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Abstract. In this paper, the coupled linear quasi-static theory of elasticity for materials with double
porosity is considered in which the concepts of Darcy’s law and volume fractions are proposed. The

system of general governing equations is expressed in terms of the displacement vector field, the

changes of the volume fractions of pores and fissures, and the changes of the fluid pressures in pores
and fissures networks. By virtue of Green’s identity, the uniqueness theorems of the basic internal

and external boundary value problems (BVPs) are proved. The fundamental solution of the system

of steady vibration equations in the theory under consideration is constructed. Then, the surface and
volume potentials are constructed and their basic properties are given. Some useful singular integral

operators are studied. Finally, on the basis of these results the existence theorems for classical

solutions of the BVPs are proved by means of the potential method (boundary integral equation
method) and the theory of singular integral equations.

1. Introduction

The theory of porous media is an important research area of continuum mechanics. The first quasi-
static theory of poroelasticity based on Darcy’s law was proposed by Biot [3] in which a coupling
effect between fluid pressure and mechanical stress is shown. In this paper, the independent kinematic
variables are the displacement vector and the pressure in a pore network.

In the last decades, Biot’s classical theory of poroelasticity is developed by using several coupling
processes and considerable progress has been made in the study of these coupled effects by many
research groups. The basic results and historical information on the poroelasticity and thermoporoe-
lasticity for single-porosity materials can be found in the books by Cheng [6], Coussy [8], Selvadurai
and Suvorov [22], Wang [32] (see also references therein).

Moreover, the first quasi-static mathematical model of elastic solids with double porosity, as exten-
sions of Biot’s theory, was developed by Wilson and Aifantis [33]. More general models of the theories
of elasticity and thermoelasticity for double porosity materials by using Darcy’s law have been pro-
posed by several investigators (see, Bai and Roegiers [1], Berryman and Wang [2], Gelet et al. [10],
Khalili et al. [14], Khalili and Selvadurai [15], Masters et al. [18], Svanadze [25]). Then these models of
double porosity materials are investigated extensively by various researchers. A comprehensive review
of the basic results in the theories for double-porosity materials based on the concept of Darcy’s law
may be found in the books by Straughan [24] and Svanadze [26].

On the other hand, applying the concept of volume fraction, the theory of elasticity for materials
with single-porosity is presented by Nunziato and Cowin [9, 21]. The theories of thermoelasticity for
materials with single-and double-porosity structures as an extension of the Nunziato–Cowin theory,
are developed by Ieşan [11] and Ieşan and Quintanilla [13], respectively. The governing equations of
this theory involve the displacement vector field, the volume fraction fields associated with the pores
and fissures and also the change of temperature. The important problems of the theories of elasticity
and thermoelasticity for materials with a double-porosity structure are investigated by several authors
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and the basic results on this subject of research are given in the books by Ciarletta and Ieşan [7],
Ieşan [12].

Meanwhile, as the physical properties of porous materials are coupled in nature, the investigation of
these effects of coupling processes is important for modern theories of porous media. For instance, the
coupled phenomena for this kind of materials usually play an important role in several applications
of engineering, geological and biological porous materials. Extensive references on the coupled effects
in porous media can be found in the books by Liu [17] and Stephanson et al. [23].

Recently, the linear models for elastic and thermoelastic single-porosity materials have been pro-
posed by Svanadze [27, 28] in which the coupled phenomenon of the concepts of Darcy’s law and
the volume fraction of pore network is considered. The basic BVPs of steady vibrations in the quasi-
static case of these models are studied by Bitsadze [4,5] and Mikelashvili [19,20]. The steady vibration
problems of the viscoelastic single-porosity materials are considered by Svanadze [29].

More recently, in the papers [30] and [31], this coupled phenomenon is extended to the double-
porosity elastic and viscoelastic materials, respectively, and the basic BVPs are investigated by using
the potential method.

It is noteworthy that the potential method plays a pivotal role in the investigation of BVPs of
mathematical physics and continuum mechanics. An extensive review of works, the historical and
bibliographical materials on the potential method can be found in the books by Kupradze et al. [16]
and Svanadze [26].

The goal of this work is to prove the uniqueness and existence theorems for classical solutions of
the basic internal and external BVPs of steady vibrations in the coupled linear quasi-static theory of
double-porosity materials. This paper is articulated as follows. In Section 2, the governing equations
of motion and steady vibrations of the considered theory are presented. In Section 3, the basic BVPs
are formulated. In Section 4, on the basis of Green’s identity, the uniqueness theorems are proved.
Afterwards, in Section 5, the fundamental solution of the system of steady vibrations is constructed
and its basic properties are established. In Section 6, the surface (single-layer and double-layer)
and volume potentials are defined and their properties are established. Some useful singular integral
operators are studied. Finally, in Section 7, the existence theorems for classical solutions of the BVPs
of steady vibrations are proved.

2. Governing Equations

Let x = (x1, x2, x3) be a point of the Euclidean three-dimensional space R3 and let t denote the
time variable, t ≥ 0. We assume that an isotropic and homogeneous elastic solid body with double
porosity structure occupies a region of R3. This structure of materials means that the skeleton of solid
consists of pores on the macro-scale and pores on a much smaller micro-scale (called also fissures).
Afterwards, in this section, the functions and vectors that depend on the space variable x and the
time t will be denoted with a hat.

Let û = (û1, û2, û3) be the displacement vector in a solid body, and let φ̂1 and φ̂2 are the changes of
the volume fractions of pores and fissures, respectively; p̂1 and p̂2 are the changes of the fluid pressures
in pores and fissures networks, respectively. Moreover, throughout this paper, we employ the usual
summation and differentiation conventions: (i) repeated Latin and Greek indices are summed over
the ranges (1, 2, 3) and (1, 2), respectively; (ii) the subscripts preceded by a comma denote partial
differentiation with respect to the corresponding Cartesian coordinate; (iii) a superposed dot denotes
differentiation with respect to t.

Following [30], the governing system of field equations in the coupled linear quasi-static theory of
elasticity for materials with double porosity consists of the following four sets of equations:

• Constitutive equations

t̂lj = 2µ êlj + λ êrrδlj + (bα φ̂α − βαp̂α)δlj ,

σ̂
(1)
l = a1φ̂1,l + a3φ̂2,l, σ̂

(2)
l = a3φ̂1,l + a2φ̂2,l, (2.1)

l, j = 1, 2, 3.
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• Equilibrium equations

t̂lj,j = −ρF̂ ′
l , σ̂

(1)
j,j + ξ̂(1) = −ρŝ1,

σ̂
(2)
j,j + ξ̂(2) = −ρŝ2, l = 1, 2, 3.

(2.2)

• Darcy’s law for double-porosity materials

v̂(1) = −k′1
µ′ ∇p̂1 −

k′3
µ′ ∇p̂2 − ρ1ŝ3,

v̂(2) = −k′3
µ′ ∇p̂1 −

k′2
µ′ ∇p̂2 − ρ2ŝ4.

(2.3)

• Equations of fluid mass conservation

v̂
(1)
j,j +

˙̂
ζ1 + β1

˙̂err + γ0(p̂1 − p̂2) = 0,

v̂
(2)
j,j +

˙̂
ζ2 + β2

˙̂err − γ0(p̂1 − p̂2) = 0.
(2.4)

In these equations, t̂lj is the component of total stress tensor, ρ is the reference mass density, ρ > 0,

F̂′ = (F̂ ′
1, F̂

′
2, F̂

′
3) is the body force per unit mass, σ̂

(1)
j , ξ̂(1), ŝ1 and σ̂

(2)
j , ξ̂(2), ŝ2 are the components

of the equilibrated stress, the intrinsic equilibrated body force, the extrinsic equilibrated body force
associated with the pore and fissure networks, respectively;

ξ̂(1) = −b1êrr − α1φ̂1 − α3φ̂2 +m1p̂1 +m3p̂2,

ξ̂(2) = −b2êrr − α3φ̂1 − α2φ̂2 +m3p̂1 +m2p̂2;
(2.5)

êlj is the component of strain tensor given by

êlj =
1

2
(ûl,j + ûj,l), (2.6)

λ and µ are the Lamé constants, β1 and β2 are the effective stress parameters, δlj is Kronecker’s

delta; v̂(1) = (v̂
(1)
1 , v̂

(1)
2 , v̂

(1)
3 ) and v̂(2) = (v̂

(2)
1 , v̂

(2)
2 , v̂

(2)
3 ) are the fluid flux vectors associated with the

pore and fissure networks, respectively; γ0 is the internal transport coefficient corresponding to a fluid
transfer rate and respecting the intensity of the flow between pores and fissures, γ0 > 0,

ζ̂1 = γ1p̂1 + γ3p̂2 +m1φ̂1 +m3φ̂2,

ζ̂2 = γ3p̂1 + γ2p̂2 +m3φ̂1 +m2φ̂2,
(2.7)

µ′ is the fluid viscosity, ρ1, ŝ3 and ρ2, ŝ4 are the density of fluid and the external force (such as gravity)
for the pore phase, respectively; ∇ is the gradient operator; the values bl, mj , aj , αj , γj , k

′
j (l = 1, 2,

j = 1, 2, 3) are the constitutive coefficients.
Substituting equations (2.1), (2.3) and (2.5)–(2.7) into (2.2) and (2.4), we obtain the following

system of equations in the coupled linear quasi-static theory of elastic double-porosity materials ex-
pressed in terms of the displacement vector û, the changes of the volume fractions φ̂1, φ̂2 and the
changes of the fluid pressures p̂1, p̂2:

µ∆û+ (λ+ µ)∇div û+ bα∇φ̂α − βα∇p̂α = −ρF̂′,

(a1∆− α1)φ̂1 + (a3∆− α3)φ̂2 − b1 div û+m1p̂1 +m3p̂2 = −ρŝ1,

(a3∆− α3)φ̂1 + (a2∆− α2)φ̂2 − b2 div û+m3p̂1 +m2p̂2 = −ρŝ2,

(k1∆− γ0)p̂1 + (k3∆+ γ0)p̂2 + γ1 ˙̂p1 + γ3 ˙̂p2 − β1div ˙̂u (2.8)

+m1
˙̂φ1 +m3

˙̂φ2 = −ρ1div ŝ3,

(k3∆+ γ0)p̂1 + (k2∆− γ0)p̂2 + γ3 ˙̂p1 + γ2 ˙̂p2 − β2div ˙̂u

+m3
˙̂φ1 +m2

˙̂φ2 = −ρ2div ŝ4,

where ∆ is the Laplacian operator and kl =
k′
l

µ′ (l = 1, 2, 3).
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If we assume that ûj , F̂
′
j , φ̂l, p̂l, ŝl and ŝl+2 (l = 1, 2, j = 1, 2, 3) are postulated to have a harmonic

time variation {
ûj , F̂

′
j , φ̂l, p̂l, ŝl, ŝl+2

}
(x, t) = Re

[{
uj , F

′
j , φl, pl, sl, sl+2

}
(x) e−iωt

]
,

then from (2.8), in the theory under consideration, we obtain the following system of equations of
steady vibrations:

µ∆u+ (λ+ µ)∇divu+ bα∇φα − βα∇pα = −ρF′,

(a1∆− α1)φ1 + (a3∆− α3)φ2 − b1 divu+m1p1 +m3p2 = −ρs1,

(a3∆− α3)φ1 + (a2∆− α2)φ2 − b2 divu+m3p1 +m2p2 = −ρs2, (2.9)

(k1∆+ γ′
1)p1 + (k3∆+ γ′

3)p2 + β′
1divu+m′

1φ1 +m′
3φ2 = −ρ1div s3,

(k3∆+ γ′
3)p1 + (k2∆+ γ′

2)p2 + β′
2divu+m′

3φ1 +m′
2φ2 = −ρ2div s4,

where u = (u1, u2, u3), F
′ = (F ′

1, F
′
2, F

′
3), ω is the oscillation frequency, ω > 0, β′

l = iωβl, m
′
j = iωmj ,

γ′
l = iωγl − γ0, γ

′
3 = iωγ3 + γ0 (l = 1, 2, j = 1, 2, 3).

For our further considerations, we will need the following second order matrix differential operator
with the constant coefficients:

M(Dx) = (Mlj(Dx))7×7 , Mlj = µ∆δlj + (λ+ µ)
∂2

∂xl∂xj
,

Ml;r+3 = −Mr+3;l = br
∂

∂xl
, Ml;r+5 = −βr

∂

∂xl
, M44 = a1∆− α1,

M45 = M54 = a3∆− α3, M55 = a2∆− α2, M46 = m1,

M47 = M56 = m3, M57 = m2, Mr+5;l = β′
r

∂

∂xl
, M64 = m′

1,

M65 = M74 = m′
3, M75 = m′

2, M66 = k1∆+ γ′
1,

M67 = M76 = k3∆+ γ′
3, M77 = k2∆+ γ′

2,

Dx =
( ∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
, l, j = 1, 2, 3, r = 1, 2.

It is easily seen that system (2.9) can be rewritten in the following form:

M(Dx)U(x) = F(x), (2.10)

whereU = (u, φ1, φ2, p1, p2) and F = (−ρF′,−ρs1,−ρs2,−ρ1div s3,−ρ2div s4) are the seven-component
vector functions, x ∈ R3.

In what follows, we assume that the following inequalities:

µ > 0, 3λ+ 2µ > 0, a1 > 0, a1a2 − a23 > 0, (3λ+ 2µ)α1 > 3b21,

α1α2 − α2
3 > 0, γ1 > 0, γ1γ2 − γ2

3 > 0, k1 > 0, k1k2 − k23 > 0, (2.11)

1

3
(3λ+ 2µ)(α1α2 − α2

3) > α1b
2
2 − 2α3b1b2 + α2b

2
1

are fulfilled.

3. Boundary Value Problems

Let S be the closed surface surrounding the finite domain Ω+ in R3, S ∈ C1,ν , 0 < ν ≤ 1,
Ω+ = Ω+ ∪ S, Ω− = R3\Ω+, Ω− = Ω− ∪ S; n(z) is the external (with respect to Ω+) unit normal
vector to S at z.

Definition 1. Vector function U = (U1, U2, . . . , U7) is called regular in Ω− (or in Ω+) if
(i)

Ul ∈ C2(Ω−) ∩ C1(Ω−) (or Ul ∈ C2(Ω+) ∩ C1(Ω+));

(ii)

Ul(x) = O(|x|−1), Ul,j(x) = o(|x|−1) (3.1)
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for |x| ≫ 1, where l = 1, 2, . . . , 7 and j = 1, 2, 3.

In the sequel, we use the matrix differential operator

R(Dx,n) = (Rlj(Dx,n))7×7,

where

Rlj(Dx,n) = µδlj
∂

∂n
+ µnj

∂

∂xl
+ λnl

∂

∂xj
, Rlr(Dx,n) = br−3 nl,

Rl;r+2(Dx,n) = −βr−3 nl, R44(Dx,n) = a1
∂

∂n
,

R45(Dx,n) = R54(Dx,n) = a3
∂

∂n
, R55(Dx,n) = a2

∂

∂n
,

R66(Dx,n) = k1
∂

∂n
, R67(Dx,n) = R76(Dx,n) = k3

∂

∂n
,

(3.2)

R77(Dx,n) = k2
∂

∂n
, Rsj(Dx,n) = Rr;m+2(Dx,n) = Rr+2;m(Dx,n) = 0,

l, j = 1, 2, 3, r,m = 4, 5 s = 4, 5, 6, 7

and ∂
∂n is the derivative along the vector n.

The basic internal and external BVPs in the coupled linear quasi-static theory of elasticity for
materials with double porosity are formulated as follows.

Find a regular (classical) solution to system (2.10) for x ∈ Ω+ satisfying the boundary condition

lim
Ω+∋x→z∈S

U(x) ≡ {U(z)}+ = f(z) (3.3)

in the internal Problem (I)+F,f , and

lim
Ω+∋x→z∈S

R(Dx,n(z))U(x) ≡ {R(Dz,n(z))U(z)}+ = f(z) (3.4)

in the internal Problem (II)+F,f , where F and f are the prescribed seven-component vector functions.

Find a regular (classical) solution to system (2.10) for x ∈ Ω− satisfying the boundary condition

lim
Ω−∋x→z∈S

U(x) ≡ {U(z)}− = f(z) (3.5)

in the external Problem (I)−F,f , and

lim
Ω−∋x→z∈S

R(Dx,n(z))U(x) ≡ {R(Dz,n(z))U(z)}− = f(z) (3.6)

in the external Problem (II)−F,f , where F and f are prescribed seven-component vector functions and

suppF is a finite doma in in Ω−.
Our goal is to prove the existence and uniqueness of classical solutions of the basic BVPs of steady

vibrations (I)±F,f and (II)±F,f by using the potential method. Indeed, to prove the uniqueness theorems
of classical solutions, we need Green’s first identity. Moreover, the proof of the existence theorems
requires the fundamental solution of the system (2.9) and the basic properties of the surface and
volume potentials. In view of these results, we are able to reduce the BVPs (I)±F,f and (II)±F,f to the
equivalent singular integral equations for which Fredholm’s theorems will be valid.

4. Uniqueness Theorems

In this section, Green’s first identity of the coupled linear quasi-static theory of elasticity for
materials with double porosity is obtained and the uniqueness theorems for the regular (classical)
solutions of the BVPs (I)±F,f and (II)±F,f are proved.

In what follows, the scalar product of two vectors U = (U1, U2, . . . , U7) and U′ = (U ′
1, U

′
2, . . . , U

′
7)

is denoted by U ·U′ =
7∑

j=1

UjU ′
j , where U ′

j is the complex conjugate of U ′
j .

In the sequel, we use the matrix differential operators:
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1)

M(0)(Dx) =
(
M

(0)
lj (Dx)

)
3×3

, M
(0)
lj (Dx) = µ∆δlj + (λ+ µ)

∂2

∂xl∂xj
,

M(1)(Dx) =
(
M

(1)
lr (Dx)

)
3×7

, M
(1)
lr (Dx) = Mlr(Dx),

M(m)(Dx) =
(
M

(m)
1r (Dx)

)
1×7

, M
(m)
1r (Dx) = Mm+2;r(Dx),

M(m+2)(Dx) =
(
M

(m+2)
1r (Dx)

)
1×7

, M
(m+2)
1r (Dx) = Mm+4;r(Dx);

2)

R(0)(Dx,n) =
(
R

(0)
lj (Dx,n)

)
3×3

, R
(0)
lj (Dx,n) = Rlj(Dx,n),

R(1)(Dx,n) =
(
R

(1)
lr (Dx,n)

)
3×7

, R
(1)
lr (Dx,n) = Rlr(Dx,n),

where l, j = 1, 2, 3, m = 2, 3 and r = 1, 2, . . . , 7.
We introduce the following notation:

W (0)(u,u′) =
1

3
(3λ+ 2µ) divu divu′ +

µ

2

3∑
l,j=1;l ̸=j

(ul,j + uj,l)(u′
l,j + u′

j,l)

+
µ

3

3∑
l,j=1

(∂ul

∂xl
− ∂uj

∂xj

)(∂u′
l

∂xl
−

∂u′
j

∂xj

)
,

W (1)(U,u′) =W (0)(u,u′) + (bα φα − βαpα) divu′,

W (2)(U, φ′
1) =(a1∇φ1 + a3∇φ2) · ∇φ′

1

+ (b1 divu+ α1φ1 + α3φ2 −m1p1 −m3p2)φ′
1,

W (3)(U, φ′
2) =(a3∇φ1 + a2∇φ2) · ∇φ′

2 (4.1)

+ (b2 divu+ α3φ1 + α2φ2 −m3p1 −m2p2)φ′
2,

W (4)(U, p′1) =(k1∇p1 + k3∇p2) · ∇p′1

− (β′
1 divu+m′

1φ1 +m′
3φ2 + γ′

1p1 + γ′
3p2)p

′
1,

W (5)(U, p′2) =(k3∇p1 + k2∇p2) · ∇p′2

− (β′
2 divu+m′

3φ1 +m′
2φ2 + γ′

3p1 + γ′
2p2)p

′
2.

The following Lemmas will be useful to study the uniqueness of classical solutions to the BVPs.

Lemma 1. If U = (u, φ1, φ2, p1, p2) is a regular vector in Ω+, u′
j , φ

′
1, φ

′
2, p

′
1, p

′
2∈C1(Ω+)∩C(Ω+),

j = 1, 2, 3, then∫
Ω+

[
M(1)(Dx)U · u′ +W (1)(U,u′)

]
dx =

∫
S

R(1)(Dz,n)U · u′ dzS,

∫
Ω+

[
M(2)(Dx)Uφ′

1 +W (2)(U, φ′
1)
]
dx =

∫
S

(
a1

∂φ1

∂n
+ a3

∂φ2

∂n

)
φ′
1dzS,∫

Ω+

[
M(3)(Dx)Uφ′

2 +W (3)(U, φ′
2)
]
dx =

∫
S

(
a3

∂φ1

∂n
+ a2

∂φ2

∂n

)
φ′
2dzS, (4.2)

∫
Ω+

[
M(4)(Dx)U p′1 +W (4)(U, p′1)

]
dx =

∫
S

(
k1

∂p1
∂n

+ k3
∂p1
∂n

)
p′1dzS,∫

Ω+

[
M(5)(Dx)U p′2 +W (5)(U, p′2)

]
dx =

∫
S

(
k3

∂p2
∂n

+ k2
∂p2
∂n

)
p′2dzS,
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where u′ = (u′
1, u

′
2, u

′
3) and U′ = (u′, φ′

1, φ
′
2, p

′
1, p

′
2).

Proof. On the basis of Green’s first identity of the classical theory of elasticity (see, e.g., Kupradze
et al. [16]) ∫

Ω+

[
M(0)(Dx)u(x) · u′(x) +W (0)(u,u′)

]
dx =

∫
S

R(0)(Dz,n)u(z) · u′(z) dzS,

we obtain the first relation of (4.2).
On the other hand, the divergence theorem leads to the following identity∫

Ω+

[
∆φl(x)φ′

j(x) +∇φl(x) · ∇φ′
j(x)

]
dx =

∫
S

∂φl(z)

∂n(z)
φ′
j(z) dzS. (4.3)

Now, in view of the relations (4.1), from (4.3), we can derive the last four relations of (4.2). □

Lemma 1 and the condition at infinity (3.1) lead to the following result.

Lemma 2. If U = (u, φ1, φ2, p1, p2) and U′ = (u′, φ′
1, φ

′
2, p

′
1, p

′
2) are regular vectors in Ω−, then∫

Ω−

[
M(1)(Dx)U · u′ +W (1)(U,u′)

]
dx =−

∫
S

R(1)(Dz,n)U · u′ dzS,

∫
Ω−

[
M(2)(Dx)Uφ′

1 +W (2)(U, φ′
1)
]
dx =−

∫
S

(
a1

∂φ1

∂n
+ a3

∂φ2

∂n

)
φ′
1dzS,∫

Ω−

[
M(3)(Dx)Uφ′

2 +W (3)(U, φ′
2)
]
dx =−

∫
S

(
a3

∂φ1

∂n
+ a2

∂φ2

∂n

)
φ′
2dzS, (4.4)

∫
Ω−

[
M(4)(Dx)U p′1 +W (4)(U, p′1)

]
dx =−

∫
S

(
k1

∂p1
∂n

+ k3
∂p1
∂n

)
p′1dzS,∫

Ω−

[
M(5)(Dx)U p′2 +W (5)(U, p′2)

]
dx =−

∫
S

(
k3

∂p2
∂n

+ k2
∂p2
∂n

)
p′2dzS.

Obviously, on the basis of Lemmas 1 and 2 it follows the following consequences.

Theorem 1. If U = (u, φ1, φ2, p1, p2) is a regular vector in Ω+, U′=(u′, φ′
1, φ

′
2, p

′
1, p

′
2) ∈ C1(Ω+)

∩ C(Ω+), then∫
Ω+

[M(Dx)U(x) ·U′(x) +W (U,U′)] dx =

∫
S

R(Dz,n)U(z) ·U′(z) dzS, (4.5)

where

W (U,U′) = W (1)(U,u′) +W (2)(U, φ′
1) +W (3)(U, φ′

2) +W (4)(U, p′1) +W (5)(U, p′2).

Theorem 2. If U = (u, φ1, φ2, p1, p2) and U′ = (u′, φ′
1, φ

′
2, p

′
1, p

′
2) are regular vectors in Ω−, then∫

Ω−

[M(Dx)U(x) ·U′(x) +W (U,U′)] dx = −
∫
S

R(Dz,n)U(z) ·U′(z) dzS. (4.6)

Formulas (4.5) and (4.6) are Green’s first identities in the coupled linear quasi-static theory of
elastic double-porosity materials for domains Ω+ and Ω−, respectively.

It is easy to verify that (4.1) yields

W (1)(U,u) =
1

3
(3λ+ 2µ) |divu|2 +W0(u) + (bα φα − βαpα) divu,

W (2)(U, φ1) =(a1∇φ1 + a3∇φ2) · ∇φ1

+ (b1 divu+ α1φ1 + α3φ2 −m1p1 −m3p2)φ1,
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W (3)(U, φ2) =(a3∇φ1 + a2∇φ2) · ∇φ2

+ (b2 divu+ α3φ1 + α2φ2 −m3p1 −m2p2)φ2, (4.7)

W (4)(U, p1) =(k1∇p1 + k3∇p2) · ∇p1

− (β′
1 divu+m′

1φ1 +m′
3φ2 + γ′

1p1 + γ′
3p2)p1,

W (5)(U, p2) =(k3∇p1 + k2∇p2) · ∇p2

− (β′
2 divu+m′

3φ1 +m′
2φ2 + γ′

3p1 + γ′
2p2)p2,

where

W0(u) =
µ

2

3∑
l,j=1; l ̸=j

∣∣∣∂uj

∂xl
+

∂ul

∂xj

∣∣∣2 + µ

3

3∑
l,j=1

∣∣∣∂ul

∂xl
− ∂uj

∂xj

∣∣∣2. (4.8)

We are now in a position to study the uniqueness of regular solutions of the BVPs (I)±F,f and

(II)±F,f . We have the following results.

Theorem 3. The internal BVP (I)+F,f admits at most one regular solution.

Proof. Suppose that there are two regular solutions of problem (I)+F,f . Then their difference U is

a regular solution of the internal homogeneous BVP (I)+0,0. Hence U is a regular solution of the
homogeneous equation

M(Dx)U(x) = 0 (4.9)

for x ∈ Ω+, satisfying the homogeneous boundary condition

{U(z)}+ = 0 for z ∈ S. (4.10)

Clearly, by virtue of (4.9) and (4.10), from (4.4) it follows that∫
Ω+

W (1)(U,u)dx = 0,

∫
Ω+

W (l+1)(U, φl)dx = 0,

∫
Ω+

W (l+1)(U, pl)dx = 0, l = 1, 2.

(4.11)

In view of relations (4.7), we can easily verify that

ReW (1)(U,u) =
1

3
(3λ+ 2µ) |divu|2 +W0(u) + bαRe(φαdivu)− βαRe(pαdivu),

Im[W (2)(U, φ1) +W (3)(U, φ2)] = a1|∇φ1|2 + 2a3Re(∇φ1 · ∇φ2) + a2|∇φ2|2

+ α1|φ1|2 + 2α3Re(φ1φ2) + α2|φ2|2 + bαRe(φαdivu)

− [m1Re(φ1p1) +m3Re(φ1p2 + φ2p1) +m2Re(φ2p2)] ,

Im[W (4)(U, p1) +W (5)(U, p2)] = −ωβαRe(pαdivu)

− ω [m1Re(φ1p1) +m3Re(φ1p2 + φ2p1) +m2Re(φ2p2)]

− ω[γ1|p1|2 + 2γ3Re(p1p2) + γ2|p2|2]

and, consequently, we can write

ReW (1)(U,u) + Im[W (2)(U, φ1) +W (3)(U, φ2)]

− 1

ω

{
Im[W (4)(U, p1) +W (5)(U, p2)]

}
= W0(u)

+
[1
3
(3λ+ 2µ) |divu|2 + 2bαRe(φαdivu) + α1|φ1|2 + 2α3Re(φ1φ2) + α2|φ2|2

]
(4.12)

+
[
a1|∇φ1|2 + 2a3Re(∇φ1 · ∇φ2) + a2|∇φ2|2

]
+[γ1|p1|2 + 2γ3Re(p1p2) + γ2|p2|2].
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On the basis of the assumption (2.11) and relation (4.8), from (4.12), we have

W0(u) ≥ 0, a1|∇φ1|2 + 2a3Re(∇φ1 · ∇φ2) + a2|∇φ2|2 ≥ 0,

1

3
(3λ+ 2µ) |divu|2 + 2bαRe(φαdivu) + α1|φ1|2 + 2α3Re(φ1φ2) + α2|φ2|2 ≥ 0, (4.13)

γ1|p1|2 + 2γ3Re(p1p2) + γ2|p2|2 ≥ 0.

Obviously, from (4.13) we deduce that

ReW (1)(U,u) + Im[W (2)(U, φ1) +W (3)(U, φ2)]−
1

ω

{
Im[W (4)(U, p1) +W (5)(U, p2)]

}
≥ 0. (4.14)

On the other hand, by virtue of (4.14), from (4.11), it follows that

W0(u) = 0, a1|∇φ1|2 + 2a3Re(∇φ1 · ∇φ2) + a2|∇φ2|2 = 0,

1

3
(3λ+ 2µ) |divu|2 + 2bαRe(φαdivu) + α1|φ1|2 + 2α3Re(φ1φ2) + α2|φ2|2 = 0, (4.15)

γ1|p1|2 + 2γ3Re(p1p2) + γ2|p2|2 = 0.

Now, using the assumption (2.11), from the third and fourth relations of (4.15), we obtain

divu(x) = 0, φl(x) = pl(x) = 0, l = 1, 2 (4.16)

for x ∈ Ω+. Combining the first relations of (4.15) and (4.16), we deduce that u is a rigid displacement
vector of the following form:

u(x) = ã+ b̃× x, (4.17)

where ã and b̃ are arbitrary three-component constant vectors, b̃ × x is the vector product of the
vectors b̃ and x.

Finally, in view of the homogeneous boundary condition (4.10), from (4.17), we get u(x) ≡ 0 for
x ∈ Ω+. Thus, U(x) ≡ 0 for x ∈ Ω+, and we have the desired result. □

Quite similarly, the following result is proved.

Theorem 4. Two regular solutions of the internal BVP (II)+F,f may differ only for an additive vector

U = (u, φ1, φ2, p1, p2), where φl and pl (l = 1, 2) satisfy conditions (4.16), the vector u is a rigid

displacement vector of the form (4.17) for x ∈ Ω+, where ã and b̃ are arbitrary three-component
constant vectors.

Theorem 5. The external BVP (K)−F,f has one regular solution, where K = I, II.

Proof. Suppose that there are two regular solutions of problem (K)−F,f , K = I, II. Then their differ-

ence U is a regular solution of the external homogeneous BVP (K)+0,0. Hence U is a regular solution

of the homogeneous equation (4.9) for x ∈ Ω−, satisfying the homogeneous boundary conditions

{U(z)}− = 0 (4.18)

for K = I and

{R(Dz,n)U(z)}− = 0 (4.19)

for K = II.
Clearly, by virtue of (4.7), (4.18), (4.19), from (4.4), we obtain∫

Ω−

W (1)(U,u)dx = 0,

∫
Ω−

W (l+1)(U, φl)dx = 0,

∫
Ω−

W (l+2)(U, pl)dx = 0, l = 1, 2.

(4.20)

In a similar manner as in Theorem 3, from (4.20), we obtain the relations

u(x) = ã+ b̃× x, φl(x) = pl(x) = 0, l = 1, 2 (4.21)
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for x ∈ Ω−, where ã and b̃ are arbitrary three-component constant vectors. In view of the condition
at infinity (3.1), from (4.21), we get u(x) ≡ 0 for x ∈ Ω−. Thus we have the desired result. □

5. Fundamental Solution

In this section, the fundamental solution of the system of equations (2.9) is constructed explicitly
and its basic properties are established.

Definition 2. The fundamental solution of system (2.9) is the matrix G(x) = (Glj(x))7×7 satisfying
the following equation in the class of generalized functions

M(Dx)G(x) = δ(x)J,

where δ(x) is the Dirac delta, J = (δlj)7×7 is the unit matrix, x ∈ R3.

We now construct the matrix G(x). Consider the system of nonhomogeneous equations

µ∆u+ (λ+ µ)∇divu− bα∇φα + β′
α∇pα = F ′,

(a1∆− α1)φ1 + (a3∆− α3)φ2 + b1divu+m′
1p1 +m′

3p2 = F4,

(a3∆− α3)φ1 + (a2∆− α2)φ2 + b2divu+m′
3p1 +m′

2p2 = F5, (5.1)

(k1∆+ γ′
1)p1 + (k3∆+ γ′

3)p2 − β1divu+m1φ1 +m3φ2 = F6,

(k3∆+ γ′
3)p1 + (k2∆+ γ′

2)p2 − β2divu+m3φ1 +m2φ2 = F7.

where Fl (l = 1, 2, . . . , 7) are smooth functions on R3, F ′ = (F1,F2,F3). Obviously, system (5.1) can
be written in the form

M⊤(Dx)U(x) = F(x), (5.2)

where M⊤ is the transpose of matrix M, U = (u, φ1, φ2, p1, p2), F = (F ′,F4,F5,F6,F7).
Applying the operator div to the first equation of (5.1), we obtain the following system:

µ0∆divu− bα∆φα + βα∆pα = divF ′,

(a1∆− α1)φ1 + (a3∆− α3)φ2 + b1divu+m′
1p1 +m′

3p2 = F4,

(a3∆− α3)φ1 + (a2∆− α2)φ2 + b2divu+m′
3p1 +m′

2p2 = F5, (5.3)

(k1∆+ γ′
1)p1 + (k3∆+ γ′

3)p2 − β1divu+m1φ1 +m3φ2 = F6,

(k3∆+ γ′
3)p1 + (k2∆+ γ′

2)p2 − β2divu+m3φ1 +m2φ2 = F7,

where µ0 = λ+ 2µ. From (5.3), we have

A(∆)V = Φ, (5.4)

where V = (divu, φ1, φ2, p1, p2) = (V1, V2, . . . , V5), Φ = (divF ′,F4,F5,F6,F7) = (Φ1,Φ2, . . . ,Φ5)
and

A(∆) = (Alj(∆))5×5 =


µ0∆ −b1∆ −b2∆ β′

1∆ β′
2∆

b1 a1∆− α1 a3∆− α3 m′
1 m′

3

b2 a3∆− α3 a2∆− α2 m′
3 m′

2

−β1 m1 m3 k1∆+ γ′
1 k3∆+ γ′

3

−β2 m3 m2 k3∆+ γ′
3 k2∆+ γ′

2


5×5

.

Let us introduce the notation

Λ1(∆) =
1

a0k0µ0
detA(∆) = ∆

4∏
j=1

(∆ + λ2
j ), (5.5)
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where a0 = a1a2 − a23; k0 = k1k2 − k23; λ
2
1, λ

2
2, λ

2
3 and λ2

4 are the roots of the following equation with
respect to ξ

det


µ0 −b1 −b2 β′

1 β′
2

b1 −a1ξ − α1 −a3ξ − α3 m′
1 m′

3

b2 −a3ξ − α3 −a2ξ − α2 m′
3 m′

2

−β1 m1 m3 −k1ξ + γ′
1 −k3ξ + γ′

3

−β2 m3 m2 −k3ξ + γ′
3 −k2ξ + γ′

2


5×5

= 0.

We assume that Imλl > 0, λl ̸= λj for l, j = 1, 2, 3, 4 and l ̸= j.
From equation (5.4), we deduce that

Λ1(∆)divu = Ψ1, Λ1(∆)φl = Ψl+1, Λ1(∆)pl = Ψl+3, l = 1, 2, (5.6)

where

Ψm =
1

a0k0µ0

5∑
j=1

A∗
jmΦj , m = 1, 2, . . . , 5 (5.7)

and A∗
jm is the cofactor of the element Ajm of matrix A.

Now, applying the operator Λ1(∆) to the first equation of system (5.1), by virtue of (5.6), it follows
that

Λ2(∆)u = Ψ̃, (5.8)

where Λ2(∆) = ∆Λ1(∆) and

Ψ̃ =
1

µ
Λ1(∆)F ′ − 1

µ
∇[(λ+ µ)Ψ1 − bα Ψα+1 + β′

α Ψα+3]. (5.9)

In view of relations (5.6) and (5.8), we can write

Λ(∆)U = Ψ, (5.10)

where Ψ = (Ψ̃,Ψ2,Ψ3,Ψ4,Ψ5) is a seven-component vector function and

Λ = (Λlj)7×7, Λ11 = Λ22 = Λ33 = Λ2, Λ44 = Λ55 = Λ66 = Λ77 = Λ1,

Λlj = 0, l ̸= j, l, j = 1, 2, . . . , 7.
(5.11)

We introduce the notation

ml1(∆) = − 1

a0k0µµ0
[(λ+ µ)A∗

l1(∆)− bαA
∗
l;α+1(∆) + β′

αA
∗
l;α+3(∆)],

mlj(∆) =
1

a0k0µ0
A∗

lj(∆), l = 1, 2, . . . , 5, j = 2, 3, 4, 5.

(5.12)

Taking into account (5.12), from (5.7) and (5.9), we obtain

Ψ̃ =
1

µ
Λ1(∆)F ′ +m11(∆)∇divF ′ +

5∑
l=2

ml1(∆)∇Fl+2,

Ψj = m1jdivF ′ +

5∑
l=2

mlj(∆)Fl+2, j = 2, 3, 4, 5.

(5.13)

Then from (5.13), we can derive

Ψ = N⊤(Dx)F , (5.14)

where

N(Dx) = (Nlj(Dx))7×7, Nlj(Dx) =
1

µ
Λ1δlj +m11

∂2

∂xl∂xj
,

Nl;r+2(Dx) = m1r
∂

∂xl
, Nr+2;j(Dx) = mr1

∂

∂xj
, (5.15)

Nr+2;m+2(Dx) = mrm(∆), r,m = 2, 3, 4, 5.
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Combining the relations (5.2) and (5.10) with (5.14), we may further conclude that ΛU=N⊤M⊤U.
Obviously, from the last identity, we get

M(Dx)N(Dx) = Λ(∆). (5.16)

Let
Υ(x) = (Υlj(x))7×7 ,

Υ11(x) = Υ22(x) = Υ33(x) =

4∑
r=0

η2rγ
(r)(x) + η10γ

′
0(x),

Υ44(x) = Υ55(x) = Υ66(x) = Υ77(x) =

4∑
r=0

η1rγ
(r)(x),

Υlj(x) = 0, l ̸= j, l, j = 1, 2, . . . , 7,

(5.17)

where we have used the notations

γ(0)(x) = − 1

4π|x|
, γ′

0(x) = −|x|
8π

, γ(j)(x) = −eiλj |x|

4π|x|
(5.18)

and

η10 =

4∏
l=1

λ−2
l , η1j = λ−2

j

4∏
l=1;l ̸=j

(λ2
j − λ2

l )
−1,

η20 = η10

4∑
l=1

λ−2
l , η2j = λ−4

j

4∏
l=1;l ̸=j

(λ2
j − λ2

l )
−1, j = 1, 2, 3, 4.

(5.19)

On the basis of (5.5), (5.11), (5.18) and (5.19), it is easy to prove that

Λ(∆)Υ(x) = δ(x)J, (5.20)

i.e., Υ(x) is the fundamental matrix of the operator Λ(∆).
Now, we introduce the notation

G(x) = N(Dx)Υ(x). (5.21)

By virtue of (5.16), (5.20) and (5.21), we have

M(Dx)G(x) = M(Dx)N(Dx)Υ(x) = Λ(∆)Υ(x) = δ(x)J.

Consequently, G(x) is the fundamental matrix of the operator M(Dx). We have thereby proved the
following consequence.

Theorem 6. The matrix G(x) = (Glj(x))7×7 defined by (5.21) is the fundamental solution of system

(2.9), where N(Dx) and Υ(x) are given by (5.15) and (5.17), respectively.

Note that the matrix G(x) is constructed explicitly by means of six elementary functions: γ′
0(x),

γ(j)(x) (j = 0, 1, 2, 3, 4).
Theorem 6 leads to the following basic properties of the matrix G(x).

Theorem 7. Each column of the matrix G(x) is a solution of the homogeneous equation

M(Dx)G(x) = 0

at every point x ∈ R3 \ {0}.

Theorem 8. The relations

Glj (x) = O
(
|x|−1 )

, Grm (x) = O
(
|x|−1 )

, Gr+2;m+2 (x) = O
(
|x|−1 )

,

Gls (x) = O (1) , Gsl (x) = O (1) , Gr;m+2 (x) = O (1) ,

Gr+2;m (x) = O (1) , l, j = 1, 2, 3, r,m = 4, 5, s = 4, 5, 6, 7

hold in the neighborhood of the origin of R3.
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Theorem 9. The matrix G(0)(x) =
(
G

(0)
lj (x

)
7×7

defined by

G
(0)
lj (x) = −λ+ 3µ

8πµµ0

δlj
|x|

− λ+ µ

8πµµ0

xlxj

|x|3
,

G
(0)
44 (x) =

a2
a0

γ(0)(x), G
(0)
45 (x) = G

(0)
54 (x) = −a3

a0
γ(0)(x),

G
(0)
55 (x) =

a1
a0

γ(0)(x), G
(0)
66 (x) =

k2
k0

γ(0)(x),

G
(0)
67 (x) = G

(0)
76 (x) = −k3

k0
γ(0)(x), G

(0)
77 (x) =

k1
k0

γ(0)(x), l, j = 1, 2, 3

is the fundamental solution of the system

µ∆u+ (λ+ µ)∇divu = 0, a1∆φ1 + a3∆φ2 = 0, a3∆φ1 + a2∆φ2 = 0,

k1∆p1 + k3∆p2 = 0, k3∆p1 + k2∆p2 = 0.

Theorem 10. The relations

Glj(x)−G
(0)
lj (x) = const +O (|x|) , l, j = 1, 2, . . . , 7

hold in the neighborhood of the origin of R3.

Thus, on the basis of Theorems 8 and 10, the matrix G(0) (x) is the singular part of the fundamental
solution G (x) in the neighborhood of the origin of R3.

6. Basic Properties of Potentials and Singular Integral Operators

In this section, the surface (single-layer and double-layer) and volume potentials are defined, the
useful singular integral operators are introduced and the basic properties of these potentials and
operators are established.

In the sequel, we use the following matrix differential operator

R̃(Dx,n) = (R̃lj(Dx,n))7×7, R̃lj(Dx,n) = Rlj(Dx,n),

R̃l;r+5(Dx,n) = −β′
rnl, R̃ms(Dx,n) = Rms(Dx,n), l = 1, 2, 3, (6.1)

j = 1, 2, . . . , 5, r = 1, 2, m = 4, 5, 6, 7, s = 1, 2, . . . , 7,

where Rlj(Dx,n) is given by (3.2).
Let us now introduce the potential of a single-layer

P(1)(x,g) =

∫
S

G(x− y)g(y)dyS;

the potential of a double-layer

P(2)(x,g) =

∫
S

[
R̃(Dy,n(y))G

⊤(x− y)
]⊤

g(y)dyS;

and the potential of volume

P(3)(x,ϕ,Ω±) =

∫
Ω±

G(x− y)ϕ(y)dy,

where G is the fundamental matrix of the operator M(Dx) and defined by (5.21), the operator R̃ is
given by (6.1), g and ϕ are seven-component vector functions.

It is not very difficult to prove the basic properties of these potentials. Namely, we can obtain the
following consequences.
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Theorem 11. If S ∈ Cr+1,ν , g ∈ Cr,ν′
(S), 0 < ν′ < ν ≤ 1, and r is a non-negative integer, then:

(i)

P(1)(·,g) ∈ C0,ν′
(R3) ∩ Cr+1,ν′

(Ω±) ∩ C∞(Ω±);

(ii)

M(Dx)P
(1)

(x,g) = 0, x ∈ Ω±;

(iii) R(Dz,n(z))P
(1)

(z,g) is a singular integral for z ∈ S;
(iv) {

R(Dz,n(z))P
(1)

(z,g)
}±

= ∓ 1

2
g(z) +R(Dz,n(z))P

(1)
(z,g), (6.2)

for z ∈ S;
(v)

P(1)(x,g) = O(|x|−1),
∂

∂xl
P(1)(x,g) = O(|x|−2) for |x| ≫ 1 and l = 1, 2, 3.

Theorem 12. If S ∈ Cr+1,ν , g ∈ Cr,ν′
(S), 0 < ν′ < ν ≤ 1, then:

(i)

P(2)(·,g) ∈ Cr,ν′
(Ω±) ∩ C∞(Ω±);

(ii)

M(Dx)P
(2)

(x,g) = 0, x ∈ Ω±;

(iii) P(2)(z,g) is a singular integral for z ∈ S;
(iv) {

P(2)(z,g)
}±

= ± 1

2
g(z) +P(2)(z,g), z ∈ S (6.3)

for the non-negative integer r;
(v)

P(2)(x,g) = O(|x|−2),
∂

∂xl
P(2)(x,g) = O(|x|−3)

for |x| ≫ 1 and l = 1, 2, 3;
(vi) {

R(Dz,n(z))P
(2)

(z,g)
}+

=
{
R(Dz,n(z))P

(2)
(z,g)

}−

for the natural number m and z ∈ S.

Theorem 13. If S ∈ C1,ν , ϕ ∈ C0,ν′
(Ω+), 0 < ν′ < ν ≤ 1, then:

(i)

P(3)(·,ϕ,Ω+) ∈ C1,ν′
(R3) ∩ C2(Ω+) ∩ C2,ν′

(Ω+
0 );

(ii)

M(Dx)P
(3)

(x,ϕ,Ω+) = ϕ(x), x ∈ Ω+,

where Ω+
0 is a domain in R3 and Ω+

0 ⊂ Ω+.

Theorem 14. If S ∈ C1,ν , suppϕ = Ω ⊂ Ω−, ϕ ∈ C0,ν′
(Ω−), 0 < ν′ < ν ≤ 1, then:

(i)

P(3)(·,ϕ,Ω−) ∈ C1,ν′
(R3) ∩ C2(Ω−) ∩ C2,ν′

(Ω̄−
0 );

(ii)

M(Dx)P
(3)

(x,ϕ,Ω−) = ϕ(x), x ∈ Ω−,

where Ω is a finite domain in R3 and Ω−
0 ⊂ Ω−.
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Now, we introduce the following integral operators:

H(1)g(z) ≡ 1

2
g(z) +P(2)(z,g),

H(2)g(z) ≡ 1

2
g(z) +R(Dz,n(z))P

(1)
(z,g),

H(3)g(z) ≡ −1

2
g(z) +P(2)(z,g), (6.4)

H(4)g(z) ≡ −1

2
g(z) +R(Dz,n(z))P

(1)
(z,g),

Hςg(z) ≡
1

2
g(z) + ς Z(2)(z,g), z ∈ S,

where ς is an arbitrary complex number. On the basis of Theorems 11 and 12, we can prove that H(l)

(l = 1, 2, 3, 4) and Hς are the singular integral operators.

On the other hand, if Γ(r) = (Γ
(r)
lj )7×7 is the symbol of the operator H(r) (r = 1, 2, 3, 4), then from

(6.4), we have

det Γ(1) = det Γ(2) = −det Γ(3) = −det Γ(4)

=
(
− 1

2

)7(
1− µ2

(λ+ 2µ)2

)
= − (λ+ µ)(λ+ 3µ)

128(λ+ 2µ)2
< 0,

i.e., the operator H(r) is of normal type, where r = 1, 2, 3, 4.
Moreover, let Γς and indHς be the symbol and the index of the operator Hς , respectively. It may

be easily shown that

det Γς = − (λ+ 2µ)2 − µ2ς2

128(λ+ 2µ)2

and detΓς vanishes only at two points ς1 and ς2 of the complex plane. By virtue of (6.4) and

detΓ1 = detΓ(1), we get ςj ̸= 1 (j = 1, 2) and

indH1 = indH(1) = indH0 = 0.

Similarly, we obtain

indH(2) = −indH(1) = 0, indH(3) = −indH(4) = 0.

Thus, the singular integral operator H(r) (r = 1, 2, 3, 4) is of normal type with an index equal to
zero and, consequently, Fredholm’s theorems are valid for H(r).

For the definitions of a normal type singular integral operator, the symbol and the index of the 2D
singular integral operators see, e.g., Kupradze et al. [16].

7. Existence Theorems

In this section, applying the potential method and the theory of singular integral equations, the
existence of classical solutions of the internal and external basic BVPs (K)+F,f and (K)−F,f are proved,
where K = I, II.

Taking into account Theorems 13 and 14, we deduce that the volume potential P(3)(x,F,Ω±) is a

particular solution of the nonhomogeneous equation (2.9), where F ∈ C0,ν′
(Ω±), 0 < ν′ ≤ 1; suppF

is a finite domain in Ω−. Bearing this in view, we prove the existence theorems of a regular (classical)
solution of problems (K)+0,f and (K)−0,f , where K = I, II.

Problem (I)+0,f . We are looking for a regular solution to this problem in the form of the double-layer
potential

U(x) = P(2)(x,g) for x ∈ Ω+, (7.1)

where g is the required seven-component vector function.
In view of Theorem 12, the vector function U is a solution of the following homogeneous equation:

M(Dx)U(x) = 0 (7.2)
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for x ∈ Ω+. By virtue of the boundary condition (3.3) and using (6.3), from (7.1), we obtain the
singular integral equation

H(1) g(z) = f(z) (7.3)

for determining the unknown vector function g, where z ∈ S. We prove that equation (7.3) is always
solvable for an arbitrary vector f .

Obviously, the homogeneous adjoint integral equation of (7.3) has the following form:

H(2) h(z) = 0 for z ∈ S, (7.4)

where h is the required seven-component vector function. Now, we prove that (7.4) has only the
trivial solution.

Let h0 be a solution of the homogeneous equation (7.4). On the basis of Theorem 11 and
equation (7.4), the vector function V(x) = P(1)(x,h0) is a regular solution of the external homo-
geneous BVP (II)−0,0. By virtue of Theorem 5, the problem (II)−0,0 has only the trivial solution,
i.e.,

V(x) ≡ 0 for x ∈ Ω−. (7.5)

In addition, by Theorem 11 and (7.5), we get

{V(z)}+ = {V(z)}− = 0 for z ∈ S.

Consequently, the vector V(x) is a regular solution of the internal homogeneous BVP (I)+0,0 and using
Theorem 3, it follows that

V(x) ≡ 0 for x ∈ Ω+. (7.6)

In view of relations (7.5), (7.6) and identity (6.2), we obtain

h0(z) = {R(Dz,n)V(z)}− − {R(Dz,n)V(z)}+ = 0 for z ∈ S.

Thus, the homogeneous equation (7.4) has only the trivial solution. On the basis of Fredholm’s
theorem, the nonhomogeneous integral equation (7.3) is always solvable for an arbitrary vector f . We
have thereby proved the following result.

Theorem 15. If S ∈ C2,ν , f ∈ C1,ν′
(S), 0 < ν′ < ν ≤ 1, then a regular solution of the internal BVP

(I)+0,f exists, is unique and is represented by double-layer potential (7.1), where g is a solution of the

singular integral equation (7.3) which is always solvable for an arbitrary vector f .

Problem (II)−0,f . Now, we seek for a regular solution to this problem in the form of the single-layer
potential

U(x) = P(1)(x,h) for x ∈ Ω−, (7.7)

where h is the required seven-component vector function. Clearly, by Theorem 11, the vector function
U is a solution of (7.2) for x ∈ Ω−. By virtue of the boundary condition (3.6) and using (6.2), to
determine the unknown vector h, we obtain from (7.7) the following singular integral equation:

H(2) h(z) = f(z) for z ∈ S. (7.8)

In Theorem 15, we have proved that the corresponding homogeneous equation (7.4) has only the trivial
solution. Hence by Fredholm’s theorem, (7.8) is always solvable. We have the following consequence.

Theorem 16. If S ∈ C2,ν , f ∈ C0,ν′
(S), 0 < ν′ < ν ≤ 1, then a regular solution of the external BVP

(II)−0,f exists, is unique and is represented by the single-layer potential (7.7), where h is a solution of

the singular integral equation (7.8) which is always solvable for an arbitrary vector f .

Problem (I)−0,f . We seek for a regular solution to this problem in the sum of the single-and double-
layer potentials

U(x) = P(1)(x,g) +P(2)(x,g) for x ∈ Ω−, (7.9)

where g is the required seven-component vector function.
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Obviously, by Theorems 11 and 12, the vector function U is a regular solution of (7.2) for x ∈ Ω−.
Keeping in mind the boundary condition (3.5) and using (6.3), to determine the unknown vector g,
we obtain from (7.9) the following singular integral equation:

H(5) g(z) ≡ H(3) g(z) +P(1)(z,g) = f(z) for z ∈ S. (7.10)

We prove that equation (7.10) is always solvable for an arbitrary vector f . It can be easily verified
that the singular integral operator H(5) is of the normal type and indH(5) = indH(3) = 0.

Now, we prove that the homogeneous equation

H(5) g0(z) = 0 for z ∈ S (7.11)

has only a trivial solution. Let g0 be a solution of the homogeneous equation (7.11). Then the vector

V(x) ≡ P(1)(x,g0) +P(2)(x,g0) for x ∈ Ω− (7.12)

is a regular solution of the external BVP (I)−0,0. Using Theorem 5, we have (7.5).

Moreover, by identities (6.2) and (6.3), from (7.12), we get

{V(z)}+ − {V(z)}− = g0(z),

{R(Dz,n)V(z)}+ − {R(Dz,n)V(z)}− = −g0(z) for z ∈ S.
(7.13)

In view of (7.5), from (7.13), it follows that

{R(Dz,n)V(z) +V(z)}+ = 0 for z ∈ S. (7.14)

Obviously, the vector V is a solution of equation (7.2) in Ω+ satisfying the boundary condition (7.14).
Now, applying identity (4.5) for the vector V, we obtain

{V(z)}+ = 0 for z ∈ S. (7.15)

Finally, by virtue of (7.5) and (7.15), from the first equation of (7.13), we get g0(z) ≡ 0 for z ∈ S.
Thus, the homogeneous equation (7.11) has only the trivial solution and therefore on the basis of

Fredholm’s theorem, the integral equation (7.10) is always solvable for an arbitrary vector f . We have
thereby proved the following

Theorem 17. If S ∈ C2,ν , f ∈ C1,ν′
(S), 0 < ν′ < ν ≤ 1, then a regular solution of the external

BVP (I)−0,f exists, is unique and is represented by the sum of double- and single-layer potentials (7.9),

where g is a solution of the singular integral equation (7.10) which is always solvable for an arbitrary
vector f .

Problem (II)+0, f . Finally, we are looking for a regular solution to this problem in the form of a
single-layer potential

U(x) = P(1)(x,g) for x ∈ Ω+, (7.16)

where g is the required seven-component vector function.
In view of Theorem 11, the vector function U is a solution of the homogeneous equation (7.2).

Then, taking into account identity (6.3) and the boundary condition (3.4), to determine the unknown
vector g, we obtain from (7.16), the following singular integral equation:

H(4) g(z) = f(z) for z ∈ S. (7.17)

To investigate the solvability of equation (7.17), we consider the homogeneous equation

H(4) g(z) = 0 for z ∈ S. (7.18)

Clearly, the adjoint homogeneous integral equation of (7.18) has the form

H(3) h(z) = 0 for z ∈ S. (7.19)

In our further analysis, we will need the following consequence.

Lemma 3. The homogeneous equations (7.18) and (7.19) have six linearly independent solutions each,
and they constitute the complete systems of solutions.
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Lemma 3 can be proved similarly to the corresponding result in the quasi-static theory of elasticity
for single-porosity materials (see [19]).

Introduce now the seven-component vector functions ϑ(j)(x) (j = 1, 2, . . . , 6) by

ϑ(1)(x) = (1, 0, 0, 0, 0, 0, 0), ϑ(2)(x) = (0, 1, 0, 0, 0, 0, 0),

ϑ(3)(x) = (0, 0, 1, 0, 0, 0, 0), ϑ(4)(x) = (0,−x3, x2, 0, 0, 0, 0), (7.20)

ϑ(5)(x) = (x3, 0,−x1, 0, 0, 0, 0), ϑ(6)(x) = (−x2, x1, 0, 0, 0, 0, 0).

Obviously,
{
ϑ(j)(x)

}6

j=1
is the system of linearly independent vectors. Moreover, by Theorem 4,

each vector ϑ(j)(x) is a regular solution of the internal homogeneous BVP (II)+0, 0 and the homoge-

neous singular integral equation (7.19), i.e., we have

M(Dx)ϑ
(j)(x) = 0 for x ∈ Ω+,{

R(Dz,n)ϑ
(j)(z)

}+
= 0, H(4) ϑ(j)(z) = 0 for z ∈ S

and j = 1, 2, . . . , 6. Hence
{
ϑ(j)(x)

}6

j=1
is a complete system of linearly independent solutions of

equation (7.19).
Applying Fredholm’s theorem, the necessary and sufficient condition for (7.17) to be solvable has

the form ∫
S

f(z) · ϑ(j)(z)dzS = 0, j = 1, 2, . . . , 6, (7.21)

where ϑ(j) is determined by (7.20).
On the other hand, if f = (f1, f2, . . . , f7) and f (0) = (f1, f2, f3), then by virtue of (7.20), condition

(7.21) can be rewritten as ∫
S

f (0)(z)dzS = 0,

∫
S

z× f (0)(z)dzS = 0. (7.22)

We have thereby proved the following result.

Theorem 18. If S ∈ C2,ν , f ∈ C0,ν′
(S), 0 < ν′ < ν ≤ 1, then problem (II)+0, f is solvable if and

only if conditions (7.22) are fulfilled. The solution of this problem is represented by a potential of

single-layer (7.16) and is determined to within an additive vector of Ũ = (ũ, φ̃1, φ̃2, p̃1, p̃2), where g
is a solution of the singular integral equation (7.17) and

ũ(x) = ã+ b̃× x, φ̃l(x) = p̃l(x) ≡ 0, l = 1, 2

for x ∈ Ω+, ã and b̃ are arbitrary three-component constant vectors.

8. Concluding Remarks

1. In this paper the basic internal and external BVPs of steady vibrations in the coupled linear
quasi-static theory of elasticity for materials with double porosity are investigated and the following
results are obtained:

i) On the basis of Green’s identity the uniqueness theorems for classical solutions of the above
mentioned BVPs are proved;

ii) The fundamental solution of the system of steady vibration equations is constructed explicitly
by means of six elementary functions;

iii) The basic properties of the surface (single-layer and double-layer) and volume potentials are
established;

iv) Then some useful singular integral operators are constructed for which Fredholm’s theorems are
valid;

v) Finally, the existence theorems for classical solutions of the BVPs of steady vibrations are proved
by using the potential method and the theory of singular integral equations.
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2. On the basis of results of this paper are possible to investigate the BVPs in the coupled linear
quasi-static theory of thermoelasticity for materials with double porosity by using the potential method
and the theory of singular integral equations.
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