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THE EXISTENCE AND UNIQUENESS OF THE CAUCHY PROBLEM FOR THE

BOLTERRA DIFFERENTIAL EQUATIONS

ZAZA SOKHADZE

Abstract. In the present paper, the evolutionary differential equations are investigated; the condi-
tions for the solvability and uniqueness of the Cauchy problem for evolutionary differential equations

are proved.

Assume that In is an n-dimensional segment

In = [0, 1]× · · · × [0, 1]︸ ︷︷ ︸
n

,

C(In;Rk) is a set of continuous mappings from In into Rk.

Definition 1. The operator
g : C(In;Rk) → C(In;Rm)

is said to be Volterra (evolutionary) if for any (t1, . . . , tn) → In and u, v ∈ C(In;Rk), from the equality

u(s1, . . . , sn) = v(s1, . . . , sn) for 0 ≤ si ≤ ti (i = 1, . . . , n)

it follows that
g(u)(t1, . . . , tn) = g(v)(t1, . . . , tn).

The Volterra differential equations are considered in the papers [1–5].
Let us consider the system of differential equations

∂ui(t1, . . . , tn)

∂ti
= fi(u1, . . . , un)(t1, . . . , tn) (i = 1, . . . , n), (1)

where
fi : C(I

n;Rn) → C(In;R) (i = 1, . . . , n)

are continuous Volterra (evolutionary) operators. System (1) is called Volterra (evolutionary) differ-
ential system.

For system (1), consider the Cauchy problem

ui(t1, . . . , tn)
∣∣
ti=0

= φi(t1, . . . , ti−1, ti+1, . . . , n) (i = 1, . . . , n), (2)

where
φi ∈ C(In−1;R) (i = 1, . . . , n).

For every t ∈ [0, 1] and every v ∈ V (In;R), we introduce the notation

∥v∥t = max
{
|v(t1, . . . , tn)| : 0 ≤ t1 ≤ t, . . . , 0 ≤ tn ≤ t

}
.

Theorem 1. Suppose that for any ui, ui ∈ C(In;R) and t ∈ ]0, 1], the inequality∣∣fi(u1, . . . , un)(t1, . . . , tn)− fi(u1, . . . , un)(t1, . . . , tn)
∣∣

≤ ℓ
(
∥u1∥1, . . . , ∥un∥1, ∥u1∥1, . . . , ∥un∥1

)
t−ε
i

n∑
k=1

n∑
j=1

∥uk − uk∥
αjk

t1/αjk
(i = 1, . . . , n),

for 0 ≤ ti ≤ t, . . . , 0 ≤ tn ≤ t,
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holds, where ℓ : R2n
+ → R+ is a continuous function, ε ∈ [0, 1[ , αjk ∈ ]0, 1] (i = 1, . . . , n). Then

problem (1), (2) has a unique solution.

Here, we formulate some corollaries of Theorem 1.
Consider the case in which (1) has the form

∂ui(t1, . . . , tn)

∂ti
= gi

(
t1, . . . , tn, u1

(
τ
11
(t1, . . . , tn), . . . , τ1n(t1, . . . , tn)

)
, . . . ,

un
(
τn1(t1, . . . , tn), . . . , τnn(t1, . . . , tn)

))
(i = 1, . . . , n), (3)

where τ
kj

: In → [0, 1] are continuous functions (k, j = 1, . . . , n).

Corollary 1. Suppose that the inequality∣∣∣gi(t1, . . . , tn, x1, . . . , xn)− gi(t1, . . . , tn, y1, . . . , yn)
∣∣∣

≤ ℓ(x1, . . . , xn, y1, . . . , yn)t
−ε
i |xk − yk|αk (i = 1, . . . , n),

τ
kj
(t1, . . . , tn) ≤ max

{
t
1/αk

1 , . . . , t1/αk
n

}
is satisfied on In × Rn, where ℓ : R2n → R+ is a continuous function, ε ∈ [0, 1[ , αk ∈ ]0, 1], τ

kj
:

In → [0, 1] are continuous functions (k = 1, . . . , n) (j = 1, . . . , n). Then problem (3), (2) has a unique
solution.

Let us consider the following Goursat problem:

∂2u(t1, t2)

∂t1∂t2

= g
(
t1, t2, u

(
τ
11
(t1, t2), τ12(t1, t2)

)
,
∂u(τ

21
(t1, t2), τ22(t1, t2)

∂τ
21

,
∂u(τ

31
(t1, t2)τ32(t1, t2))

∂τ
32

)
, (4)

u(t1, 0) = ψ(t1),
∂u(0, t2)

∂t2
= ψ2(t2). (5)

Corollary 2. Suppose that the inequality∣∣∣g(t1, t2, x, y, z)− g(t1, t2, x, y, z)
∣∣∣

≤ ℓ(x, y, z, x, y, z)(t1,+t2)
−ε

[ |x− x|α1

t1 + t2
+ |y − y|α2 + |z − z|α3

]
,

τ
kj
(t1, t2) ≤ max

{
t
1/αk

1 , t
1/αk

2

}
(j = 1, 2; k = 1, 2, 3)

is satisfied on I2 × R3, where ℓ : R6 → R+ is a continuous function, ε ∈ [0, 1[ , αk ∈ ]0, 1], τ
kj

: I2 →
[0, 1] are continuous functions. Then problem (4), (5) has a unique solution.

Consider the problem

dx(t)

dt
= ℓ

(
t, x(τ(t))

)
, (6)

x(0) = 0, (7)

where τ(t) : [0, 1] → [0, 1] is a continuous function.

Corollary 3. Suppose that on I → R the inequality∣∣∣ℓ(t, x(τ(t)))− ℓ
(
t, x(τ(t))

)∣∣∣ ≤ η
(
∥x∥, ∥x∥

)
t−ε

∣∣x(τ(t))− x(τ(t))
∣∣α,

τ(t) < t1/α,

is satisfied, where η : R2 → R+ is a continuous function, ε ∈ [0, 1[ , α ∈ ]0, 1], τ : [0, 1] → [0, 1] are
continuous functions. Then problem (6), (7) has a unique solution.
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Polon. Math. 15 (1964), 9–14.

2. R. D. Driver, Existence theory for a delay-differential system. Contributions to Differential Equations 1 (1963),
317–336.

3. I. T. Kiguradze, Z. P. Sokhadze, On the uniqueness of the solution of the Cauchy problem for functional-differential
equations. (Russian) translated from Differ. Uravn. 31 (1995), no. 12, 1977–1988, 2108; Differential Equations 31

(1995), no. 12, 1947–1958 (1996).

4. I. T. Kiguradze, Z. P. Sokhadze, On the Cauchy problem for evolution singular functional-differential equations.
(Russian) translated from Differ. Uravn. 33 (1997), no. 1, 48–59, 142; Differential Equations 33 (1997), no. 1,

47–58.

5. I. Kiguradze, Z. Sokhadze, On singular functional-differential inequalities. Georgian Math. J. 4 (1997), no. 3, 259–
278.

(Received 17.01.2024)

Akaki Tsereteli State University, 59 Tamar Mepe Str., Kutaisi 4600, Georgia
Email address: z.soxadze@gmail.com


