Transactions of A. Razmadze
Mathematical Institute
Vol. 178 (2024), issue 1, 175-177

FULL EQUIPMENT OF THE MANIFOLD TANGENT FIBER SPACE $T T(T(V n))$

GOCHA TODUA

Abstract

We consider the manifold tangent space $T(T(V n))$ of the tangent fiber space $T(V n)$. Invariant I-forms of the space $T(T(V n))$ are defined and their structural equations are obtained. Linear connections of the space $T(T(V n))$ are considered when it is fully equipped.

Let us consider the manifold tangent fiber space $T(T(V n))$ with local coordinates $\left(x^{i}, y^{\bar{i}}, y^{i}, z^{\bar{i}}\right)$, $i, j, k=\overline{1, n}, \bar{i}, \bar{j}, \bar{k}=\overline{1, n}$, where $x^{i}, y^{\bar{i}}$ are the coordinates of the basis $T(V n)$, and $y^{i}, z^{\bar{i}}$ are the coordinates of the fiber $T_{z}, z \in T(V n)$ In other words, the vector fields \mathfrak{X}

$$
\mathfrak{X}=y^{i} \frac{\partial}{\partial x^{i}}+z^{\bar{i}} \frac{\partial}{\partial y^{\bar{i}}}
$$

generate the fiber space $T(T(V n))$. It is obvious that the local coordinates $\left(x^{i}, y^{\bar{i}}, y^{i}, z^{\bar{i}}\right)$ of a point of the fiber space $T(T(V n))$ are transformed as follows:

$$
\bar{x}^{i}=\bar{x}^{i}\left(x^{k}\right), \quad \bar{y}^{i}=x_{k}^{i} y^{k}, \quad \bar{y}^{\bar{i}}=x_{\bar{k}}^{\bar{i}} y^{\bar{k}}, \quad \bar{z}^{\bar{i}}=x_{\bar{k}}^{\bar{i}} z^{\bar{k}}+x \overline{\bar{k}} y^{\bar{k}} y^{j}
$$

On the space $T(T(V n))$ one can define the following I-forms:

$$
\theta^{i}=d y^{i}+\omega_{k}^{i} y^{k}, \quad \theta^{\bar{i}}=d y^{\bar{i}}+\omega_{\bar{k}}^{\bar{i}} y^{\bar{k}}, \quad \vartheta^{\bar{i}}=d z^{\bar{i}}+\omega_{\bar{k}}^{\bar{i}} z^{\bar{k}}+\omega_{\bar{k}}^{\bar{i}} y^{\bar{k}} y^{j}
$$

Differentiating these equalities externally and using structural equations for the I-form $\omega_{k}^{i}, \omega_{\bar{k}}^{\bar{i}}$, $\omega \overline{\bar{k}}{ }^{\bar{i}}$ [1] we obtain:

$$
\begin{gathered}
D \theta^{i}=\theta^{k} \wedge \omega_{k}^{i}+\omega^{k} \wedge \theta_{k}^{i} \\
D \theta^{\bar{i}}=\theta^{\bar{k}} \wedge \omega_{\bar{k}}^{\bar{i}}+\omega^{k} \wedge \theta_{k}^{\bar{i}} \\
D \vartheta^{\bar{i}}=\vartheta^{\bar{k}} \wedge \omega_{\bar{k}}^{\bar{i}}+\theta^{\bar{k}} \wedge \theta_{\bar{k}}^{\bar{i}}+\theta^{k} \wedge \theta_{k}^{\bar{i}}+\omega^{k} \wedge \vartheta_{k}^{\bar{i}}
\end{gathered}
$$

where

$$
\theta_{k}^{\bar{i}}=\omega_{\bar{j} k}^{\bar{i}} y^{\bar{j}}, \quad \theta_{k}^{i}=\omega_{k j}^{i} y^{j}, \quad \theta_{\bar{k}}^{\bar{i}}=\omega_{\bar{k} j}^{\bar{i}} y^{j}, \quad \vartheta_{j}^{\bar{i}}=\omega_{\bar{k} j}^{\bar{i}} z^{\bar{k}}+\omega_{\bar{k} i j}^{\bar{i}} y^{\bar{k}} y^{i}
$$

From the transformation law of the local coordinates of a point of the tangent fiber space $T(T(V n))$ it follows that

$$
\begin{gathered}
d \bar{x}^{i}=x_{k}^{i} d x^{k} \\
d \bar{y}^{i}=x_{k j}^{i} y^{k} d x^{j}+x_{k}^{i} d y^{k}, \\
d \bar{y}^{\bar{i}}=x_{\bar{k} j}^{\bar{i}} y^{\bar{k}} d x^{j}+x_{\bar{k}}^{\bar{i}} d y^{\bar{k}}, \\
d \bar{z}^{\bar{i}}=\left(x_{\bar{k} j}^{\bar{i}} z^{\bar{k}}+x_{\bar{k} p j}^{\bar{i}} y^{\bar{k}} y^{p}\right) d x^{j}+x_{\bar{k} j}^{\bar{i}} y^{j} d y^{\bar{k}}+x_{\bar{k} j}^{\bar{i}} y^{\bar{k}} d y^{j}+x_{\bar{k}}^{\bar{i}} d z^{\bar{k}}
\end{gathered}
$$

The quantities $\left\{d x^{k}, d y^{\bar{k}}, d y^{k}, d z^{\bar{k}}\right\}$ define the co-basis of the co-tangent space $\stackrel{*}{T} T(T(V n))$.
It is obvious that the space $\stackrel{*}{T} T(T(V n))$ always has an invariant subspace spanned over the co-basis $\left\{d x^{k}\right\}$. Let us consider the case when $\stackrel{*}{T} T(T(V n))$ is a fully equipped space. Then the matrix of

2020 Mathematics Subject Classification. 53B05.
Key words and phrases. Tangent fiber space; Manifold tangent fiber space; I-forms; Linear connections.
reference frame transformation has the form

$$
\left\|\begin{array}{cccc}
x_{k}^{i} & 0 & 0 & 0 \\
0 & x_{\bar{k}}^{\bar{i}} & 0 & 0 \\
0 & 0 & x_{k}^{i} & 0 \\
0 & 0 & 0 & x_{\bar{k}}^{\bar{i}}
\end{array}\right\|
$$

The object of linear triangular co-connection always generates an object of linear triangular connection. In our case in which we deal with the full equipment of the tangent or co-tangent space, the linear connection does not generate the linear connection. However, between them there all the same exists a certain connection and that is why we separately consider the full equipment of the tangent and co-tangent spaces.

For the co-tangent space $\stackrel{*}{T} T(T(V n))$ to be fully equipped, it is necessary that all of its subspaces be invariant.

The space $T T(T(V n))$ always has an invariant subspace spanned over the co-basis $\left\{d x^{k}\right\}$, while other subspaces can be defined by means of the co-bases $D y^{\bar{i}}, D y^{i}, D z^{\bar{i}}$:

$$
\begin{gathered}
D y^{\bar{i}}=d y^{\bar{i}}+G_{j}^{\bar{i}} d x^{j} \\
D y^{i}=d y^{i}+\Gamma_{j}^{i} d x^{j} \\
D z^{\bar{i}}=d z^{\bar{i}}+L_{k}^{\bar{i}} D y^{k}+G_{k}^{\bar{i}} d y^{k}+G_{\bar{k}}^{\bar{i}} d y^{\bar{k}}
\end{gathered}
$$

From the invariance condition it follows that by the change of coordinates, the quantities $G_{j}^{\bar{i}}, \Gamma_{j}^{i}, L_{k}^{\bar{i}}$, $G_{\bar{k}}^{\bar{i}}$ generate a differential-geometric object of co-connection in compliance with the following law of transformation of its components, respectively:

$$
\begin{gather*}
x_{\bar{k}}^{\bar{i}} G_{j}^{\bar{k}}=x_{\bar{j}}^{\bar{k}} \bar{G}_{\bar{k}}^{\bar{i}}+x_{\bar{k} j}^{\bar{i}} y^{\bar{k}}, \tag{1}\\
x_{i}^{p} \Gamma_{k}^{i}=x_{k}^{i} \bar{\Gamma}_{i}^{p}+x_{k i}^{p} y^{i}, \tag{2}\\
x_{\bar{j}}^{\bar{i}} L_{k}^{\bar{j}}=x_{k}^{j} \bar{L}_{j}^{\bar{i}}+\bar{G}_{\bar{j}}^{\bar{i}} x_{\bar{p} k}^{\bar{j}} y^{\bar{p}}+\bar{G}_{p}^{\bar{i}} x_{j k}^{p} y^{j}+x_{\bar{j} k}^{\bar{i}} z^{\bar{j}}+x_{\bar{j} p k}^{\bar{i}} y^{\bar{j}} y^{p}, \tag{3}\\
x_{\bar{j}}^{\bar{i}} G_{\bar{k}}^{\bar{j}}=x_{\bar{k}}^{\bar{j}} \bar{G}_{\bar{j}}^{\bar{i}}+x_{\bar{k} j}^{\bar{i}} y^{j} . \tag{4}
\end{gather*}
$$

The full equipment of the space $T T(T(V n))$ can be defined by using the vectors $F_{i}, D_{\bar{i}}, D_{k}$:

$$
\begin{gathered}
F_{i}=\frac{\partial}{\partial y^{i}}-Q_{i}^{\bar{k}} \frac{\partial}{\partial z^{\bar{k}}} \\
D_{\bar{i}}=\frac{\partial}{\partial y^{\bar{i}}}-E_{\bar{i}}^{\bar{k}} \frac{\partial}{\partial z^{\bar{k}}} \\
D_{k}=\frac{\partial}{\partial x^{k}}-C_{k}^{\bar{i}} \frac{\partial}{\partial z^{\bar{i}}}-Q_{k}^{\bar{i}} \frac{\partial}{\partial y^{\bar{i}}}-E_{k}^{i} \frac{\partial}{\partial y^{i}} .
\end{gathered}
$$

From the invariance condition it follows that the quantities $Q_{i}^{\bar{k}}, E_{\bar{i}}^{\bar{k}}, C_{k}^{\bar{i}}, E_{k}^{i}$ form an object of connection of the space $T(T(V n))$. The coordinates are changed in compliance with the following law of transformation of their components:

$$
\begin{gather*}
x_{\bar{k}}^{\bar{i}} Q_{j}^{\bar{k}}=x_{\bar{j}}^{\bar{k}} \bar{Q}_{\bar{k}}^{\bar{i}}+x_{\bar{k} j}^{\bar{i}} y^{\bar{k}} \tag{5}\\
x_{i}^{p} E_{k}^{i}=x_{k}^{i} \bar{E}_{i}^{p}+x_{k i}^{p} y^{i}, \tag{6}\\
x_{k}^{i} C_{i}^{\bar{j}}=x_{\bar{i}}^{\bar{j}} \bar{C}_{k}^{\bar{i}}+\bar{Q}_{k}^{\bar{p}} x_{\bar{p} i}^{\bar{j}} y^{i}+\bar{E}_{k}^{i} x_{\bar{p} i}^{\bar{j}} y^{\bar{p}}-x_{\bar{i} k}^{\bar{j}} z^{\bar{i}}-x_{\bar{i} p k}^{\bar{j}} y^{\bar{i}} y^{p}, \tag{7}\\
x_{\bar{j}}^{\bar{i}} E_{\bar{k}}^{\bar{j}}=x_{\bar{k}}^{\bar{j}} \bar{E}_{\bar{j}}^{\bar{i}}+x_{\bar{k} j}^{\bar{i}} y^{j} . \tag{8}
\end{gather*}
$$

Formulas (1)-(4), and (5)-(8) show that the quantities $G_{j}^{\bar{k}}$ and $Q_{j}^{\bar{k}}, G_{\bar{k}}^{\bar{j}}$, and $E_{\bar{k}}^{\bar{j}}, \Gamma_{k}^{i}$ and E_{k}^{i} generate one and the same object of connection. From the transformation laws (3) and (7) we see that the linear
connection $L_{k}^{\bar{j}}$ and the linear connection $C_{k}^{\bar{j}}$ do not generate one and the same object of connection and note that between them there exists a certain connection which will be defined below.

Here there arises the same question as in the case of the partial equipment of the space $T T(T(V n))$: whether from the triplet connection and its differential continuation it is possible to construct an object connection of the space $T T(T(V n))$? It turns out that like in the case of partial equipment the answer is also positive. Let us introduce the following notations:

$$
\begin{gather*}
\check{G}_{i}^{\bar{k}} \equiv \Gamma_{i}^{k}, \quad \check{G}_{\bar{i}}^{\bar{k}} \equiv \Gamma_{\bar{i} p}^{k} y^{p}, \quad \check{\Gamma}_{j}^{i} \equiv \Gamma_{j k}^{i} y^{k}, \\
\check{L}_{i}^{\bar{k}} \equiv \Gamma_{i \bar{p}}^{\bar{k}} z^{\bar{p}}+\stackrel{\Gamma}{\partial}_{i} \Gamma_{p}^{\bar{k}} y^{p}+\Gamma_{i \bar{q}}^{\bar{k}} \Gamma_{p}^{\bar{q}} y^{p}+\Gamma_{i}^{\bar{q}} \Gamma_{j \bar{q}}^{\bar{k}} y^{j}, \tag{9}\\
\check{C}_{i}^{\bar{k}} \equiv \Gamma_{i \bar{p}}^{\bar{k}} z^{\bar{p}}+\stackrel{\Gamma}{\partial}_{i} \Gamma_{p}^{\bar{k}} y^{p}+\Gamma_{i \bar{q}}^{\bar{k}} \Gamma_{p}^{\bar{q}} y^{p}+\Gamma_{j}^{\bar{k}} \Gamma_{p i}^{j} y^{p},
\end{gather*}
$$

where the quantities $\Gamma_{j}^{\bar{k}}$ are functions only of x^{i} and $y^{\bar{i}}$, i.e. $\Gamma_{j}^{\bar{k}} \equiv \Gamma_{j}^{\bar{k}}\left(x^{i}, y^{\bar{i}}\right)$, while for other quantities, it is a assumed that

$$
\begin{aligned}
\check{G}_{\bar{k}}^{\bar{k}} \equiv \check{G}_{\bar{i}}^{\bar{k}}\left(x^{i}, y^{\bar{i}}, y^{i}\right), \quad \check{\Gamma}_{\bar{j}}^{i} \equiv \check{\Gamma}_{\bar{j}}^{i}\left(x^{i}, y^{\bar{i}}, y^{i}\right), \\
\check{L}_{i}^{\bar{k}} \equiv \check{L}_{i}^{\bar{k}}\left(x^{i}, y^{\bar{i}}, y^{i}, z^{\bar{i}}\right), \quad \check{C}_{i}^{\bar{k}} \equiv \check{C}_{i}^{\bar{k}}\left(x^{i}, y^{\bar{i}}, y^{i}, z^{\bar{i}}\right) .
\end{aligned}
$$

By the change of coordinates, the quantities $\check{G}_{\bar{i}}^{\bar{k}}, \check{G}_{i}^{\bar{k}}, \check{\Gamma}_{\bar{j}}^{i}, \check{L}_{i}^{\bar{k}}, \check{C}_{i}^{\bar{k}}$ according to the same law, are transformed to the quantities $G_{\bar{k}}^{\bar{j}}, G_{k}^{\bar{j}}, \Gamma_{j}^{i}, L_{i}^{\bar{k}}, C_{i}^{\bar{k}}$, respectively.

Hence the following theorem follows.
Theorem. The object of triplet connection and the differential continuation of the object $\Gamma_{p}^{\bar{k}}:\left({ }_{\partial}^{\Gamma} \Gamma_{p}^{\bar{k}}\right)$ always generate the full equipment of the manifold tangent fiber space $T T(T(V n))$.

From formulas (9) we see that the objects of connections $L_{k}^{\bar{j}}$ and $C_{k}^{\bar{j}}$ are related by the equality

$$
L_{k}^{\bar{j}}=C_{k}^{\bar{j}}+\Gamma_{k}^{\bar{i}} G_{\bar{i}}^{\bar{j}}+\Gamma_{i}^{\bar{j}} \Gamma_{k}^{i},
$$

which was our aim to establish (see also [1-7] for related topics).

References

1. G. Todua, On internal tensor structures of the tangent bundle of space $L_{m}\left(V_{n}\right)$ with a triplet connection. Bull. Georgian Natl. Acad. Sci. 173 (2006), no. 1, 22-25.
2. G. Todua, Lifts. On tensor structures. Trans. A. Razmadze Math. Inst. 170 (2016), no. 2, 272-279.
3. G. Todua, On the internal tensor structures of the fibration $T(\mathrm{Lm}(V n))$. Trans. A. Razmadze Math. Inst. 172 (2018), no. 1, 126-132.
4. G. Todua, On the vector fiber surface of the space $L m(V n)$ of triplet connectedness. Trans. A. Razmadze Math. Inst. 174 (2020), no. 3, 377-379.
5. G. Todua, On the F structures of the space $T(L m(V n))$. Trans. A. Razmadze Math. Inst. 175 (2021), no. 1, $143-147$.
6. K. Yano, Sh. Kobayashi, Prolongations of tensor fields and connections to tangent bundles. I. General theory. J. Math. Soc. Japan 18 (1966), 194-210.
7. F. I. Kagan, Affine connections on a tangent bundle. (Russian) Izv. Vysš. Učebn. Zaved. Matematika 1975, no. 2 (153), 31-42.
(Received 29.05.2023)
