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EXPLICIT SOLUTION OF DIRICHLET AND NEUMANN BVPS OF THE
THEORY OF THERMOELASTICITY OF MICROSTRETCH MATERIALS WITH
MICROTEMPERATURES AND MICRODILATATIONS FOR A BALL

LEVAN GIORGASHVILI* AND SHOTA ZAZASHVILI

Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. The paper deals with the Dirichlet and Neumann type BVPs of statics of the ther-
moelasticity theory for homogeneous isotropic microstretch elastic ball with microtemperatures and
microdilatations. Explicit solutions of the BVPs in the form of absolutely and uniformly conver-
gent series are constructed with the help of the general representation formulas for solutions of the
corresponding system of differential equations describing the model.

1. INTRODUCTION

The mathematical model of a linear theory of thermodynamics for microstretch elastic solids with
microtemperatures has been proposed by D. Iesan in [5], who obtained the field equations of the
linear theory of thermoelasticity with microtemperatures and studied the uniqueness theorem in the
dynamical theory of anisotropic bodies and the continuous dependence of solutions upon initial data
and body loads.

The Dirichlet and Neumann boundary value problems (BVP) for the systems of pseudo-oscillation
and differential equations of statics for homogeneous isotropic elastic solids are investigated in [3,4].
Applying the potential method and the theory of singular integral equations, the uniqueness and
existence theorems of solutions to the Dirichlet and Neumann boundary value problems for general
domains of arbitrary shape in appropriate function spaces are proved.

Note that in [4], the general representation formulas of solution of the homogeneous system of
statics differential equations are constructed by means of harmonic and metaharmonic scalar functions.
Namely, it is proved that the field vector can be expressed linearly by four harmonic and seven
metaharmonic scalar functions. This representation formulas are very useful to investigate boundary
value problems for domains with a concrete geometry, in particular, for domains bounded by spherical
surfaces (see [1,2,6,9-15] and references therein).

The present paper deals with the Dirichlet and Neumann type BVPs of statics of the thermoe-
lasticity theory for homogeneous isotropic microstretch elastic ball with microtemperatures and mi-
crodilatations. With the help of the general representation formulas we construct explicit solutions of
BVPs in the form of absolutely and uniformly convergent series.

2. BASIC DIFFERENTIAL EQUATIONS AND BOUNDARY VALUE PROBLEMS

The homogeneous system of differential equations of statics of the thermoelasticity theory of mi-
crostretch materials with microtemperatures and microdilatations in the case of isotropic homogeneous

2020 Mathematics Subject Classification. 31B10, 47G40, 74F20.

Key words and phrases. Elastic bodies with microstructure; Thermoelasticity with microtemperatures; General
representation of solutions.

*Corresponding author.



392 L. GIORGASHVILI AND S. ZAZASHVILI

bodies has, according to [5], the form

(1 + »)Au+ (A + p) grad divu + serotw + po gradv — By grad ¥ =0,

wrotu + (YA — 230)w + (o + B) grad divw — p; rot w =0,
(36 A — 309)w + (524 + 325) grad div w — s¢3 grad ¥ =0, (2.1)

—podive — o divw + (agA — n)v + 519 =0,

s divw + 26, A =0,
where Q, [37 Vs )‘a H, 7, 1, 507 Bla Ho, M1, H2, 4, ba Qao, *j, ] = 17 23 3547 57 67 73 are the real con-
stants characterizing the mechanical and thermal properties of the body, A is the Laplace oper-
ator, u = (uy,us,u3)" is the displacement vector, w = (w;,ws,ws)' is the microrotation vector,
w = (wy, wa, ’U}3>T is the microtemperature vector, v is the microdilatation function, ¥ is the tempera-
ture, measured from a fixed absolute temperature Ty (Tp > 0); the symbol (-)T denotes transposition

operation.
We assume that the constitutive coefficients satisfy the following inequalities [5]

ap>0, p>0, 3X+2u>0, x>0, (3\42u+ )y —3ud >0,
s+ 5 >0, 3sey+ s+ >0, 200 >0, (301 4 23Th)* < ATpsen 37, (2.2)
Y+B>0, 3a+B+7v>0, ao(y—pB)—2b5 > 0.
Let QT be a ball, whose boundary is a sphere 9Q" of radius R and centered at the origin,
QF:={z:2cR® |z|<R}, 00" ={z:2cR? |z|=R}

Definition 2.1. A vector function U = (u,w,w,v,0)T is said to be regular in a domain Q C R3, if
U e C?(QF)n CH Q).

Problem (I)* (Dirichlet problem). Find a regular vector U = (u,w,w,v,9) " satisfying the system
of differential equations (2.1) in Q* and the boundary condition
{U(z)}T =F(z), z€0Q". (2.3)

Problem (I/I)* (Neumann problem). Find a regular vector U = (u,w,w,v,9)" satisfying the

system of differential equations (2.1) in 27 and the boundary condition

{P,n)U(2)}" = f(2), z€ 90", (2.4)
where the boundary operator P(9,n) has the form [5]
PW(,n) PP (9d,n) [0]3x3 HoT —Bon
0sxs  P®(@,n) PW(@,n) —boST(d,n) [0]sx1
P(9,n) :==| [0]3x3 0lsxs  P®)(d,n) [0]3x1 [0]3x1 ; (2.5)
[0]1x3 bpS(0,n) —pan’ a0y, 0
[0]1x3 [0]1x3 san’ 0 7100 | 111
POGOm) = [PJ@Om)] . 1=12345,

3
PO0.1) = (1 + 30)0050n + Aid; + umdx,  PE(0,n) =2 Y epirny,

p=1
3
P,S.’)(G, n) = v0i;0n + ang0; + 10y, P,S?) (0,n) = Zekjpnp,
p=1

P;Sf)(& n) = 360k;0n + sani0j + 3510,  S(0,n) = (851,05,,085),
051 = n203 — n30s, 052 = n301 — n103, 053 = n102 — ny0h,
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Ekjp is the permutation (Levi-Civita) symbol, 9y = 0/dxy, n = (ni,na,n3)" is the outward unit
normal to INT, 8, = 3/9n is the normal derivative.
The generalized thermostress vector P(9,n) U(z) has the form

P@,n)U = (TV(0,n)U, T®(8,n)U, T®(8,n)U, T®(8,n)U, T®)(9,n)U) "
where 5

TW(0,n)U =(2u + %)372 + Andivu + pn X rotu] + sxn X w] + (pov — Bo)n,

T3 (9, n)U =(8 + ’y)g—w +andivw + Bn X rotw] — p1[n x w] — bo[n x gradv],

n
TG (0,n)U =(5¢5 + xﬁ)g—w + syndivw + 5[n X rot w], (2.6)
n
TW (9, n)U :aog—v — pa n-w+ bon - rot w,
n
oY

TN, n)U =31 n - w + g

F=(FW,F® F® F, F)T, FO = (FO FP F)T, i=1,2,3,
F=UD, D 1@ py f)T, £ = (£ £ (T i =1,2,3;

the vectors f(, F() j=1,2 3, and the functions f;, F;, i = 4,5 are given on the boundary 9Q7; we
recall that the central dot denotes the real scalar product a - b = Zgzl aiby for a,b € RN, and ¢ x d
denotes the cross product of two vectors ¢, d € R3.

The following uniqueness theorems hold [4].

Theorem 2.2. The homogeneous Dirichlet boundary value problem (I)d (F = 0) has only the trivial
solution in the class of regular vector-functions.

Theorem 2.3. A solution U = (u,w,w,v,9)" to the homogeneous Neumann boundary value problem

(ID§ (f =0) is defined modulo the vector
UO (@) = (1/3§C + [a x 2] +b, a, 0, ¢'C, C)F, (2.7)

where a and b are arbitrary three-dimensional real constant vectors, C' is an arbitrary real constant,

and

, Bon — pobh ;o1 — pofo ;o
=2 T %=

3N+ 2u +
agn — p agn — p '

. (2.8)

3. SOLUTION OF THE BOUNDARY VALUE PROBLEMS

Here, we consider the Neumann boundary value problem (II)*. We seek the solution by the
formula [4]

u(z) =aq grad (r*®o(z)) + grad ®, (z) — a5 grad (T2 (r% + 1) q)g(x))
W

0
o2 grad @5 (z)

+ rot rot (zr*®y(z)) + % grad @y (z) —
1

s

X
+ rot rot (z®7(x
Y+ 2)(A3 — A2) V(i +3) (A3 = A2)A3 (e@r())

_ m rot rot (x‘bg(x)) — m rot (ach)g(m)), (3.1)

rot (z®g(z)) —

w(z) = —rot (x(2rg + 3) (132(36)) + %rot rot (z®3(x)) + 5 1

_— o
B Y rot rot (z®¢(z))+

a rot (z®7(x)) + rot (z®s(z)) — % rotrot (z®q(z)) + grad ®19(z),

+ - - -
7(>\§ - A%) A5
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w(z) = — 2%:/\0 grad ((27«% + 3) <I>0(:v)) — Aose7 grad @4(z) + rot (z®g(x))
2
- iz rot rot (z®7(z)),
A3
_ 2, 0 Ho2pt =) () 0 9
v(z) = Vi (2T8r + 3) o(z) + Xon — 3 (QT or + 3) (r(’?r + 1) ()
ag
+ m@l(l‘) + ®5(x),

B
9(z) =20 (QTE + 3) Bo(z) + s APy (),
where
A®;(z) =0, j=0,1,2,3, (A=A)Ps(x) =0, (A—A)P5(x) =0, (A—A)P;(x) =0, j=6,7,
(A= X)P;(z) =0, j=8,9, (A—\)Py(z)=0,

— 2
)\%:M>O, lo = 24 + 205 + 26 > 0, /\3:—%>0, ay=a+p+v>0,
0%7 Qg
) o Ao — 43 o #(2p+ ) (32
Aa=—>0, Nj=——>0, MN=A+2u+x>0, \i=——"7—-" ,
6 Aoao v(p + )
0 = Boto — oS 4y = vy — 72 NoAT a5 = 301 flo — —22H0
ag ’ ao ’ )\0()\% - )‘421)’
g = nBo — pob1 a5 = n(2u + »)
apA} 2(Non — 15)
Remark 3.1. The vector U = (u,w,w,v,9)" represented by (3.1) will be uniquely defined by the
functions ®;(z), j=0,1,2,...,10, if in the interior domain QF
/ B, (2)d(0,1) = 0, j=1,3,6,7,8,0, (3.3)
£(0,1)
which means that to the zero vector U = (u,w,w,v,9)" there corresponds the zero vector
(®g, ®1,...,P10) ", and vice versa; £(0,1) is the unit sphere centered at the origin.
The functions ®;(z), j =0,1,2,...,10 are represented as the series
< ko \k 4
2@ =Y > (5) W"O.0945, i=0123
k=0m=—k (34)

o) k
®i(2) =Y > gulor)V, "M (0.0 AV, j=4,5,...,10;
k=0m=—k

here, AY) j=0,1,...,10 are the sought for constants and Yk(m) (9, ) are the spherical functions,

mk>’
(m) _ 2k+1 (kE—m)! (m) i,
Yk (9790) - \/ A : (k—i—m)'Pk (C089)6 50’

P](Cm)(cos ) are the Legendre associated polynomials, 7, 8, ¢ (0 < r < 400,0 <60 <7, 0 < ¢ < 27)
are the spherical coordinates of x € R3;

ae(or) = \/E Tiy1/2(0m)
r Ik+1/2(UR)7
where 0 = A1, when j =4; 0 = A9, when j = 10; 0 = A3, when j = 6,7; 0 = Ay, when j =5; 0 = As,
when j = 8,9; I} 11,2 is the Bessel function of a complex (pure imaginary) argument [7].
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Note that the constants A%L in (3.4) are complex numbers. If we assume that

Ayl =agl, k=0,
. 1, /. . . 1 . .
AD, =5 @+ ), A9 = S0 (b b)), k=0, m >0,

where a((i), aiﬁc, b%i are the real constants, then ®;(x) will be real functions. In our analysis, it is
convenient to use a complex version of the Fourier—Laplace series of the form (3.4).

Substituting ®;(z), 7 = 1,3,6,7,8,9 from (3.4), into (3.3) and taking into account the equalities

(m) 2y/7, for k=0,m =0,
Y™, p)ds = 3.5
k(O e)ds {O, otherwise, (3:5)
2(0,1)
we get AY) =0, j=1,3,6,7,8,9.
Substituting ®;(z), j =0,1,...,10 into (3.1) and using the relations [1]
m da(r k(k+1
grad [a(r¥ " 0.)] = 0,00+ EE D o0y 0.0,
rot [za(r)Y,™ (0, ¢)] = /E(k + D)a(r) Zmi (6, 9), (3.6)
(m) kE(k+1) d 1
rot rot [za(r)Y,"™ (0, ¢)] = Ta(r)ka(G, )+ VE(k+ 1)(% + ;)a(r)Ymk(O, ®)
we obtain
0o k
u(@) =3 D7 (uhk )Xok (0, 9) + VR 1) [0 (1) Yok (0, 2) + w0 (1) Zini(0,9)] )
k=0m=—k
&S] k
w@) =3 D (uSh )Xo 0,0) + VR 1) [0 )Yk (0, ) + wik (1) Zini(0,9)] ),
k=0 m=—k
) k
ww) =3 > (uSh ) Xk (0,9) + VR 1) [0 (1) Yk (0, 9) + 0 (1) Zni (0,0)] ), (3.7)
k=0 m=—k
S k
4 m
v@) =37 D w0, 0),
k=0m=—k
oo k
5 m
I(z) =" > ul) (Y0, ¢),
k=0 m=—k
where [1,2]
ka(aa 90) = GTY]q(m) (97 @)7 k 2 07
1 0 €y 0 (m)
B — - P > M
Vnk(0,69) = ey (cog + =55 &p)yk 0,0), k>1, (3.8)
1 eg O 0 (m)
Zm 0; = . = A Y 9, 3 k Z 1, S ,ZC’
0:0) = s (g g, ~cogg) 0.9 i

er, €9, and e, are the unit vectors:

er = (cospsin, sinpsinb, cos 9)T ,
eg = (cospcos b, sinpcosb, —sine)T,
e, = (—sin¢y, cosp, 0)"

The system of vectors { X, (6, ), Yok (8, ©), Zmi (0, 0)}, Im| < k, k =1, 00 is orthogonal and complete
in La(%;), where X is the unit sphere.
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Note that in formula (3.7) and in the sequel \/k(k + 1) Y (0, ¢) = 0, VE(k + 1) Zpi(0,¢) = 0,
when k£ = 0.

The coefficients ufﬁc(r), vfr]l;c

(r), wfi?c(r), j=1,2,3, and ufﬁc(r), j=4,5,1in (3.7) have the form

k+1 k k—1 k+1
un () =asRk+2)(5) AN+ 5(F) A+ = (k+2)as)(k+DR(5) AR

mk R\R
+ S, — 2 o i) A% — e L ar) AT
—Migk()\sr)/ﬁi,
o) =ar(R) AN+ 5 (5) AN
Fh3— (k4 Das)R(5) T 4G+ %%%(M)Afﬁ
iﬁﬁﬁMMﬂASLWu+%;§—A9%($"+;M“&mAgL
- m (dir + %)gk(AEiT)AEySl;w
WSL(T) :<%)kASLL + it ;;A(L/l\% — )\g)gk()\gr)Afgi - mgk()\sT)AgL
) = (F) AR+ B L an Al
- a0 A% + o an) AR,
V() Z% (%)kilAg@ + m (% + %)Qk(Az’)?‘)Aﬂ
- )\1:3(; + %)gk(Asr)Aﬁ,?L + %gk(Azr)Afii),
wih(r) == 2k +3)( ) A%+ e AT + (e AL (39
ugc(r) =— %(ka (%)kilAfgi - Aomd%gk()\lr)AﬁjL - k(li\—?:l)igk(A?,?")AgL,
) = = 2D (VAL — N o) A% = 53 (54 1) Car) AT,

w) () = ge(Asr) AL,
2a1(2k + 3 k 2 k
USSC(T) - _ M(L) A0 4 M(k +1)(2k + 3) (1) A

)\?1 R mk >\077 _ /1’(2) R mk
a 5
+ 22 _2 22 gk()‘lr)Agigc + gk()‘élr)Afn;w
1 4

k
USL(T) =2X\o(2k + 3) (%) Aﬂ + %1/\09k(>\1T)A’(72“'

After the substitution of the vectors u(z), w(z), w(z) and the functions v(x), ¥(z) from (3.7) into
(2.6) and using the following equalities [1]:

€r X ka(ﬂ, QO) =0, e X }/vnk(97 QO) = _ka(oa @)7 €r X ka(ﬁ, QO) = Ymk(ev 90)’

Ep - ka(aa 90) = ch(m)(ea @)7 Er* Ymk(97 gp) =0, e - ZMk(07 90) =0,
d 2

div [a(r) X (0. 9)] = (- + 7 )alr)¥{™ (0. 0)
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aiv [a(r) Yo (0, 2)] = D o0y )
div [a(r) Zmi(0, ¢)] =0,
rot [a(r) X, (0. 2)] = VT 007,06,
rot [a(r) Y,k (8, ¢)] = —(% + %)G(T)ka(e ©),
rot [a(r) Zoue 0, 9)] = 2D o) %000, 0) + (4 Datr)Via0,),
we obtain
TV)(9,n)U §j§j(<” (0, ) + v/ & 1) (B, (1) Yok (6, )
k=0m=—k
+c$ii(r)zmk(9,so)}), =123 (3.10)
k
T0)(9,n) Z > Al mviro,0), =45,
k=0m=—k
where

ar) = (o4 2l )~ D0 0 4 ) — B,
BA) = L) + (4 ) o — Yo r) 4w (r),
07(73@(7") = ((u—!— %)dir — T)wf:b,)c( ) — %vfj,)c(r),

d 2 ak(k+1
afji(r) = (CVO% + 7)u(2) (T) _ ¥’U(2) (7.)7

mk mk
B0 = 2+ (1 = D)o@ ) - o), (311)
20) = (v = D) + uo ) + 2,
a0 = (o 2l ) - AR 0
BA) = Z2ulhr) + (s~ 22 ) e,
) = (o = 2w,
A0) = o bl () o) + PEEED 2 )
A () = s uDh ) + s ()

Here, the functions ul) j=1,2,...,5 and ) ) j=1,2,3, are given by (3.9).

mk> mk> Wk
Represent the boundary data as the Fourier - Laplace series in the system of vectors (3.8),

f9(z) Z Z (al2) )+ VR + DBk (0,9) + 10 Zur(6,9)] ), § = 1,2,3,
k=0m=—k
0 k
=33 Uy, ¢), j=4.5
k=0 m=—k

(3.12)
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where
oD i=1,2,...,5 VEE+1BY), VEE+DAY =123,

are the Fourier coeflicients.
Necessary and sufficient conditions for Problem (II)* to be solvable read as [4]

/f(l)(z)ds =0, / (z X f(l)(z) + f(Q)(z))ds =0, /f5(z)ds =0. (3.13)
9Q a0 90

Substituting ), j = 1,2, and f5 into (3.13), and taking into consideration (3.5) and the equalities

/ka(G,so)ds={ % (0-1mer — dimea + V200mes) R?, for k=1, m = 0,£1,
o

0, otherwise,

2 % [(5—1m —01m)er — i(5—1m + O1m)es + ﬁﬁomeg)RQ,
/Ymk(ﬂ, p)ds= fork=1, m=0,=+1, (3.14)
a0 0, otherwise,

/ka(ﬁ,go)ds =0, forall k¥ and m,
29
where dy; is the Kronecker symbol,
e1=(1,-4,0)", ea = (1,4,0) 7, e3 = (0,0,1) 7, (3.15)
we get
ol 4252 0,

o) +285) + 2R\ =0, m=0,£1, (3.16)
a(()%) =0.

On the other hand, if in both parts of equalities (3.10) we pass to the limit as x — z € 09,
()

take into account the boundary condition (2.4) and formulas (3.12), for the unknown constants A,

7=0,1,2,...,10, we obtain the system of linear algebraic equations:
a) if k=0, m =0, then Aéjo), 7 =0,2,4,5,10, are defined from the following system:

1 1 2 2 3 3 4 4 5 5
afy (R) = o, aly (R) =afy, i) (R) = aff), alg(R) =af, af)(R)=afy;  (3.17)
b)if k > 1, |m| < k, then Agi;c, j=0,1,2,...,10, are defined from the following system:
alL(R) =a¥), j=1,2,3,4,5, b9 (R)=pY) U (R) =4, =123  (3.18)

The system of equations (3.17) leads to the corresponding system of algebraic linear equations with
respect to unknown constants Aé{)), j=0,2,4,5,10, via the relations (3.9) and (3.11).

Note that the fifth equation of system (3.17) is fulfilled identically, because a(()%)(R) = a(()%) = 0.
The second equation of (3.17) contains only one unknown constant A(()%)O) ; the third equation of (3.17)
contains only one unknown constant Aé%); the fourth equation of (3.17) contains only two unknown
constants A(()%)) and Aé%); the first equation of (3.17) contains the constants A(()%), A(()QO) , Agg and Aé50) .
Theorem 2.3 and Remark 3.1 imply that system (3.17) is solvable and only one unknown constant
remains arbitrary. Let A(()%) be this arbitrary constant.

When & = 1, |m| < 1, system of equations (3.18) leads to the corresponding system of eleven

algebraic linear equations with respect to eleven unknown constants Afi)l, 7 =0,1,2,...,10. Taking
into account (3.16) and performing equivalent transformations, we find that we have actually only
ji=0,1,2,...,10.
Therefore, for k =1, |m| < 1, two constants remain undefined. For definiteness, let Ag)l and AE,?;)l be
these arbitrary constants.

nine independent linear equations with respect to eleven unknown constants Ag)l,
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When k& > 1, |m| < k, the system of equations (3.18) leads to the corresponding system of
eleven algebraic linear equations with respect to eleven unknown constants Asfl)l, 3 =0,1,2,...,10.
Theorem 2.3 and Remark 3.1 imply that the system (3.18) when k > 1, |m| < k, is uniquely solvable.

Therefore, from the systems of equations (3.17) and (3.18), we can define all unknown coefficients
except AO%), Am1 nd Am17 =0, £1.

This is natural and reflects the fact that the solution is deﬁned modulo a rigid displacement vector.

Let us show that the undefined coefficients Aé%), A(l) nd Am17 m = 0, £1, give the summands
corresponding to the rigid displacement vector. We separate the terms containing these undefined
coefficients and rewrite the vector U = (u,w,w,v,6) T represented by relations (3.7) in the form

) k
D+ > Y (Wh )Xk (0,9) + VA + D550 Yimk(0,9) + ) (1) Zi (0, 0)] )

k=0m=—k

@+ Y (@50 ()Xna (0, 0) + V&G + 1) [B50 (0) Yo (0, 0) + 070 (1) Zoni (0, 0)] )

k=0m=—k
oo k
3 3 3
=3 > (6 ) Xk(0,9) + VEEF D050 ok (0,9) + WS (1) Zr (0,9)] ), (3.19)
k=0m=—k
0o k
~(4 m
D+Y D0 BV 00),
k=0m=—k
oS k
Ia) = do(x) + 3 Y @l (Y0, ),
k=0m=—k
where
ug () Ax—i— — Z (A(l L)+ V2Y,,1(6, ©)] + \/ﬁrAg)lZml(ﬁ,go)>, A= ﬁa4A((J%)7
m_fl
1
1
wol@) =7 D AL [Xma(6,0) + V2V (6. 9)],
m=—1 (3.20)
3 a1 40
vo(z) =B, B=———Ay;
NCDY
do(z) =C, C = IAOA(O)
the functions ufflgﬁ( )j=1,2,4,5,0 ~(J) 1 (1) w(”( ) 7 =1,2 can be easily written down.
From (3.6), we get the follovvlng formulas
1
S [Xo0.9) + VBV 6,91 A% = grad Y v (0.00AD, = 1.3
m me (3.21)

1

1
Z \/Qerl(Q,go)Afi)l = —[z x grad Z riq(m)(e,w)ASj{],

m=—1 m=—1

Using the relations for the Legendre polynomials [16]

(m) o ymm d™Py(cos )
P, " (cosf) = (—1)" sin aid(cos By
—m m(E—=m) o,
P](C )(COS 9) = (_].) mpl(c )(COS 9),

Pgo)(COS 0) = P1(cosf) = cos¥,
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we obtain

3 1 3 . _ 1 3 .
rYl(O) 0,¢) = \/Exg, rYl(l)(G,go) = —5\/%(331 + 21'2)7 TYl( 1)(97@) = 5\/%(331 — wcg),

1
grad Z rY{™ (0, 0)AY) = 2\ %<A(ji161 —ADes + \/iA(()Jl)es), J=13,

m=—1

where the vectors ej, ea, ez have the form (3.15).
Introduce the notation

1 3 3 3 3
a ﬁ % (A(_ilel — A(11)€2 + \/iA(()l)@g),

(3.22)
b= 2;\/5(149{1@1 — Afes + V2A{es).
Evidently, a and b are arbitrary three-dimensional constant vectors.
It can be shown that formula (3.20) takes the form
uo(x) =Az + [a x ] + b,
wo () =a,
volz) =B, (3.23)
Jo(z) =C,

where a and b are arbitrary three-dimensional constant vectors introduced above and A, B and C' are
arbitrary constants. _
Now, consider the vector U = (Az+[ax x| +b,a,0, B,C)". It satisfies the system of equations (2.1)
in O and boundary condition P(9,n)U(x) = 0 on 9Q7 if the following conditions are satisfied
3aA + woB = BoC,
3uoA+nB = p1C,
whence we obtain
g LPon—pobr 1 5 = @B~ Hobo

/ /!
= = —p'C, =qC; (3.24)
3 agn—pg 3 agn — g
here, the constants p’, ¢/, «f, are given by formulas (2.8).
Taking into account (3.24), we establish that the vector
- T
U= (uo(m)7w0(a:),071)0(95),190(:1:))T = (1/3p’Cm +|a x x] +b,a,0,q'C, C’) , (3.25)

which implies that a solution of the Neumann problem is defined modulo a rigid displacement vector
of type (3.25).

If we substitute the solutions of systems (3.17) and (3.18) into (3.7), then the vector U = (u,w,
w,v,0) ", given by (3.7), will be a formal solution of Problem (I1)*. To justify our approach, we have
to show the convergence of the series (3.7) and (3.10).

The following asymptotic representations are valid for k — oo [16]:

k/r

i) ~ (%)k gh(kjr) ~ ;(E)k, r<R. (3.26)

We need the following technical results [1].

Theorem 3.2. The following inequalities are valid for k > 0:

2k +1 2k(k+1)
Xm 97 S 9 kZ 9 Ym 07 S a1, 1 kzlv
| Xk (0, 0)] p 0 Yok (0, 0)] 21
2k(k +1
|Zmi(0, )] < HEHD) sy (3.27)

2k+1 "’ =7



EXPLICIT SOLUTION OF DIRICHLET AND NEUMANN BVPS 401

Theorem 3.3. If fU) € CY0Q), j = 1,2,3, then the coefficients 0‘%3« 57(2,1 and vgi, satisfy the
asymptotic relation

(J) O(kfl)7 B(J) ( 7l71)7 ’Yﬁil)s: _ O(kilil).

S mk —

Theorem 3.4. If f; € CY(0R), j = 4,5, then the coefficients ozgn;c, J = 4,5, satisfy the asymptotic
relation
(J) O(kil).

Uk =
In view of (3.26) and (3.2), the series (3.7) and (3.10) are absolutely and uniformly convergent for
x € 90 (r = R), provided the following majorant series

W)E:kw2[§:(m“>y+k5“>-+km0>)+-ka“>+4a (3.28)
k=kq
is convergent. Here, amk Bmk '77(2247 j =123, oty aSZL are the Fourier—Laplace coefficients. In

mk?
turn, the series (3.28) are convergent if the coefficients have the following asymptotic behaviour

=0k, BYL =0k, Y =0k, j=1,2,3, o) =0(k"), j=4,5. (3.29)

According to Theorems 3.3 and 3.4, the estimates (3.29) hold if the boundary vector-functions
satisfy the following smoothness conditions:

f9Decdo0), j=1,2,3  f€C309), j=4,5. (3.30)

Therefore if the boundary vector-functions satisfy conditions (3.30), then the vector U = (u,w,
w,v,0) T represented by equalities (3.7) is a solution of Problem (I)*
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