THE EXISTENCE AND UNIQUENESS OF THE CAUCHY PROBLEM FOR THE BOLTERRA DIFFERENTIAL EQUATIONS

ZAZA SOKHADZE

Abstract

In the present paper, the evolutionary differential equations are investigated; the conditions for the solvability and uniqueness of the Cauchy problem for evolutionary differential equations are proved.

Assume that I^{n} is an n-dimensional segment

$$
I^{n}=\underbrace{[0,1] \times \cdots \times[0,1]}_{n},
$$

$C\left(I^{n} ; \mathbb{R}^{k}\right)$ is a set of continuous mappings from I^{n} into \mathbb{R}^{k}.
Definition 1. The operator

$$
g: C\left(I^{n} ; \mathbb{R}^{k}\right) \rightarrow C\left(I^{n} ; \mathbb{R}^{m}\right)
$$

is said to be Volterra (evolutionary) if for any $\left(t_{1}, \ldots, t_{n}\right) \rightarrow I^{n}$ and $u, v \in C\left(I^{n} ; \mathbb{R}^{k}\right)$, from the equality

$$
u\left(s_{1}, \ldots, s_{n}\right)=v\left(s_{1}, \ldots, s_{n}\right) \text { for } 0 \leq s_{i} \leq t_{i} \quad(i=1, \ldots, n)
$$

it follows that

$$
g(u)\left(t_{1}, \ldots, t_{n}\right)=g(v)\left(t_{1}, \ldots, t_{n}\right)
$$

The Volterra differential equations are considered in the papers [1-5].
Let us consider the system of differential equations

$$
\begin{equation*}
\frac{\partial u_{i}\left(t_{1}, \ldots, t_{n}\right)}{\partial t_{i}}=f_{i}\left(u_{1}, \ldots, u_{n}\right)\left(t_{1}, \ldots, t_{n}\right) \quad(i=1, \ldots, n) \tag{1}
\end{equation*}
$$

where

$$
f_{i}: C\left(I^{n} ; \mathbb{R}^{n}\right) \rightarrow C\left(I^{n} ; \mathbb{R}\right) \quad(i=1, \ldots, n)
$$

are continuous Volterra (evolutionary) operators. System (1) is called Volterra (evolutionary) differential system.

For system (1), consider the Cauchy problem

$$
\begin{equation*}
\left.u_{i}\left(t_{1}, \ldots, t_{n}\right)\right|_{t_{i}=0}=\varphi_{i}\left(t_{1}, \ldots, t_{i-1}, t_{i+1}, \ldots, n\right)(i=1, \ldots, n) \tag{2}
\end{equation*}
$$

where

$$
\varphi_{i} \in C\left(I^{n-1} ; \mathbb{R}\right)(i=1, \ldots, n)
$$

For every $t \in[0,1]$ and every $v \in V\left(I^{n} ; \mathbb{R}\right)$, we introduce the notation

$$
\|v\|_{t}=\max \left\{\left|v\left(t_{1}, \ldots, t_{n}\right)\right|: \quad 0 \leq t_{1} \leq t, \ldots, 0 \leq t_{n} \leq t\right\}
$$

Theorem 1. Suppose that for any $u_{i}, \bar{u}_{i} \in C\left(I^{n} ; \mathbb{R}\right)$ and $\left.\left.t \in\right] 0,1\right]$, the inequality

$$
\begin{gathered}
\left|f_{i}\left(u_{1}, \ldots, u_{n}\right)\left(t_{1}, \ldots, t_{n}\right)-f_{i}\left(\bar{u}_{1}, \ldots, \bar{u}_{n}\right)\left(t_{1}, \ldots, t_{n}\right)\right| \\
\leq \ell\left(\left\|u_{1}\right\|_{1}, \ldots,\left\|u_{n}\right\|_{1},\left\|\bar{u}_{1}\right\|_{1}, \ldots,\left\|\bar{u}_{n}\right\|_{1}\right) t_{i}^{-\varepsilon} \sum_{k=1}^{n} \sum_{j=1}^{n}\left\|u_{k}-\bar{u}_{k}\right\|_{t^{1 / \alpha_{j k}}}^{\alpha_{j k}}(i=1, \ldots, n), \\
\text { for } 0 \leq t_{i} \leq t, \ldots, 0 \leq t_{n} \leq t
\end{gathered}
$$

holds, where $\ell: \mathbb{R}_{+}^{2 n} \rightarrow \mathbb{R}_{+}$is a continuous function, $\varepsilon \in\left[0,1\left[, \alpha_{j k} \in\right] 0,1\right](i=1, \ldots, n)$. Then problem (1), (2) has a unique solution.

Here, we formulate some corollaries of Theorem 1.
Consider the case in which (1) has the form

$$
\begin{gather*}
\frac{\partial u_{i}\left(t_{1}, \ldots, t_{n}\right)}{\partial t_{i}}=g_{i}\left(t_{1}, \ldots, t_{n}, u_{1}\left(\tau_{11}\left(t_{1}, \ldots, t_{n}\right), \ldots, \tau_{1 n}\left(t_{1}, \ldots, t_{n}\right)\right), \ldots\right. \\
\left.u_{n}\left(\tau_{n 1}\left(t_{1}, \ldots, t_{n}\right), \ldots, \tau_{n n}\left(t_{1}, \ldots, t_{n}\right)\right)\right)(i=1, \ldots, n) \tag{3}
\end{gather*}
$$

where $\tau_{k j}: I^{n} \rightarrow[0,1]$ are continuous functions $(k, j=1, \ldots, n)$.
Corollary 1. Suppose that the inequality

$$
\begin{aligned}
& \mid g_{i}\left(t_{1}, \ldots, t_{n}, x_{1}, \ldots, x_{n}\right)-g_{i}\left(t_{1}, \ldots,\right.\left.t_{n}, y_{1}, \ldots, y_{n}\right) \mid \\
& \leq \ell\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right) t_{i}^{-\varepsilon}\left|x_{k}-y_{k}\right|^{\alpha_{k}}(i=1, \ldots, n), \\
& \tau_{k j}\left(t_{1}, \ldots, t_{n}\right) \leq \max \left\{t_{1}^{1 / \alpha_{k}}, \ldots, t_{n}^{1 / \alpha_{k}}\right\}
\end{aligned}
$$

is satisfied on $I^{n} \times \mathbb{R}^{n}$, where $\ell: \mathbb{R}^{2 n} \rightarrow \mathbb{R}_{+}$is a continuous function, $\varepsilon \in\left[0,1\left[, \alpha_{k} \in\right] 0,1\right], \tau_{k j}$: $I^{n} \rightarrow[0,1]$ are continuous functions $(k=1, \ldots, n)(j=1, \ldots, n)$. Then problem (3), (2) has a unique solution.

Let us consider the following Goursat problem:

$$
\begin{align*}
& \frac{\partial^{2} u\left(t_{1}, t_{2}\right)}{\partial t_{1} \partial t_{2}} \\
& \quad=g\left(t_{1}, t_{2}, u\left(\tau_{11}\left(t_{1}, t_{2}\right), \tau_{12}\left(t_{1}, t_{2}\right)\right), \frac{\partial u\left(\tau_{21}\left(t_{1}, t_{2}\right), \tau_{22}\left(t_{1}, t_{2}\right)\right.}{\partial \tau_{21}}, \frac{\partial u\left(\tau_{31}\left(t_{1}, t_{2}\right) \tau_{32}\left(t_{1}, t_{2}\right)\right)}{\partial \tau_{32}}\right), \tag{4}\\
& u\left(t_{1}, 0\right)=\psi\left(t_{1}\right), \quad \frac{\partial u\left(0, t_{2}\right)}{\partial t_{2}}=\psi_{2}\left(t_{2}\right) \tag{5}
\end{align*}
$$

Corollary 2. Suppose that the inequality

$$
\begin{aligned}
\mid g\left(t_{1}, t_{2}, x, y, z\right) & -g\left(t_{1}, t_{2}, \bar{x}, \bar{y}, \bar{z}\right) \mid \\
& \leq \ell(x, y, z, \bar{x}, \bar{y}, \bar{z})\left(t_{1},+t_{2}\right)^{-\varepsilon}\left[\frac{|x-\bar{x}|^{\alpha_{1}}}{t_{1}+t_{2}}+|y-\bar{y}|^{\alpha_{2}}+|z-\bar{z}|^{\alpha_{3}}\right] \\
\tau_{k j}\left(t_{1}, t_{2}\right) & \leq \max \left\{t_{1}^{1 / \alpha_{k}}, t_{2}^{1 / \alpha_{k}}\right\} \quad(j=1,2 ; \quad k=1,2,3)
\end{aligned}
$$

is satisfied on $I^{2} \times \mathbb{R}^{3}$, where $\ell: \mathbb{R}^{6} \rightarrow \mathbb{R}_{+}$is a continuous function, $\varepsilon \in\left[0,1\left[, \alpha_{k} \in\right] 0,1\right], \tau_{k j}: I^{2} \rightarrow$ $[0,1]$ are continuous functions. Then problem (4), (5) has a unique solution.

Consider the problem

$$
\begin{align*}
\frac{d x(t)}{d t} & =\ell(t, x(\tau(t))) \tag{6}\\
x(0) & =0 \tag{7}
\end{align*}
$$

where $\tau(t):[0,1] \rightarrow[0,1]$ is a continuous function.
Corollary 3. Suppose that on $I \rightarrow \mathbb{R}$ the inequality

$$
\begin{aligned}
|\ell(t, x(\tau(t)))-\ell(t, \bar{x}(\tau(t)))| & \leq \eta(\|x\|,\|\bar{x}\|) t^{-\varepsilon}|x(\tau(t))-\bar{x}(\tau(t))|^{\alpha} \\
\tau(t) & <t^{1 / \alpha}
\end{aligned}
$$

is satisfied, where $\eta: \mathbb{R}^{2} \rightarrow \mathbb{R}_{+}$is a continuous function, $\varepsilon \in[0,1[, \alpha \in] 0,1], \tau:[0,1] \rightarrow[0,1]$ are continuous functions. Then problem (6), (7) has a unique solution.

References

1. J. Błaż, Sur l'existence et l'unicité de la solution d'une équation différentielle à argument retardé. (French) Ann. Polon. Math. 15 (1964), 9-14.
2. R. D. Driver, Existence theory for a delay-differential system. Contributions to Differential Equations 1 (1963), 317-336.
3. I. T. Kiguradze, Z. P. Sokhadze, On the uniqueness of the solution of the Cauchy problem for functional-differential equations. (Russian) translated from Differ. Uravn. 31 (1995), no. 12, 1977-1988, 2108; Differential Equations 31 (1995), no. 12, 1947-1958 (1996).
4. I. T. Kiguradze, Z. P. Sokhadze, On the Cauchy problem for evolution singular functional-differential equations. (Russian) translated from Differ. Uravn. 33 (1997), no. 1, 48-59, 142; Differential Equations 33 (1997), no. 1, 47-58.
5. I. Kiguradze, Z. Sokhadze, On singular functional-differential inequalities. Georgian Math. J. 4 (1997), no. 3, 259278.
(Received 17.01.2024)
Akaki Tsereteli State University, 59 Tamar Mepe Str., Kutaisi 4600, Georgia
Email address: z.soxadze@gmail.com
