I. A. Charny
equations [1–3,6]:

−∂P

∂x
=

∂Q

∂t
+ 2aQ+ ρmg, − 1

c2
∂P

∂t
=

∂Q

∂x
, Q = ρmu, (2.1)

ρm is determined by the formula (2.2) [3, 11]:

ρm =
(1 + ε)ρoilρg
ρoil + ρgε

, (2.2)
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ρg and ρoil are, respectively, the density of the gas and the oil, c is a speed of sound propagation in
mixture, t is time, x is coordinate, a is a resistance coefficient, which is determined by the formula [5]:

a =
16ν

d2T
, (2.3)

where ν is kinematic viscosity of the mixture, dT is diameter of the inner wall of the pipe, ε is the
mass fraction of oil in gas.
The change in the viscosity of the mixture is associated with the dynamics of its motion. However,
it is known that as the temperature of the mixture increases, its viscosity decreases. To simplify the
solution of the problem, in the first approximation, we assume that the change in the viscosity of the
gas-liquid mixture with temperature occurs linearly,

ν = νTc −
νT0 − νTc

Tc − T0
(T − Tc), (2.4)

where νTc and νT0 are, respectively, the kinematic viscosities of the mixture at the bottom and at the
wellhead; T is temperature of the mixture in any cross-section of the column of lifting pipes; Tc and
T0-respectively, the temperatures of the mixture at the bottom and at the wellhead.

The temperature T is determined from the heat exchange process between the flow of the gas-
liquid mixture and its environment during its movement through the pipeline. The process itself is
non-stationary. However, in the first approximation, neglecting the inertial component of the flow,
taking into account only convective heat transfer [14], placing the origin of the X-coordinate axis in
the lower section of the pipe, we obtain [7, 12,15]:

∂T

∂x
+ βT = βT1. (2.5)

The boundary condition
T |x=0 = Tc, (2.6)

where

β =
2α

cmρmνxrT
,

x is coordinate, T1 is temperature of the medium surrounding the pipe,
α is a heat transfer coefficient, rT is radius of the inner wall of the pipe,
νx is averaged over the cross-section of the pipe axial velocity of the gas flow,
cm- is a specific heat capacity of the mixture under the normal conditions.
The temperature distribution of the medium surrounding the pipeline in the vertical direction

occurs linearly and has the form [7,12]

T1 = T2 +
l − x

l
(T3 − T2), (2.7)

where T2 and T3 are, respectively, the temperature of the medium surrounding the pipeline at the
wellhead and at the bottom of the well; l is a depth of the descent of the pipe string.

Substituting expression (2.7) into equation (2.5) and integrating the resulting equation, taking into
account the boundary condition (2.6), we obtain

T = Tc exp (−βx) + T3(1− exp (−βx))− T3 − T2

l
x+

T3 − T2

β l
(1− exp (−βx)). (2.8)

For the values of the practical parameters of the system β l << 1, therefore exp(−β x) can be repre-
sented as

exp(−β x) = 1− β x.

Then expression (2.8) looks like

T = Tc

(
1−

(
1− T3

Tc

)
β x

)
. (2.9)

We find the gas density in the pipe ρ3 from the expression [3]

ρg =
ρatmPTatm

PatmT
, (2.10)
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where ρatm is the gas density at atmospheric pressure; P is the gas pressure;
Tatm is gas temperature at atmospheric pressure; T is temperature of the gas in any cross-section

of the pipe.
Substituting expression (2.9) into formula (2.10), we obtain

ρg =
ρatmPTatm

PatmTc

(
1−

(
1− T3

Tc

)
β x

) . (2.11)

Moreover, always, for practical values of the system parameters,
(
1− T3

Tc

)
β l << 1.

Therefore 1(
1−

(
1−T3

Tc

)
β x

) can be represented as a series

1(
1−

(
1− T3

Tc

)
β x

) = 1 +
(
1− T3

Tc

)
β x+

(
1− T3

Tc

)2

β2 x2 + · · · .

Then, in the first approximation, taking into account only one member of this series, from expression
(2.11) we obtain

ρg =
ρatmPTatm

PatmTc

(
1 +

(
1− T3

Tc

)
β x

)
. (2.12)

Substituting expression (2.9) into formula (2.4), and then the resulting expression into formula (2.3),
we obtain

a = α0 + β0x, (2.13)

where

α0 =
16vT0

d2T
, β0 =

16

d2T

νT0 − νTc

Tc − T0
Tc

(
1− T3

Tc

)
β.

Substituting expression (2.12) into formula (2.2), after some transformations, we obtain

ρm = d2P (x) (1 + d1x) [1− d3P (x) (1 + d1x)] , (2.14)

where P (x) is pressure distribution in the pipeline at stationary mode,

d1 =

(
1− T3

Tc

)
β, d2 = (1 + ε)

ρatmTatm

PatmTc
, d3 =

ερatmTatm

ρoilPatmTc
.

Substituting expressions (2.13) and (2.14) into equation (2.1) and then differentiating the first
equation with respect to the õ-coordinate, and the second with respect to time t, and subtracting one
from the other, we obtain

∂2P

∂t2
= c2

∂2P

∂x2
+ 2c2β0Q0 − 2ac2

∂P

∂t
+

∂ρm
∂x

g. (2.15)

The initial and boundary conditions

∂P

∂t

∣∣∣
t=0

= 0, 0 < x ≤ l, (2.16)

P (x, 0)|t=0 = f(x), 0 < x ≤ l, (2.17)

P |x=0 = Pc(t), t > 0, (2.18)

P |x=l = Py(t), t > 0. (2.19)

The solution of equation (2.15), satisfying the boundary conditions (2.18) and (2.19), will be sought
in the form

P = Pc(t)−
Pc(t)− Py(t)

l
x+

∞∑
i=1

sin
iπx

l
φi (t) . (2.20)

Substituting expression (2.20) into equation (2.15), multiplying both parts of the resulting equation
by sin

(
iπx
l

)
and integrating it from 0 to l, for i = 1 [4,8, 9], we get:

φ̈+ c2φ̇+ c3φ = a5P̈c + a6P̈y + a3Ṗc+a4Ṗy + a1Pc + a2Py + a7, (2.21)
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where

c2 = 2α0 + β0l, c3 = −c2(gl2d1d2 − 2π2)

2l2
,

a1 =
4gc2d2

[
((d1

2l2 + d1l + 2)π2 − 8d1
2l2)d3Pk − π2

]
lπ3

,

a2 = −
8gc2d2

[
((d1

2l2 + 3
2d1l + 1)π2 − 4d1

2l2)d3Pk − π2

2 (d1l + 1)
]

lπ3
,

a3 = −4α0

π
− 8β0l

π3
, a4 =

16β0l

π3
− 4α0

π
− 4β0l

π
, a5 = − 2

π
, a6 = − 2

π
,

a7 =
8c2β0Q0

π
.

Applying the Laplace transform from equation (2.21), we obtain

φ̄ =
φ0(s+ c2) + φ̇0

s2 + c2s+ c3
− (a5s

2 + a3s+ a1)P̄c − (a5s+ a3)Pc0 − a5Ṗc0

s2 + c2s+ c3

− (a6s
2 + a4s+ a2)P̄y − (a4s+ a6)Py0 − a6Ṗy0

s2 + c2s+ c3
− a7

s(s2 + c2s+ c3)
. (2.22)

The initial values of the function φ0 and its derivative φ̇0 will be determined from the initial conditions
(2.16) and (2.17).

At the initial moment, the well operates in a stationary mode. Therefore from equation (2.1),
taking into account formulas (2.13) and (2.14), we have

−∂P (x)

∂x
= 2aQ0 + gd2P (x) (1 + d1 x) [1− d3P (x) (1 + d1 x)] . (2.23)

The boundary condition

P |x=0 = Pc0. (2.24)

In formula (2.23), following L.S. Leibenson [11], for the linearization, it is assumed that P 2(x) =
BP (x). As a first approximation, B = Pk. Integrating expression (2.23), we obtain

Px0 = −2Q0

(∫
a exp

(
− 1

6
gd2x(2Bd1

2d3x
2 + 6Bd1d3x+ 6Bd3 − 3d1x− 6)

)
dx+ Pc0

)
× exp

(1
6
gd2x(2Bd1

2d3x
2 + 6Bd1d3x+ 6Bd3 − 3d1x− 6)

)
. (2.25)

For practical values of the system parameters (even when x = l), the expression

−1

6
gd2x(2Bd1

2d3x
2 + 6Bd1d3x+ 6Bd3 − 3d1x− 6) << 1.

Therefore, expanding

exp
(
− 1

6
gd2x(2Bd1

2d3x
2 + 6Bd1d3x+ 6Bd3 − 3d1x− 6)

)
in a series and taking into account only the first term, we obtain

exp
(
− 1

6
gd2x(2Bd1

2d3x
2 + 6Bd1d3x+ 6Bd3 − 3d1x− 6)

)
≈ 1− 1

6
gd2x(2Bd1

2d3x
2 + 6Bd1d3x+ 6Bd3 − 3d1x− 6). (2.26)

Then from expression (2.25), taking into account the boundary condition (2.24) and formula (2.26),
we obtain

Px|t=0 =
(
− 2Q0(b1x

5 + b2x
4 + b3x

3 + b4x
2 + α0x) + Pc0

)
b5, (2.27)
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where

b1 = − 1

15
gBd1

2d2d3β0,

b2 = − 1

24
gd2

(
2Bd1

2d3α0 + (6Bd1d3 − 3d1)β0

)
,

b3 = −1

6
gd2

(
(2Bd3 − 1)d1α0 + 2(Bd3 − 1)β0

)
,

b4 = −1

2

(
gd2(Bd3 − 1)α0 − β0

)
,

b5 = 1 +
1

6
gd2x(2Bd1

2d3x
2 + 6Bd1d3x+ 6Bd3 − 3d1x− 6).

From expression (2.20) for t = 0, we obtain

Px |t=0 = Pc0 −
Pc0 − Py0

l
x+

∞∑
i=1

φi0

(
sin

iπx

l

)
. (2.28)

Equating expressions (2.27) and (2.28) we find that

∞∑
i=1

φi0

(
sin

iπx

l

)
=

(
− 2Q0(b1x

5 + b2x
4 + b3x

3 + b4x
2 + α0x) + Pc0

)
b5 +

Pc0 − Py0

l
x− Pc0. (2.29)

Multiplying both parts of expression (2.29) by
(
sin iπx

l

)
and integrating from 0 to l taking into account,

we get only one member of the series

φ0 = w1l
8 + w2l

7 + w3l
6 + w4l

5 + w5l
4 + w6l

3 + w7l
2 + w8l + w9, (2.30)

where

w1 = − 4

3π9
BQ0b1d1

2d2d3g(π
8 − 56π6 + 1680π4 − 20160π2 + 80640),

w2 = − 4

3π7
Q0d1d2g(π

6 − 42π4 + 840π2 − 5040)
(
Bb2d1d3 + 3Bb1d3 −

3

2
b1

)
,

w3 = − 4

π7
Q0d2g(π

6 − 30π4 + 360π2 − 1440)
(1
3
Bb3d1

2d3 + b2d1

(
Bd3 −

1

2

)
+ b1(Bd3 − 1)

)
,

w4 = − 4

π5
Q0(π

4 − 20π2 + 120)
(
b1 + g

(1
3
Bb4d1

2d3 + b3d1

(
Bd3 −

1

2

)
+ b2d2(Bd3 − 1)

))
,

w5 = − 4

π5
Q0(π

4 − 12π2 + 48)
(
b2 + g

(1
6
Bd1

2d3α0 + b4d1

(
Bd3 −

1

2

)
+ b3d2(Bd3 − 1)

))
,

w6 = − 4

π3
(π2 − 6)

(
Q0

(
b3 + gd2

((1
2
Bd3α0 −

1

4
α0

)
d1 + b4d2(Bd3 − 1)

))
− 1

6
BPc0d1

2d2d3

)
,

w7 = − 2

π3
(π2 − 4)

(
2Q0b4 − d2g

(
Pc0d1

(
Bd3 −

1

2

)
−Q0α0(Bd3 − 1)

))
,

w8 = − 2

π
(Q0α0 − Pc0d2g(Bd3 − 1)),

w9 = − 2

π
(Py0 − Pc0).

To determine φ̇0, we differentiate expression (2.20) with respect to time t,

Ṗ = Ṗc(t)−
Ṗc(t)− Ṗy(t)

l
x+

∞∑
i=1

φ̇i (t)
(
sin

iπx

l

)
.

From expression (2.30), taking into account the initial condition (2.16), we obtain

φ̇0 = 0.

Let us determine the mass flow rate of the mixture coming per unit area of the flow section of the
pipe. Towards this end, substituting expressions (2.13) and (2.14) into the first equation of expression
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(2.1), we obtain

−∂P

∂x
=

∂Q

∂t
+ 2aQ+ gd2P (x) (1 + d1x) [1− d3P (x) (1 + d1 x)] . (2.31)

Differentiating equation (2.20) with respect to the X-coordinate and substituting it into equation
(2.31), applying the Laplace transform, we have

Q̄ =
Q0

s+ 2a
+

P̄c

l(s+ 2a)
− P̄y

l(s+ 2a)
−

πφ̄ cos
(
π x
l

)
l(s+ 2a)

−gd2P (x) (1 + d1x) [1− d3P (x) (1 + d1 x)]

l(s+ 2a)
.

Q̄|x=0 =
Q0

s+ 2α0
+

P̄c − P̄y

l(s+ 2α0)
+

gd2(Bd3 − 1)

(s+ 2α0)
P̄c −

π

l(s+ 2α0)
φ̄. (2.32)

The mass flow of the mixture into the well per unit time can be determined from the expression [3]

Q̄m =
G0

(s+ α)
−B1

sP̄c − Pc0

s+ α
, (2.33)

where G0 is the initial mass flow rate of the mixture, B1 = khπ Pc0+Pk

Dµm β1
.

Then, based on the continuity condition, we have

Q̄m = f Q̄
∣∣
x=0

. (2.34)

Substituting expressions (2.32) and (2.33) into formula (2.34), we obtain the following equation:

G0

f(s+ α)
− B1

sP̄c − Pc0

f(s+ α)
=

Q0

s+ 2α0
+

P̄c − P̄y

l(s+ 2α0)
− π φ̄

l(s+ 2α0)
+

d2g(Bd3 − 1)P̄c

(s+ 2α0)
(2.35)

which allows us to determine Pc(t). Substituting expressions (2.22) into formula (2.35), we obtain P̄c:

P̄c =
Pc1 + Pc2 + Pc3 + Pc4

(s− q1)(s− q2)(s− q3)(s− q4)
, (2.36)

where

Pc1 = (s+ α)
(
(s2 + c2s+ c3)− π(a6s

2 + a4s+ a2)
)
P̄y,

Pc2 =
(
B1l(s+ 2α0)(s

2 + c2s+ c3) + π(s+ α)(a5s+ a3)
)
Pc0,

Pc3 = π(s+ α)
(
(a4s+ a6)Py0 + a6Ṗy0 + a5Ṗc0 + φ0(s+ c2) + φ̇0 −

a7
s

)
,

Pc4 = l(s2 + c2s+ c3)
(
(s+ 2α0)G0 − (s+ α)Q0

)
,

q1, q2, q3, q4 are the roots of the equation

(s2 + c2s+ c3)((s+ α)(ld2g(Bd3 − 1) + 1) +B1l(s+ 2α0)) + (a5s
2 + a3s+ a1)(s+ α)π = 0.

Applying the Laplace transform and taking into account the convolution and inversion theorems, from
expressions (2.33) and (2.36), taking into account the practical values of the system parameters

rc = 0.075 m; ρ = 0.668kg/m3; Patm = 105Pa; π = 3.14; h = 10m; Pc0 = 2.7 · 107Pa;

Pk = 3 · 107Pa; PcT = 107Pa; PyT = 8 · 106Pa; Py0 = 2.3 · 107Pa; µ = 1.2 · 10−5Pa · s;
f = πr2T ; a = 10−2c−1; m = 0.2; Tn = 180 day; k = 10−13m2; T2 = 100C; T3 = 800C;

Tc = 1000C; m = 0.2; c = 300
m

s
; Tn = 180 day; Tatm = 200C;

ν0 = 5.28 · 10−6m2/s; νT = 1.76 · 10−6m2/s; rT = 3 · 10−2m; Rk = 200m;

α = 8.33 · 10−4 kkal

m20C
; β =

2α

cgρgrTux
; l = 2300m; G0 = 5.052kg/s

we get the values for Pc and Qm.
The calculation results are presented in Figures 1, 2 and 3. Figure 1 shows the dynamics of pressure

changes at the bottom of the well for small time values. It can be seen that in the initial period, the
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pressure at the bottom of the pulsating well drops. Further, as the bottomhole pressure stabilizes, it
almost linearly participates in a stationary association (Figure 1 and Figure 2). Figure 3 shows the
dynamics of well productivity.

Figure 1. Dynamics of the change of pressure at the bottom of the well for small time values.

Figure 2. Dynamics of pressure changes at the bottom of the well.
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Figure 3. Dynamics of well productivity.

3. Conclusion

A model of the motion of a gas-liquid mixture in the reservoir-well system has been built, taking
into account the heat exchange process between the flow of the mixture in the pipe and its environ-
ment. The boundary value problem is solved and the influence of the heat exchange process on the
performance of the well is determined.

Analytical expressions have been obtained to determine the pressure dynamics at the bottom of
the well, which in turn allows to determine the volume of the gas-liquid mixture flowing through any
cross-section of the lifting pipes per unit time, and numerical calculations have been carried out for
practical system parameters.

Denotation

P is pressure at any point of the formation; Pc(t) is pressure at the bottom of the well;
Pk is pressure on the reservoir contour; ρm is density of the mixture of oil and gas;
r is coordinate; h is formation thickness; m is reservoir porosity coefficient;
ρoil is density of oil; ρg is gas density; Patm is atmosphere pressure;
ρatm is density of the gas at atmospheric pressure; ε is mass fraction of oil in gas;
µm is viscosity of the mixture, k is formation permeability coefficient;
Pc0, PcT is pressure at the bottom of the well at the beginning and end of operation;
c is speed of sound propagation in gas, t is time, x is coordinate, a is drag coefficient, Py(t) is

pressure at the wellhead, f is area of the pipe flow area, φi (t) is unknown, time-dependent function,
l is depth of descent of the pipe.
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