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Abstract. The paper deals with the three-dimensional Dirichlet boundary value problem (BVP) of

the couple-stress elasticity theory for anisotropic inhomogeneous solids and develops the generalized
potential method based on the localized parametrix method. Using Green’s integral representation

formula and the properties of the localized layer and volume potentials, we reduce the Dirichlet BVP

to the system of localized boundary-domain integral equations (LBDIE). The equivalence between
the Dirichlet BVP and the corresponding LBDIE system is studied. We state that the obtained

localized boundary-domain integral operator belongs to the Boutet de Monvel algebra and, using

the Wiener–Hopf factorization method, we investigate the corresponding Fredholm properties and
prove the invertibility of the localized operator in appropriate Sobolev function spaces.

1. Introduction

We consider the Dirichlet pseudo-oscillation boundary value problem (BVP) for a second order
strongly elliptic system of partial differential equations in the divergence form with variable coefficients
and develop the generalized integral potential method based on a localized parametrix.

A system of pseudo-oscillation equations is obtained by the Laplace transform of the dynamical
system of equations (see [20]).

The BVP treated in the paper is well investigated in the literature by the variational method
and, in the case of constant coefficients, by the classical potential method, when the corresponding
fundamental solution is available in explicit form (see, e.g., [19,21,22]). However, as it is well known,
for PDE systems with variable coefficients no fundamental solution is available in an analytical and/or
cheaply calculated form, in general.

Our goal here is to develop a potential method for general second order strongly elliptic self-
adjoint systems of partial differential equations with variable coefficients. We show that solutions of
the problem can be represented by localized parametrix-based potentials and that the corresponding
localized boundary-domain integral operator (LBDIO) is invertible, that is important for analysis of
convergence and stability of LBDIE-based numerical methods for PDEs (see, e.g., [18, 23, 26, 28, 31,
32,34,35]).

Using Green’s representation formula and the properties of the localized layer and volume potentials,
we reduce the Dirichlet BVP to a system of Localized Boundary-Domain Integral Equations (LBDIEs).
First, we establish the equivalence between the original boundary value problem and the corresponding
LBDIE system, which appeared to be quite non-trivial task and plays a crucial role in our analysis.
Afterwards, we establish that the localized boundary domain integral operator of the system belongs to
the Boutet de Monvel operator algebra. Employing the Vishik–Eskin theory, based on the Wiener-Hopf
factorization method, we investigate the corresponding Fredholm properties and prove the invertibility
of the localized operator in appropriate Sobolev (Bessel potential) spaces.

In [6–12, 24], the LBDIE method has been developed for the case of scalar elliptic second order
partial differential equations with variable coefficients, here we extend it to the PDE systems.
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2. Boundary Value Problem and Parametrix-based Operators

2.1. Formulation of the boundary value problems and localized Green’s third identity.
For isotropic inhomogeneous media, we consider the following system of pseudo-oscillation equations
of couple-stress elasticity with respect to U = (u, ϕ)⊤ = (u1, u2, u3, ϕ1, ϕ2, ϕ3)

⊤ (see [20]):

δij∂l
(
(µ(x) + κ(x))∂l

)
ui + ∂i

(
(λ(x) + µ(x))∂j

)
uj − ρ0(x)τ

2ui

+κ(x)εijk∂jϕk = −ρ(x)fi, i = 1, 2, 3, (2.1)

δij∂l
(
γ(x))∂l

)
ϕi + ∂i

(
(α(x) + β(x))∂j

)
ϕj − I0(x)τ

2ϕi + κ(x)εijk∂juk
−2κ(x)ϕi = −ρ(x)Xi, i = 1, 2, 3, (2.2)

where δij is the Kronecker symbol, τ = σ + iω is a complex parameter, σ > σ0 > 0, u = (u1, u2, u3)
⊤

is the displacement vector, ϕ = (ϕ1, ϕ2, ϕ3)
⊤ is the vector of microrotation, (f1, f2, f3) is the external

body force per unit mass and Xi is the external body couple per unit mass. We employ the notation
∂x = (∂1, ∂2, ∂3), ∂j = ∂/∂xj .

The coefficients λ, µ, κ, α, β, γ ∈ C∞ are the elastic coefficients, I0 ∈ C∞ is the coefficient of
inertia, and εijk is the Levi-Civita symbol (see [20]).

Due to the positiveness of internal energy, the coefficients of system (2.1)–(2.2) must satisfy the
following conditions:

κ > 0, κ + 2µ > 0, κ + 2µ+ 3λ > 0,

γ > |β|, β + γ + 3α > 0, (2.3)

ρ0 > 0, I0 > 0,

where ρ0 ∈ C∞ is the mass density.
Denote by

M(x, ∂x, τ) =
[
Mij(x, ∂x, τ)

]
6×6

(2.4)

the strongly elliptic second order matrix partial differential operator generated by the left-hand side
expression in (2.1)–(2.2), where[

Mij(x, ∂x, τ)
]
3×3

=δij∂l
(
(µ(x) + κ(x))∂l

)
+ ∂i

(
(λ(x) + µ(x))∂j

)
− ρ0(x)τ

2δij ,[
Mi,j+3(x, ∂x, τ)

]
3×3

=
[
Mi,j+3(x, ∂x, τ)

]
3×3

= κ(x)εijk∂j ,[
Mi+3,j+3(x, ∂x, τ)

]
3×3

=δij∂l
(
(γ(x))∂l

)
+ ∂i

(
(α(x) + β(x))∂j

)
−
(
2κ(x) + I0(x)τ

2
)
δij ,

i, j = 1, 2, 3.

Here and in what follows, the Einstein summation by repeated indices from 1 to 3 is assumed if not
otherwise stated.

Further, let Ω = Ω+ be a bounded domain in R3 with a simply connected boundary ∂Ω = S ∈ C∞,
Ω = Ω ∪ S. Throughout the paper, n = (n1, n2, n3) denotes the unit normal vector to S directed
outward the domain Ω. Set Ω− := R3 \ Ω.

By Hr(Ω) = Hr
2 (Ω) and H

r(S) = Hr
2 (S), r ∈ R, we denote the Bessel potential spaces on a domain

Ω and on a closed manifold S without boundary, while D(R3) and D(Ω) stand for C∞ functions with
compact support in R3 and in Ω respectively, and S(R3) denotes the Schwartz space of rapidly
decreasing functions in R3. Recall that H0(Ω) = L2(Ω) is a space of square integrable functions in Ω.
For a vector U = (u1, . . . , u6)

⊤, the inclusion U = (u1, . . . , u6)
⊤ ∈ Hr implies that each component

uj belongs to the space Hr.
Let us denote by γ+U = {U}+ and γ−U = {U}− the traces of U on S from the interior and

exterior of Ω+, respectively.
We also need the following subspace of H1(Ω) (see, e.g., [13]):

H1, 0(Ω;M) := {U=(u1, u2, u3, ϕ1, ϕ2, ϕ3)
⊤ ∈ H1(Ω) :MU ∈ H0(Ω)}.

The Dirichlet boundary value problem reads as follows:
Find a vector-function U = (u1, u2, u3, ϕ1, ϕ2, ϕ3)

⊤ ∈ H1, 0(Ω,M) satisfying both the differential equation

MU = f in Ω (2.5)
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and the Dirichlet boundary condition

γ+U = φ0 on S, (2.6)

where φ0 = (φ01 , . . . , φ06)
⊤ ∈ H1/2(S) and f = (f1, . . . , f6)

⊤ ∈ H0(Ω) are the given vector functions.
Equation (2.5) is understood in the distributional sense, while the Dirichlet boundary condition

(2.6) is understood in the usual trace sense.
The stress differential operator of the couple-stress elasticity corresponding to the operator (2.4) is

defined as follows (see [20]):

T (x, ∂x) =
[
Tij(x, ∂x)

]
6×6

,

where[
Tij(x, ∂x)

]
3×3

= λ(x)ni∂j + µ(x)nj∂i + δij(µ(x) + κ(x))nk∂k,
[
Ti,j+3(x, ∂x)

]
3×3

= −κ(x)εijknk,[
Ti+3,j+3(x, ∂x)

]
3×3

= α(x)ni∂j + β(x)nj∂i + δijγ(x)nk∂k,
[
Ti+3,j(x, ∂x)

]
3×3

= 0, i, j = 1, 2, 3.

The corresponding stress operator of adjoint operator M∗ of the operator M is (cf. [4])

T̃ = T̃ (x, ∂x) =
[
T̃ij(x, ∂x)

]
,

where[
T̃ij(x, ∂x)

]
3×3

= λ(x)ni∂j + µ(x)nj∂i + δij(µ(x) + κ(x))nk∂k,
[
T̃i,j+3(x, ∂x)

]
3×3

= κ(x)εijknk,[
T̃i+3,j+3(x, ∂x)

]
3×3

= α(x)ni∂j + β(x)nj∂i + δijγ(x)nk∂k,
[
T̃i+3,j(x, ∂x)

]
3×3

= 0, i, j = 1, 2, 3.

For any complex-valued vector-functions U = (u1, . . . , u6)
⊤, U ′ = (u′1, . . . , u

′
6) ∈ H2(Ω), we have

the following Green’s formulas:∫
Ω

[M(x, ∂x, τ)U · U ′ + E(U,U ′)] dx =

∫
S

{TU}+ · {U ′}+ dS, (2.7)

∫
Ω

[M(x, ∂x, τ)U · U ′ − U ·M∗(x, ∂x, τ)U
′] dx =

∫
S

[{TU}+ · {U ′}+ dS − {U}+ · {T̃U ′}+]dS, (2.8)

where a · b :=
6∑

j=1

ajbj is the bilinear product of two column-vectors a, b ∈ C6,

E(U,U ′) := (µ+ κ)∂juj∂ju′i + τ2ϱ0uiu′i + λ∂juj∂iu′i + µ∂iuj∂ju′i + κεijkΦk∂ju′i

+γ∂jΦi∂jΦ′
i + (2κ + τ2I0)ΦiΦ

′
i + α∂jΦj∂iΦ′

i + β∂iΦj∂jΦ′
i + κεijk∂juiΦ′

k.

By the standard limit procedure, Green’s formulas (2.7) and (2.8) can be extended to the vector
functions U ∈ H1,0(Ω) and U ′ ∈ H1,0(Ω). With the help of Green’s formula (2.7), we can correctly

define the generalized trace vector {T (x, ∂x)U}+ = {TU}+ = T+U ∈ H− 1
2 (S) for the vector-function

U ∈ H1,0(Ω) (cf., [22]). Moreover, by [13, Lemma 3.4] and [22, Lemma 4.3]), for any U ∈ H1,0(Ω;M)
and U ′ ∈ H1(Ω), the first Green’s identity in the form

⟨{T (x, ∂x)U}+ , {U ′}+ ⟩S :=

∫
Ω

[M(x, ∂x, τ)U · U ′ + E(U,U ′)]dx, ∀U ′ ∈ H1, 0(Ω;M), (2.9)

holds, where ⟨· , ·⟩S denotes the duality between the adjoint spacesH− 1
2 (S) and H

1
2 (S), which extends

the usual bilinear L2(S) inner product.

Remark 2.1. From condition (2.3), it follows that the quadratic form E(U,U ′) is positive definite.
Therefore Green’s first identity (2.9) and Korn’s inequality along with the Lax-Milgram lemma imply
that the Dirichlet BVP (2.5)–(2.6) is uniquely solvable in the space H1, 0(Ω;M) (see, e.g., [19, 21, 22,
33]).
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2.2. Parametrix-based operators and integral identities. As it has already been mentioned,
our goal here is to develop the LBDIE method for the Dirichlet BVP (2.5)–(2.6).

Let F∆(x) := −1/ 4π |x| denote the scalar fundamental solution of the Laplace operator, where
∆ = ∂21 + ∂22 + ∂23 is the Laplace operator, τ = σ + iω, σ > σ0 > 0, ω ∈ R.

Define a localized matrix parametrix for the matrix operator I6∆ as

P (x) ≡ Pχ(x) := P∆(x) I6 = χ(x)F∆(x) I6 = − χ(x)

4π |x|
I6, (2.10)

where P∆(x) := χ(x)F∆(x) is a scalar function of the vector argument x, I6 is the unit 6× 6 matrix
and χ is a localizing function (see Appendix A)

χ ∈ Xk
+, k ≥ 3, with χ(0) = 1. (2.11)

Throughout the paper, we assume that condition (2.11) is satisfied if not otherwise stated. Note that
the function χ may have a compact support, useful for numerical implementations, but generally not
necessary, and the class Xk

+ includes the functions, not compactly supported, but sufficiently fast
decreasing at infinity (see [7] and Appendix A below for details).

For sufficiently smooth vector-functions U and U ′, say U,U ′ ∈ C2(Ω),the second Green’s identity∫
Ω

[
U ′ ·M(x, ∂x, τ)U −M∗(x, ∂x, τ)U

′ · U
]
dx =

∫
S

[
{U ′}+ · T+U − T̃+U ′ · {U}+

]
dS (2.12)

holds. Denote by B(y, ε) a ball centered at the point y, of radius ε > 0, and let S(y, ε) := ∂B(y, ε) be
a sphere of radius ε. Let us take as U ′(x), successively, the columns of the matrix P (x−y), where y is
an arbitrarily fixed interior point in Ω, take also U instead of U and write the identity (2.12) for the

region Ωε := Ω\B(y, ε) with ε > 0 such that B(y, ε) ⊂ Ω. Keeping in mind that P⊤(x−y) = P (x−y),
we arrive at the equality∫

Ωε

[
P (x− y)M(x, ∂x, τ)U(x)− {M∗(x, ∂x, τ)P (x− y)} U(x)

]
dx,

∫
S

[
P (x− y) T+(x, ∂x)U(x)− {T̃ (x, ∂x)P (x− y)}{U(x)}+

]
dxS

−
∫

S(y,ε)

[
P (x− y) T+(x, ∂x)U(x)− {T̃ (x, ∂x)P (x− y)}{U(x)}+

]
dxS. (2.13)

The normal vector on S(y, ε) is directed inwards Ωε.
Let the operator N defined as

N U(y) := v.p.

∫
Ω

[M∗(x, ∂x, τ)P (x− y)]U(x) dx := lim
ε→0

∫
Ωε

[M∗(x, ∂x, τ)P (x− y)]U(x) dx (2.14)

be the Cauchy principal-valued singular integral operator, which is well defined if the limit in the
right-hand side exists. The similar operator with integration over the whole space R3 is denoted as

NU(y) := v.p.

∫
R3

[M∗(x, ∂x, τ)P (x− y) ]U(x) dx . (2.15)

Now, let us represent the differential operator M(x, ∂x, τ) in the following form:

M(x, ∂x, τ) =M (0)(x, ∂x) +R(x, ∂x, τ), (2.16)

where M (0)(x, ∂x is the principal part of the operator M(x, ∂x, τ) of the form

M (0)(x, ∂x)

:=

[
δij

(
µ(x) + κ(x)

)
∆+

(
λ(x) + µ(x)

)
∂i∂j

]
3×3

[0]3×3

[0]3×3

[
δijγ(x)∆ +

(
α(x) + β(x)

)
∂i∂j

]
3×3

]
6×6

.
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It is clear that the operatorM (0)(x, ∂x) is a positive definite, formally self-adjoint differential operator,
and the operator R(x, ∂x, τ) has the following form:

R(x, ∂x, τ)

:=

[[
δij∂l

(
µ(x) + κ(x)

)
∂l + ∂i

(
λ(x) + µ(x)

)
∂j
]
3×3

[0]3×3

[0]3×3

[
δij∂l

(
γ(x)∂l + ∂i

(
α(x) + β(x)

)
∂j
]
3×3

]
6×6

+

[
−ρ0(x)τ2I3

[
κ(x)εijk∂j

]
3×3[

κ(x)εijk∂j
]
3×3

−
(
I0(x)τ

2 + 2κ(x)
)
I3

]
6×6

.

Consider the analogous representation of the formally adjoint differential operator M∗,

M∗(x, ∂x, τ) =M (0)(x, ∂x) +R∗(x, ∂x, τ),

where R∗ is the operator, conjugate to R.
Note that

∂2

∂xk ∂xj

1

|x− y|
= −4π δkj

3
δ(x− y) + v.p.

∂2

∂xk ∂xj

1

|x− y|
, (2.17)

where δ( · ) is the Dirac distribution, the left-hand side in (2.17) is also understood in the distributional
sense, while the second summand in the right-hand side is a Cauchy-integrable function. Therefore,
in view of (2.10) and taking into account the fact that χ(0) = 1, we can write the following equality
in the distributional sense:

M∗(x, ∂x, τ)P (x− y) =M (0)(x, ∂x)P (x− y) +R∗(x, ∂x, τ)P (x− y)

=

[M (0)
ij (x, ∂x)F∆(x− y)

]
3×3

[0]3×3

[0]3×3 [N
(0)
ij (x, ∂x)F∆(x− y)]3×3


6×6

+R∗(x, ∂x, τ)P (x− y) +R(x, y), (2.18)

where

M
(0)
ij (x, ∂x) := δij

(
µ(x) + κ(x)

)
∆+

(
λ(x) + µ(x)

)
∂i∂j ,

N
(0)
ij (x, ∂x) := δijγ(x)∆ +

(
α(x) + β(x)

)
∂i∂j , i, j = 1, 2, 3,

R(x, y) :=

[[
M

(0)
ij (x, ∂x)

(
P∆(x− y)− F∆(x− y)

)]
3×3

[0]3×3

[0]3×3 [N
(0)
ij (x, ∂x)

(
P∆(x− y)− F∆(x− y)

)
]3×3

]
6×6

.

From equality (2.17), we have the following equalities:

M
(0)
ij (x, ∂x)F∆(x− y) =

(
(δij (µ(x) + κ(x))∆ + (λ(x) + µ(x)) ∂i∂j

)
F∆(x− y)

= δij (µ(x) + κ(x)) δ(x− y) + (λ(x) + µ(x))
δij
3
δ(x− y) + (λ(x) + µ(x)) v.p. ∂i∂jF∆(x− y)

= δij
1

3
(λ(x) + 4µ(x) + 3κ(x)) δ(x− y) + (λ(x) + µ(x)) v.p. ∂i∂jF∆(x− y), (2.19)

and

N
(0)
ij (x, ∂x)(F∆(x− y) =

(
δij (γ(x))∆ + (α(x) + β(x)) ∂i∂j

)
F∆(x− y)

= δij γ(x) δ(x− y) + (α(x) + β(x))
δij
3
δ(x− y) + (α(x) + β(x)) v.p. ∂i∂jF∆(x− y)

= δij
1

3
(3γ(x) + α(x) + β(x)) δ(x− y) + (α(x) + β(x)) v.p. ∂i∂jF∆(x− y). (2.20)

Applying the obtained equations (2.19) and (2.20) to equation (2.18), we get

M∗ (x, ∂x, τ) P (x− y) = a(x) δ(x− y) + v.p. [M∗ (x, ∂x, τ)P (x− y)],
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where

a(x) :=

(
1
3

(
λ(x) + 4µ(x) + 3κ(x)

)
I3 [0]3×3

[0]3×3
1
3

(
3γ(x) + α(x) + β(x)

)
I3

)
6×6

, (2.21)

and

v.p. [M∗ (x, ∂x, τ)P (x− y)]

=

v.p.
[
M

(0)
ij (x, ∂x)F∆(x− y)

]
3×3

[0]3×3

[0]3×3 v.p.
[
N

(0)
ij (x, ∂x)F∆(x− y)

]
3×3


6×6

+R(1)(x, y),

which can be rewritten as follows:

v.p. [M∗ (x, ∂x, τ)P (x− y)]

=

v.p.
[
M

(0)
ij (y, ∂x)F∆(x− y)

]
3×3

[0]3×3

[0]3×3 v.p.
[
N

(0)
ij (y, ∂x)F∆(x− y)

]
3×3


6×6

+R(2)(x, y), (2.22)

where F∆(x− y) = − 1
4π|x−y| is the fundamental solution of Laplace equations, and

R(1)(x, y) := R∗(x, ∂x, τ)P (x− y) +R(x, y),

R(2)(x, y) := R(1)(x, y) +
[
M (0)(x, ∂x)−M (0)(y, ∂x)

]
F∆(x− y).

It is clear that R(x, y), R(1)(x, y) and R(2)(x, y) have weak singularities O(|x− y|−2), as x→ y.

Let us denote by
o

E zero the extension operator from Ω into Ω−. From (2.13) and (2.14), it follows
that

(NU)(y) = (

.

N
o

E U)(y) for y ∈ Ω, U ∈ Hr(Ω), r ≥ 0.

The notation N can be expanded for smaller r as follows:

(NU)(y) := (NẼrU)(y) for y ∈ Ω, U ∈ Hr(Ω), −1/2 < r < 1/2,

where Ẽr : Hr(Ω) → H̃r(Ω) is the extension operator defined uniquely when −1/2 < r < 1/2
(see [23, Theorem 2.16]).

It follows from (2.21) (see [26], [2, Theorem 8.6.1]) that if χ ∈ Xk for integer k ≥ 2, then the
operators

rΩN = rΩN
o

E : Hr(Ω) → Hr(Ω), 0 ≤ r,

rΩN = rΩNẼ
r : Hr(Ω) → Hr(Ω), −1/2 < r < 1/2,

are bounded, since the principal homogeneous symbol of N is rational (see (4.3) in Section 4) and the
operators with the kernel functions R(x, y) or R(1)(x, y), R(2)(x, y) map Hr(Ω) into Hr+1(Ω) . Here
and throughout the paper, rΩ denotes the restriction operator to Ω.

Further, by direct calculations one can easily verify that

lim
ε→0

∫
S(y,ε)

P (x− y) T (x, ∂x)U(x) dxS = 0, (2.23)

lim
ε→0

∫
S(y,ε)

{T (x, ∂x)P (x− y)}U(x)dxS

=


[
λ(y)+µ(y)

4π

∫
Σ1

ηjηidΣ1 +
µ(y)+κ(y)

4π

∫
Σ1

ηkηkdΣ1δij

]
3×3

[0]3×3

[0]3×3

[
α(y)+β(y)

4π

∫
Σ1

ηjηidΣ1 +
γ(y)
4π

∫
Σ1

ηkηkdΣ1δij

]
3×3


6×6

U(y)
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=

[[
λ(y)+µ(y)

4π

4πδij
3

+
µ(y)+κ(y)

4π
4πδij

]
3×3

[0]3×3

[0]3×3

[
α(y)+β(y)

4π

4πδij
3

+
γ(y)
4π

4πδij

]
3×3

]
6×6

U(y) = a(y)U(y), (2.24)

where Σ1 is a unit sphere, η = (η1, η2, η3) ∈ Σ1, a is defined by (2.21) and i, j = 1, 2, 3.
Passing to the limit in (2.13) as ε→ 0 and using relations (2.14), (2.23) and (2.24), we obtain

a(y)U(y) +N U(y)− V (T+U)(y) +W (γ+U)(y) = P
(
MU

)
(y), y ∈ Ω, (2.25)

where N is a localized singular integral operator given by (2.14), while V , W and P are, respectively,
the localized vector single layer, double layer and Newtonian volume potentials,

V g(y) :=−
∫
S

P (x− y) g(x) dxS, (2.26)

Wg(y) :=−
∫
S

[
T (x, ∂x)P (x− y)

]
g(x) dxS, (2.27)

Ph(y) :=
∫
Ω

P (x− y)h(x) dx. (2.28)

Here, the densities g and h are the six-dimensional vector-functions. Introducing the localised scalar
Newtonian volume potential

P∆h0(y) :=

∫
Ω

P∆(x− y)h0(x) dx (2.29)

with h0 being a scalar density function, we evidently obtain

[Ph(y)]p = P∆hp(y), p = 1, 6,

for any vector function h = (h1, . . . , h6)
⊤.

We will need the localised vector Newtonian volume potential similar to (2.28), but with integration
over the whole space R3,

Ph(y) :=

∫
R3

P (x− y)h(x) dx. (2.30)

The mapping properties of potentials (2.26)–(2.30) have been investigated in [7, 12] and given in
Appendix B.

We refer to relation (2.25) as Green’s third identity. Due to the density of D(Ω) in H1, 0(Ω;M)
(see [25, Theorem 3.12]) and the mapping properties of the potentials, Green’s third identity (2.25) is
valid also for u ∈ H1, 0(Ω;M). In this case, the co-normal derivative T+U is understood in the sense
of definition (2.9). In particular, (2.25) holds true for the solutions of the above-formulated Dirichlet
BVP (2.5)–(2.6).

On the other hand, applying the first Green’s identity (2.9) on Ωε to U ∈ H1(Ω) and to P (x− y)
as U ′(x), and taking the limit as ε→ 0, one can easily derive another, more general, form of the third
Green’s identity,

a(y)U(y) +N U(y) +W (γ+U)(y) = QU(y), ∀ y ∈ Ω, (2.31)

where for the i-th component of the vector Qu(y), we have

[QU(y)]i := −
∫
Ω

[
(µ(x) + κ(x)) ∂jP∆(x− y)∂jui(x) + τ2ρ0(x)P∆(x− y)ui(x)

+ λ(x)∂iP∆(x− y)∂juj(x) + µ(x)∂jP∆(x− y)∂iuj(x) + κ(x)εijk∂jP∆(x− y)ϕk(x)
]
dx, i = 1, 2, 3,

[QU(y)]i+3 := −
∫
Ω

]
γ(x)∂jP∆(x− y)∂jϕi (x) + (2κ(x) + τ2I0(x))P∆(x− y)ϕi (x)

+ α(x)∂iP∆(x− y)∂jϕj (x) + β(x)∂jP∆(x− y)∂iϕj (x) + κ(x)εkjiP∆(x− y)∂juk(x)
]
dx, i = 1, 2, 3,



374 O. CHKADUA AND A. EDIBERIDZE

whence we obtain

[QU(y)]i = ∂jP∆ ((µ+ κ)∂jui) (y)− τ2P∆ (ρ ui) (y) + ∂iP∆ (λ∂juj) (y)

+ ∂jP∆ (µ∂iuj) (y) + εijk∂jP∆ (κ ϕk) (y), i = 1, 2, 3, ∀y ∈ Ω

[QU(y)]i+3 = ∂jP∆ (γ ∂jϕi) (y)− 2P∆ (κ ϕi) (y)− τ2P∆ (I0 ϕi) (y)

+ ∂iP∆ (α∂jϕj) (y) + ∂jP∆ (β ∂iϕj) (y)− εkjiP∆ (κ ∂juk) (y), i = 1, 2, 3, ∀y ∈ Ω.

Using the properties of localized potentials described in Appendix B (see Theorems B.1 and B.4)
and taking the trace of equation (2.25) on S, for U ∈ H1, 0(Ω+;M), we arrive at the relation

N+U − V(T+U) + (a− b) γ+U +W(γ+U) = P+
(
MU

)
on S, (2.32)

where the localized boundary integral operators V and W generated by the localized single and double
layer potentials are defined in (B.1) and (B.2), the matrix b is defined in Theorem B.4, while

N+ := γ+N , P+ := γ+P.
Now, we prove the following technical

Lemma 2.2. Let χ ∈ X3, f ∈ H0(Ω), F ∈ H1,0(Ω,∆), ψ ∈ H− 1
2 (S) and φ ∈ H

1
2 (S). Moreover, let

U ∈ H1(Ω) and the following equation

a(y)U(y) +NU(y)− V ψ(y) +Wφ(y) = F (y) + Pf(y), y ∈ Ω (2.33)

hold. Then U ∈ H1,0(Ω,M).

Proof. Note that by Theorem B.1, Pf ∈ H2(Ω) for arbitrary f ∈ H0(Ω), while by Theorem B.2, the

inclusions V ψ,Wφ ∈ H1,0(Ω,∆) hold for arbitrary ψ ∈ H− 1
2 (S) and φ ∈ H

1
2 (S). In view of relations

(2.31)–(2.33), equation (2.33) can be rewritten component-wise as

∂jP∆ ((µ+ κ)∂jui) (y)− τ2P∆ (ρ ui) (y) + ∂iP∆ (λ∂juj) (y) + ∂jP∆ (µ∂iuj) (y)

+ εijk∂jP∆ (κ ϕk) (y) = Fi(y) + P∆fi (y) + [V ψ(y)]i −
[
W

(
φ− {U}+

)
(y)

]
i
, y ∈ Ω i = 1, 3,

∂jP∆ (γ ∂jϕi) (y)− 2P∆ (κ ϕi) (y)− τ2P∆ (I0 ϕi) (y)

+ ∂iP∆ (α∂jϕj) (y) + ∂jP∆ (β ∂iϕj) (y)− εkjiP∆ (κ ∂juk) (y)

= Fi+3(y) + P∆fi+3 (y) + [V ψ(y)]i+3 −
[
W

(
φ− {U}+

)
(y)

]
i+3

, y ∈ Ω i = 1, 3.

Due to Theorems B.1 and B.2, it follows that the right-hand side functions in the above equalities
belong to the space

H1,0(Ω,∆) := {v ∈ H1(Ω) : ∆v ∈ H0(Ω)},
since γ+U ∈ H

1
2 (S). We have

∆x P∆(x− y) = δ(x− y) +R∆(x− y), (2.34)

where

R∆(x− y) := − 1

4π

{∆χ(x− y)

|x− y|
+ 2

∂ χ(x− y)

∂xl

∂

∂xl

1

|x− y|

}
. (2.35)

Clearly, R∆(x − y) = O(|x − y|−2) as x → y and by (2.34) and (2.35), one can establish that for an
arbitrary scalar test function ϕ ∈ D(Ω), the relation (see, e.g., [27])

∆P∆ϕ(y) = ϕ(y) +R∆ϕ(y), y ∈ Ω (2.36)

holds, where

R∆ϕ(y) :=

∫
Ω

R∆(x− y)ϕ(x) dx. (2.37)

Evidently, (2.36) remains true also for ϕ ∈ H0(Ω), since D(Ω) is dense in H0(Ω). It is easy to see
that (see [7])

R∆ : H0(Ω) → H1(Ω) . (2.38)

Consequently,

∂j [∆ yP∆ ((µ+ κ)∂jui) (y)]− τ2∆y P∆ (ρ ui) (y) + ∂i[∆yP∆ (λ∂juj) (y)] + ∂j [∆yP∆ (µ∂iuj) (y)]
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+εijk∆y∂jP∆ (κϕk) (y) = ∂j ((µ+ κ)∂jui) (y) + ∂j [R∆ ((µ+ κ)∂jui) (y)]− τ2 (ρui) (y)

−τ2R∆ (ρui) (y) + ∂i (λ∂juj) (y) + ∂iR∆ (λ∂juj) (y) + ∂j (µ∂iuj) (y) + ∂jR∆ (µ∂iuj) (y)

+εijk∂j (κ ϕk) (y) + εijk∂jR∆ (κ ϕk) (y) = [MU ]i + ∂j [R∆ ((µ+ κ)∂jui) (y)]
−τ2R∆ (ρ ui) (y) + ∂jR∆ (λ∂iui) (y) + ∂iR∆ (µ∂jui) (y) + εijk∂j (κ ϕk) (y)

+εijk∂jR∆ (κ ϕk) (y) = [MU(y)]i +
[
R

(1)
∆ U (y)

]
i
, ∀y ∈ Ω, i = 1, 2, 3, (2.39)

and

∂j∆yP∆ (γ ∂jϕi) (y)− 2∆yP∆ (κ ϕi) (y)− τ2∆yP∆ (I0 ϕi) (y)

∂i∆yP∆ (α∂jϕj) (y) + ∂j∆yP∆ (β ∂iϕj) (y)− εkji∆yP∆ (κ ∂juk) (y) ] = ∂j (γ ∂jϕi) (y)

+∂jR∆ (γ ∂jϕi) (y)− 2 (κ ϕi) (y)− τ2 (I0 ϕi) (y)− 2R∆ (κ ϕi) (y)− τ2R∆ (I0 ϕi) (y)

+∂i (α∂jϕj) (y) + ∂iR∆ (α∂jϕj) (y) + ∂j (β ∂iϕj) (y) + ∂jR∆ (β ∂iϕj) (y)− εijk (κ ∂juk) (y)
−εijkR∆ (κ ∂juk) (y) = [MU(y)]i+3 + ∂jR∆ (γ ∂jϕi) (y) − 2R∆ (κ ϕi) (y)− τ2R∆ (I0 ϕi) (y)

+ ∂j (α∂iϕi) (y) + ∂jR∆ (α∂iϕi) (y) + ∂i (β ∂jϕi) (y) + ∂iR∆ (β ∂jϕi) (y) − εkji (κ ∂juk) (y)

−εkji∆yR∆ (κ ∂juk) (y) = [M(y)]i+3 +
[
R

(1)
∆ U (y)

]
i+3

, ∀y ∈ Ω i = 1, 2, 3. (2.40)

Evidently, R(1)
∆ U ∈ H0(Ω), whence the embedding MU ∈ H0(Ω) follows from (2.39), (2.40) due

to (2.37). □

Actually, the continuity of the operator in (2.38) and identities (2.40), (2.39) in the proof of
Lemma 2.2 imply by (2.31) the following assertion.

Corollary 2.3. If χ ∈ X3, then the operator

a+N : H1,0(Ω,M) → H1,0(Ω,∆)

is bounded.

Remark 2.4. Note that the localized parametrix can be determined by the scalar fundamental
solution of the Helmholtz operator ∆− τ2, τ = σ + iω, σ > σ0 > 0, ω ∈ R, i.e.,

P (x) = −χ(x)e
−τ |x|

4π|x|
.

3. LBDIE, Formulation of the Dirichlet Problem, and the Equivalence Theorem

Let U ∈ H1,0(Ω,M) be a solution to the Dirichlet BVP (2.5)–(2.6) with φ
0

∈ H
1
2 (S) and

f ∈ H0(Ω). As we have derived above, relations (2.25) and (2.32) hold and now can be rewritten in
the form

(a+N )U − V ψ = Pf −Wφ
0

in Ω, (3.1)

N+U − Vψ = P+f − (a− b)φ
0
−Wφ

0
on S, (3.2)

where ψ := T+U ∈ H− 1
2 (S) and b is defined in Theorem B.4. One can consider these relations as the

LBDIE system with respect to the unknown vector-functions U and ψ. Now, we prove the following
equivalence theorem.

Theorem 3.1. Let χ ∈ X3
+, φ0 ∈ H

1
2 (S) and f ∈ H0(Ω).

(i) If a vector-function U ∈ H1, 0(Ω,M) solves the Dirichlet BVP (2.5)–(2.6), then the solution is

unique and the pair (U,ψ) ∈ H1, 0(Ω,M)×H− 1
2 (S) with

ψ = T+U , (3.3)

solves the LBDIE system (3.1)–(3.2).

(ii) Vice versa, if the pair (U,ψ) ∈ H1, 0(Ω,M) × H− 1
2 (S) solves the LBDIE system (3.1)–(3.2),

then the solution is unique, the vector-function U solves the Dirichlet BVP (2.5)–(2.6), and relation
(3.3) holds.
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Proof. (i) The first part of the theorem is trivial and folows directly from relations (2.25), (2.32), (3.3)
and Remark 2.1.

(ii) Now, let the pair (U,ψ) ∈ H1, 0(Ω,M)×H− 1
2 (S) solve the LBDIE system (3.1)–(3.2). Taking

the trace of (3.1) on S and comparing it with (3.2), we get

γ+U = φ0 on S. (3.4)

Further, since U ∈ H1, 0(Ω,M), in view of (3.4), the Green’s third identity (2.25) can be rewritten as

(a+N )U − V (T+U) = P
(
MU

)
−Wφ0 in Ω. (3.5)

From (3.1) and (3.5), it follows that

V (T+U − ψ) + P
(
MU − f

)
= 0 in Ω,

whence by Lemma 6.3 in [7], we have

MU = f in Ω and T+U = ψ on S.

Thus U solves the Dirichlet BVP (2.5)–(2.6) and equation (3.3) holds.

The uniqueness of a solution to the LBDIE system (3.1)–(3.2) in the space H1, 0(Ω,M)×H− 1
2 (S)

follows directly from the above-proven equivalence result and the uniqueness theorem for the Dirichlet
problem (2.5)–(2.6) (see Remark 2.1). □

4. Symbols and Invertibility of a Domain Operator in a Half-space

In what follows, in our analysis, we need the explicit expression of the principal homogeneous
symbol matrix S(N )(y, ξ) of the singular integral operator N which due to (2.14), (2.15) and (2.16)
reads as

S(N )(y, ξ) = S(N)(y, ξ) =

(
S(N1)(y, ξ) 0

0 S(N2)(y, ξ)

)
6×6

,

where

S(N1)(y, ξ) = − 1

4π

[
Fz→ξ

(
v.p.δij(µ(y) + κ(y))∆

1

|z|
+ v.p.(λ(y) + µ(y))

∂2

∂zi∂zj

1

|z|

)]
3×3

=− 1

4π

[
v.p.(λ(y) + µ(y))Fz→ξ

∂2

∂zi∂zj

1

|z|

]
3×3

=− 1

4π

[
(λ(y)+µ(y))Fz→ξ

(4πδij
3

δ(z) +
∂2

∂zi∂zj

1

|z|

)]
3×3

=
[
− 1

3
(λ(y) + µ(y))δij −

1

4π
(λ(y) + µ(y))(−iξi)(−iξj)Fz→ξ

1

|z|

]
3×3

=
[
− 1

3
(λ(y) + µ(y))δij +

(λ(y) + µ(y))ξi ξj
|ξ|2

]
3×3

=
[
− (µ(y) + κ(y))δij −

1

3
(λ(y) + µ(y))δij +

δij(µ(y) + κ(y))|ξ|2 + (λ(y) + µ(y))ξi ξj
|ξ|2

]
3×3

= −a1(y) +
M1(y, ξ)

|ξ|2
,

M1(y, ξ) =
[
µ(y) + κ(y))|ξ|2δij + (λ(y) + µ(y))ξi ξj

]
3×3

,

a1(y) =
1

3
(λ(y) + 4µ(y) + 3κ(y)) I3,

and

S(N2)(y, ξ) = − 1

4π

[
Fz→ξ

(
v.p.δijγ(y)∆

1

|z|
+ (α(y) + β(y))

∂2

∂zi∂zj

1

|z|

)]
3×3

=− 1

4π

[
(α(y) + β(y))Fz→ξv.p.

∂2

∂zi∂zj

1

|z|

]
3×3

=− 1

4π

[
(α(y) + β(y))Fz→ξ

(4πδij
3

δ(z)+
∂2

∂zi∂zj

1

|z|

)]
3×3

=
[
− 1

3
(α(y) + β(y))δij −

1

4π
(α(y) + β(y))(−iξi)(−iξj)Fz→ξ

1

|z|

]
3×3
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= −1

3
(α(y) + β(y))δij +

(α(y) + β(y))ξi ξj
|ξ|2

=
[
− γ(y)δij −

1

3
(α(y) + β(y))δij +

δijγ(y)|ξ|2 + (α(y) + β(y))ξi ξj
|ξ|2

]
3×3

= −a2(y) +
M2(y, ξ)

|ξ|2
,

M2(y, ξ) =
[
δijγ(y)|ξ|2 + (α(y) + β(y))ξi ξj

]
3×3

,

a2(y) =
1

3
(α(y) + β(y) + 3γ(y)) I3.

From the above expressions, we obtain

S(N )(y, ξ) = S(N)(y, ξ) =

(
S(N1)(y, ξ) 0

0 S(N2)(y, ξ)

)
6×6

= −a(y) +
1

|ξ|2

(
M1(y, ξ) [0]3×3

[0]3×3 M2(y, ξ)

)
6×6

= −a(y) +
M(y, ξ)

|ξ|2
, y ∈ Ω, ξ ∈ R3, (4.1)

where

M(y, ξ) :=

(
M1(y, ξ) [0]3×3

[0]3×3 M2(y, ξ)

)
6×6

, a(y) :=

(
a1(y) [0]3×3

[0]3×3 a2(y)

)
6×6

,

and the Fourier transform operator F is defined as

Fg(ξ) = Fz→ξ[g(z)] =

∫
R3

g(z) ei z·ξ dz.

Here, we have applied Fz→ξ[(4π|z|)−1] = |ξ|−2 (see, e.g., [17]).
As we see, the entries of the principal homogeneous symbol matrix S(N )(y, ξ) of the operator

N are the even rational homogeneous functions in ξ of order 0. It can easily be verified that both
the characteristic function of the singular kernel in (2.22) and the symbol (4.1) satisfy the Tricomi
condition, i.e., their integral averages over the unit sphere vanish (cf., [27]).

Relation (4.1) implies that the principal homogeneous symbols of the singular integral operators N
and a+N read as

S(N)(y, ξ) = |ξ|−2M(y, ξ)− a ∀y ∈ Ω, ∀ ξ ∈ R3 \ {0},
S(a+N)(y, ξ) = |ξ|−2M(y, ξ) ∀ y ∈ Ω, ∀ ξ ∈ R3 \ {0}. (4.2)

Due to (2.3), the symbol matrix (4.2) is positive definite,

[S(a+N)(y, ξ) ζ] · ζ̄ = |ξ|−2 ζ̄ ·M(y, ξ) ζ ≥ c1 |ζ|2 ∀ y ∈ Ω, ∀ ξ ∈ R3 \ {0}, ∀ ζ ∈ C6,

where c1 is the same positive constant.
Denote

B := a+N.

By (4.2), the principal homogeneous symbol matrix of the operator B reads as

S(B)(y, ξ) = |ξ|−2M(y, ξ) for y ∈ Ω, ξ ∈ R3 \ {0}, (4.3)

is an even rational homogeneous matrix-function of order 0 in ξ and due to (2.3), it is positive definite,

[S(B)(y, ξ)ζ] · ζ̄ ≥ c1 |ζ|2 for all y ∈ Ω, ξ ∈ R3 \ {0} and ζ ∈ C6.

Consequently, B is a strongly elliptic pseudodifferential operator of zero order (i.e., the Cauchy-type
singular integral operator) and the partial indices of factorization of symbol (4.3) are equal to zero
(cf., [3, 5, 30]).

In our further analysis, we need some auxiliary assertions. To formulate them, let ỹ ∈ S = ∂Ω be
some fixed point and consider the frozen symbol S(B)(ỹ, ξ) ≡ S(B)(ξ) of the operator B written in
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the chosen local co-ordinate system. Further, let B̂ denote the pseudodifferential operator with the
symbol

Ŝ(B)(ξ
′
, ξ3) := S(B)

(
(1 + |ξ

′
|)ω, ξ3

)
, where ω =

ξ
′

|ξ ′ |
, ξ = (ξ′, ξ3), ξ′ = (ξ1, ξ2).

Then the frozen principal homogeneous symbol matrix S(B)(ξ) is likewise the principal homoge-

neous symbol matrix of the operator B̂. It can be factorized with respect to the variable ξ3 as

S(B)(ξ) = S
(−)

(B)(ξ) S
(+)

(B)(ξ),

where

S
(±)

(B)(ξ) =
1

Θ(±)(ξ′ , ξ3)
M

(±)

(ξ
′
, ξ3).

Here, Θ
(±)

(ξ
′
, ξ3) := ξ3 ± i|ξ′ | are the “plus” and “minus” factors of the symbol Θ(ξ) := |ξ|2, and

M
(±)

(ξ
′
, ξ3) are the “plus” and “minus” polynomial matrix factors of the first order in ξ3 of the positive

definite polynomial symbol matrix M(ξ
′
, ξ3) ≡ M(y, ξ

′
, ξ3) corresponding to the frozen differential

operator M(y, ∂x) at the point y ∈ S (see [14–16]), i.e.,

M(ξ
′
, ξ3) =M

(−)

(ξ
′
, ξ3) M

(+)

(ξ
′
, ξ3) (4.4)

with detM
(+)

(ξ′, τ) ̸= 0 for Im τ > 0 and detM
(−)

(ξ′, τ) ̸= 0 for Im τ < 0. Moreover, the entries of

the matrices M
(±)

(ξ
′
, ξ3) are the homogeneous functions in ξ = (ξ′, ξ3) of order 1.

Denote by a
(±)

(ξ′) the coefficients at ξ63 in the determinants detM
(±)

(ξ′, ξ3). Evidently,

a
(−)

(ξ′) a
(+)

(ξ′) = det M(0, 0, 1) > 0 for ξ′ ̸= 0. (4.5)

It is easy to see that the factor-matrices M
(±)

(ξ′, ξ3) have the following structure([
M

(±)

(ξ′, ξ3)
]−1

)
ij
=

1

detM (±)(ξ′, ξ3)
p

(±)

ij
(ξ′, ξ3), i, j = 1, 6,

where p
(±)

ij
(ξ′, ξ3) are the co-factors of the matrix M

(±)

(ξ′, ξ3) which can be written in the form

p
(±)

ij
(ξ′, ξ3) =

5∑
k=0

c
(±),k

ij
(ξ′) ξ5−k

3 . (4.6)

Here, c
(±),k

ij
, k = 0, 5, i, j = 1, 6 are the homogeneous functions of order k with respect to ξ′.

From the above-said it follows that the entries of the factor-symbol matrices b
(±)

kj (ω, r, ξ3) :=

S
(±)

kj (B)(ξ′, ξ3), k, j = 1, 2, 3, with ω = ξ′/|ξ′| and r = |ξ′|, satisfy the following relations:

∂lb
(±)

kj (ω, 0,−1)

∂rl
= (−1)l

∂lb
(±)

kj (ω, 0,+1)

∂rl
, l = 0, 1, 2, . . . .

These relations imply that the entries of the matrices S
(±)

(B)(ξ′, ξ3) belong to the class of symbols
D0 introduced in [17, Ch. III, §10]

S
(±)

(B)(ξ′, ξ3) ∈ D0.

Denote by Π± the Cauchy type integral operators

Π±h(ξ) := ± i

2π
lim

t→0+

+∞∫
−∞

h(ξ′, η3) dη3
ξ3 ± i t− η3

,

which are well defined at any ξ ∈ R3 for a bounded smooth function h(ξ′, ·) satisfying the relation
h(ξ′, η3) = O(1 + |η3|)−κ with some κ > 0.

Let E̊+ be the extension by zero operator from R3
+ onto the whole space R3 and let

r+ := r
R3
+

: Hs(R3) → Hs(R3
+) be the restriction operator to the half-space R3

+. First, we prove

the following assertion.
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Lemma 4.1. Let s ≥ 0 and χ ∈ Xk
+ with integer k ≥ 2. The operator

r+B̂E̊+ : Hs(R3
+) → Hs(R3

+)

is invertible.
Moreover, for f ∈ Hs(R3

+), the unique solution of the equation

r+B̂E̊+U = f

for U ∈ Hs(R3
+) can be represented in the form U = r+U+, where

U+ = E̊U = F−1
{
[Ŝ

(+)

(B)]−1Π+
(
[Ŝ

(−)

(B)]−1F(f∗)
)}
,

and f∗ ∈ Hs(R3) is an extension of f ∈ Hs(R3
+) (i.e. r+f∗ = f) such that ∥f∗∥Hs(R3) = ∥f∥Hs(R3

+).

Lemma 4.2. Let the factor matrix M
(+)

(ξ′, τ) be as in (4.4), and a
(+)

and let c
(+),0

ij
be as in (4.5)

and (4.6), respectively. Then the following equality

1

2πi

∫
Γ−

[
M

(+)

(ξ′, τ)
]−1

dτ =
1

a(+)(ξ′)
C

(+),0

(ξ′),

holds, where C
(+),0

(ξ′) =
[
c
(+),0

ij
(ξ′)

]6
ij=1

and det [C
(+),0

(ξ′) ] ̸= 0 for ξ′ ̸= 0. Here, Γ− is a contour in

the lower complex half-plane enclosing all the roots of the polynomial detM
(+)

(ξ′, τ) with respect to τ .

Proof. Note that detM
(+)

(ξ′, τ) is a third-order polynomial in τ , while p
(+)

ij
(ξ′, τ) is a second-order

polynomial in τ defined in (4.6).
Let Γ

R
be a circle centred at the origin and having sufficiently large radius R. By the Cauchy

theorem, we then derive

1

2πi

∫
Γ−

{[
M

(+)

(ξ′, τ)
]−1}

ij
dτ =

1

2πi

∫
Γ−

p
(+)

ij
(ξ′, τ)

detM (+)(ξ′, τ)
dτ =

1

2πi

∫
ΓR

p
(+)

ij
(ξ′, τ)

detM (+)(ξ′, τ)
dτ

=
1

2πi

c
(+),0

ij
(ξ′)

a(+)(ξ′)

∫
ΓR

1

τ
dτ +

∫
ΓR

Q
ij
(ξ′, τ) dτ =

c
(+),0

ij
(ξ′)

a(+)(ξ′)
+

∫
ΓR

Q
ij
(ξ′, τ) dτ, (4.7)

where Q
ij
(ξ′, τ) = O(|τ |−2) as |τ | → ∞.

It is clear that

lim
R→∞

∫
ΓR

Q
ij
(ξ′, τ) dτ = 0.

Therefore by passing to the limit in (4.7), as R→ ∞, we obtain

1

2πi

∫
Γ−

{[
M

(+)

(ξ′, τ)
]−1}

ij
dτ =

c
(+),0

ij
(ξ′)

a(+)(ξ′)
.

Now, we show that det[C
(+),0

] ̸= 0. We introduce the notations

P
(+)

(ξ′, ξ3) = [p
(+)

ij
(ξ′, ξ3)]

6
ij=1 =

5∑
k=0

C
(+),k

(ξ′)ξ5−k
3 ,

where

C
(+),k

(ξ′) = [c
(+),k

ij
(ξ′)]6ij=1, k = 0, 5.

Since det[M
(+)

(ξ′, ξ3)]
−1 ̸= 0 for ξ = (ξ′, ξ3) ̸= 0, therefore detP

(+)

(ξ′, ξ3) ̸= 0 for ξ = (ξ′, ξ3) ̸= 0.
Let us introduce new coordinates r = |ξ′|, ω = ξ′/|ξ′| and denote

P
(+)

(ω, r, ξ3) := P
(+)

(ξ′, ξ3) = P
(+)

(ω r, ξ3).
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Then we have

detP
(+)

(ω, r, ξ3) = detP
(+)

(ξ′, ξ3) = det
( 5∑

k=0

C
(+),k

(ω)ξ5−k
3 rk

)
for all ξ3 ̸= 0,

whence

lim
r→0

detP
(+)

(ω, r, ξ3) = ξ303 detC
(+),0

(ω).

Consequently, detC
(+),0

(ω) ̸= 0 and Lemma 4.2 is proved. □

Further, let us introduce an auxiliary operator Π′ defined as

Π′(g)(ξ′) := lim
x3→0+

r
R3
+

F−1
ξ3→x3

[g(ξ′, ξ3)] =
1

2π
lim

x3→0+

+∞∫
−∞

g(ξ′, ξ3)e
−ix3ξ3 dξ3 =

1

2π

+∞∫
−∞

g(ξ′, ξ3) dξ3

for g(ξ′, ·) ∈ L1(R).
The operator Π′ can be extended to the class of functions g(ξ′, ξ3), being rational in ξ3 with

the denominator, not vanishing for real non-zero ξ = (ξ′, ξ3) ∈ R3 \ {0}, homogeneous of order
m ∈ Z := {0,±1,±2, . . . } in ξ and infinitely differentiable with respect to ξ for ξ′ ̸= 0. Then it can
be shown that (see Appendix C in [12] )

Π′(g)(ξ′) = lim
x3→0+

rR+F
−1
ξ3→x3

[g(ξ′, ξ3)] = − 1

2π

∫
Γ−

g(ξ′, ζ) dζ,

where rR+ denotes the restriction operator onto R+ = (0, +∞) with respect to x3, Γ
− is a contour

in the lower complex half-plane in ζ, orientated anticlockwise and enclosing all the poles of the
rational function g(ξ′, ·). It is clear that if g(ξ′, ζ) is holomorphic in ζ in the lower complex half-plane
(Im ζ < 0), then Π′(g)(ξ′) = 0.

5. Invertibility of the Dirichlet LBDIO

From Theorem 3.1, it follows that the LBDIE system (3.1)–(3.2) with a special right-hand side is
uniquely solvable in the space H1, 0(Ω,M) × H−1/2(S). Let us investigate the localized boundary-
domain integral operator, generated by the left-hand side expressions in (3.1)–(3.2), in appropriate
functional spaces.

The LBDIE system (3.1)–(3.2) with arbitrary right-hand side vector-functions from the space
H1(Ω)×H1/2(S) can be written as

BE̊U − V ψ =F1 in Ω, (5.1)

N+E̊U − Vψ =F2 on S, (5.2)

where B = a +N, F1 ∈ H1(Ω) and F2 ∈ H1/2(S). We denote by D the localized boundary-domain
integral operator generated by the left-hand side expressions in LBDIE system (5.1)–(5.2),

D :=

[
rΩBE̊ −rΩV
N+E̊ −V

]
.

We would like to prove the following assertion.

Theorem 5.1. Let the localising function χ ∈ X∞
+ and r > − 1

2 . Then the operator

D : Hr+1(Ω)×Hr−1/2(S) → Hr+1(Ω)×Hr+1/2(S) (5.3)

is invertible.

We reduce the theorem proof to several lemmas.

Lemma 5.2. Let χ ∈ X∞. The operator r
Ω
BE̊ : Hs(Ω) → Hs(Ω) for s ≥ 0 is Fredholm with zero

index.
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Proof. Since (4.3) is a rational function in ξ, we can apply the theory of pseudo-differential operators
with the symbol satisfying the transmission conditions (see [2, 3, 17, 29, 30]). Now, using the local
principle (see Lemma 23.9 in [17]) and Lemma 4.1, we deduce that the operator

B := rΩB E̊ : Hs(Ω) → Hs(Ω)

is Fredholm for all s ≥ 0.
To show that IndB = 0, we use the fact that the operators B and

Bt = r
Ω
(a+ tN)E̊

are homotopic, and t ∈ [0, 1]. Note that B = B1. The principal homogeneous symbol of the operator
Bt has the form

S(Bt)(y, ξ) = a(y) + t S(N)(y, ξ) = (1− t)a(y) + tS(B)(y, ξ).

It is easy to see that the symbol S(Bt)(y, ξ) is positive definite,

[S(Bt)(y, ξ)ζ] · ζ̄ = (1− t)[a(y) ζ] · ζ̄ + t[S(B)(y, ξ)ζ] · ζ̄ ≥ c|ζ|2

for all y ∈ Ω, ξ ̸= 0, ζ ∈ C6 and t ∈ [0, 1], where c is some positive number.
Since S(Bt)(y, ξ) is rational, even and homogeneous of order zero in ξ, we conclude, as above, that

the operator
Bt : Hs(Ω) → Hs(Ω)

is Fredholm for all s ≥ 0 and for all t ∈ [0, 1]. Therefore IndBt is the same for all t ∈ [0, 1]. On the
other hand, due to the equality B0 = r

Ω
I, we get

IndB = IndB1 = IndBt = IndB0 = 0. □

Lemma 5.3. Let χ ∈ X∞. The operator D given by (5.3) is Fredholm.

Proof. To investigate Fredholm properties of the operator D, we apply the local principle (cf., e.g.,
[1, 17], § 19 and § 22). Due to this principle, we have to show first that the operator D is locally
Fredholm at an arbitrary “frozen” interior point ỹ ∈ Ω and, secondly, that the so-called generalized
Šapiro–Lopatinskĭı condition for the operator D holds at an arbitrary “frozen” boundary point ỹ ∈ S.

To obtain the explicit form of this condition, we proceed as follows. Let Ũ be a neighbourhood of a

fixed point ỹ ∈ Ω and let ψ̃0, φ̃0 ∈ D(Ũ) such that

supp ψ̃0 ∩ supp φ̃0 ̸= ∅, ỹ ∈ supp ψ̃0 ∩ supp φ̃0.

Consider the operator ψ̃0D φ̃0 separately in two possible cases: case (1) ỹ ∈ Ω, and case (2) ỹ ∈ S.

Case (1). If ỹ ∈ Ω then we can choose a neighbourhood Ũ such that Ũ ⊂ Ω. Therefore the operator

ψ̃0D φ̃0 has the same Fredholm properties as the operator ψ̃0B φ̃0 (see the similar arguments in the

proof of Theorem 22.1 in [17]). Then by Lemma 5.2, we conclude that ψ̃0D φ̃0 is a locally Fredholm
operator at the interior points of Ω.

Case (2). If ỹ ∈ S, then at this point we have to “froze” the operator ψ̃0 D φ̃0, implying that we

can choose a neighbourhood Ũ sufficiently small such that in the local co-ordinate system with the
origin at the point ỹ and the third axis coinciding with the normal vector at the point ỹ ∈ S, the
following decomposition

ψ̃0D φ̃0 = ψ̃0

(
D̂+ K̃+ T̃

)
φ̃0 (5.4)

holds, where

K̃ : Hr+1(R3
+)×Hr−1/2(R2) → Hr+1(R3

+)×Hr+1/2(R2)

is a bounded operator with a small norm, while

T̃ : Hr+1(R3
+)×Hr−1/2(R2) → Hr+2(R3

+)×Hr+3/2(R2)

is a bounded operator. The operator

D̂ :=

[
r+B̂E̊ −r+V̂

N̂+E̊ −V̂

]
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with r+ = r
R3
+

, is defined in the upper half-space R3
+ and possesses the following mapping property:

̂̃
D : Hr+1(R3

+)×Hr−1/2(R2) → Hr+1(R3
+)×Hr+1/2(R2). (5.5)

The operators appearing in the expression of D̂ are defined as follows: for the operator M, the

operator M̂ denotes the operator in R3 constructed by the symbol

Ŝ(M)(ξ) = S(M)
(
(1 + |ξ′|)ω, ξ3

)
,

where ω = ξ′

|ξ′| , ξ = (ξ′, ξ3), ξ
′ = (ξ1, ξ2).

The generalized Šapiro–Lopatinskĭı condition is related to the invertibility of operator (5.5). Indeed,

let us write the system corresponding to the operator D̂ as

r+B̂E̊Ũ − r+V̂ ψ̃ = F̃1 in R3
+, (5.6)

N̂+E̊Ũ − V̂ψ̃ = F̃2 on R2, (5.7)

where F̃1 ∈ H1(R3
+), F̃2 ∈ H1/2(R2).

Note that the operator r+B̂E̊ is a singular integral operator with an even rational elliptic principal
homogeneous symbol. Then due to Lemma 4.1, the operator

r+B̂E̊ : Hr+1(R3
+) → Hr+1(R3

+)

is invertible. We can determine Ũ from equation (5.6) and write

E̊Ũ = E̊
[
r+B̂E̊

]−1
f̃ = F−1

{[
Ŝ

(+)

(B)
]−1

Π+
([

Ŝ
(−)

(B)
]−1F(f̃∗)

)}
, (5.8)

where f̃∗ = F̃1∗ + V̂ ψ̃ is an extension of f̃ = F̃1 + r+V̂ ψ̃ from R3
+ to R3 preserving the function

space. The symbols Ŝ
(±)

(M) denote the so-called “plus” and “minus” factors in the factorization of

the symbol Ŝ(M) with respect to the variable ξ3. Note that the function E̊ũ in (5.8) does not depend

on the chosen extension f̃∗ of f̃ .
Substituting (5.8) into (5.7), we obtain the following pseudo-differential equation with respect to

the unknown function ψ̃:̂̃
N+F−1

{[
Ŝ

(+)

(B̃)]−1 Π+
([

Ŝ
(−)

(B̃)
]−1F(

̂̃
V ψ̃)

)}
− ̂̃Vψ̃ = F̃ | on R2, (5.9)

where
F̃ = F̃2 − N̂+E̊

[
r+B̂E̊

]−1
F̃1.

It is easy to see that

N+ v (ỹ ′) =
[
F−1

ξ→ỹ

[
S(N)(ξ) F(v)(ξ)

]]
ỹ
3
=0+

= F−1
ξ ′→ỹ ′

[
Π′[S(N) F(v)

]
(ξ′)

]
.

In view of the relation (see, e.g., [13, Eq. (4.1)], [12, Eqs. (B.5), (B.6)])

V ψ̃(y) = −⟨γP (· − y), ψ̃⟩S = −⟨P (· − y), γ∗ψ̃⟩R3 = −P(γ∗ψ̃)(y),

the operator γ∗ is dual to the trace operator γ. When the surface S coincides with R2 = ∂R3
+, we

have γ∗ψ̃ = ψ̃(ỹ′)⊗ δ3 with δ3, being the one-dimensional Dirac distribution in the ỹ3 direction. Thus
we arrive at the equality

N̂+F−1
ξ→x̃

{[
Ŝ

(+)

(B)(ξ)
]−1

Π+
([

Ŝ
(−)

(B)
]−1F(V̂ ψ̃)

)
(ξ)

}
(ỹ ′)

= −F−1
ξ′→ỹ ′

{
Π′

[
Ŝ(N)

[
Ŝ

(+)

(B)
]−1

Π+
([

Ŝ
(−)

(B)
]−1

Ŝ(P)
)]

(ξ′)Fx̃ ′→ξ′ ψ̃
}
.

Using these relations, equation (5.9) can be rewritten in the form

F−1
ξ′→ỹ′

[
ê (ξ′)F(ψ̃)(ξ′)

]
= F̃ (ỹ ′) on R2, (5.10)

where

ê(ξ′) = e
(
(1 + |ξ′|)ω

)
, ω =

ξ′

|ξ′|
,
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with e, being a homogeneous function of order −1 given by the equality

e(ξ′)=−Π ′
{
S(N)

[
S

(+)

(B)
]−1

Π+
([

S
(−)

(B)
]−1

S(P)
)}

(ξ′)−S(V)(ξ′), ∀ ξ′ ̸= 0. (5.11)

If the function det e(ξ′) is other than zero for all ξ′ ̸= 0, then det ê(ξ′) ̸= 0 for all ξ′ ∈ R2, and the
corresponding pseudo-differential operator

Ê : Hs(R) → Hs+1(R) for all s ∈ R
generated by the left-hand side expression in (5.10) is invertible. In particular, it follows that the

system of equation (5.6)–(5.7) is uniquely solvable with respect to (Ũ , ψ̃) in the space H1(R3
+) ×

H−1/2(R2) for arbitrary right-hand sides (F̃1, F̃2) ∈ H1(R3
+)×H1/2(R2). Consequently, the operator

D̂ in (5.5) is invertible, which implies that operator (5.4) possesses a left and a right regularizer. In
its turn, this implies that operator (5.3) possesses a left and right regularizer, as well. Thus operator
(5.3) is Fredholm if

det e(ξ′) ̸= 0 ∀ ξ′ ̸= 0.

This condition is called the Šapiro–Lopatinskĭı condition (cf., [17], Theorems 12.2 and 23.1, and also
formulas (12.27), (12.25)). Let us show that in our case the Šapiro–Lopatinskĭı condition holds. To
this end let us note that the principal homogeneous symbols S(N), S(B), S(P) and S(V) of the
operators N, B, P and V in the chosen local co-ordinate system appearing in formula (5.11) read as

S(N)(ξ) = |ξ|−2M(ξ)− a, S(B)(ξ) = |ξ|−2M(ξ), S(P)(ξ) = −|ξ|−2 I, S(V)(ξ′) = 1

2|ξ′|
I,

ξ = (ξ′, ξ3), ξ′ = (ξ1, ξ2).

Rewrite (5.11) in the form

e(ξ′) = −Π′{(S(B)− a
)
[S

(+)

(B)]−1Π+
(
[S

(−)

(B)]−1S(P)
)}

(ξ′)−S(V)(ξ′)
= e1(ξ

′) + e2(ξ
′)−S(V)(ξ′), (5.12)

where

e1(ξ
′) = −Π′{S(B)[S

(+)

(B)]−1Π+
(
[S

(−)

(B)]−1S(P)
)}

(ξ′), (5.13)

e2(ξ
′) = aΠ′{[S(+)

(B)]−1Π+
(
[S

(−)

(B)]−1S(P)
)}

(ξ′), (5.14)

S(V)(ξ′) = 1

2|ξ′|
I. (5.15)

Direct calculations result in

Π+
(
[S

(−)

(B)]−1S(P)
)
(ξ′) =

i

2π
lim

t→0+

+∞∫
−∞

(
[S

(−)

(B)]−1S(P)
)
(ξ′, η3) dη3

ξ3 + i t− η3

= − i

2π
lim

t→0+

+∞∫
−∞

[S
(−)

(B)]−1(ξ′, η3) dη3
(ξ3 + i t− η3) (|ξ′|2 + η23)

=
i

2π
lim

t→0+

∫
Γ−

[S
(−)

(B)]−1(ξ′, τ) dτ

(ξ3 + i t− τ) (|ξ′|2 + τ2)

=
i

2π
lim

t→0+

2πi [S
(−)

(B)]−1(ξ′,−i|ξ′|)
(ξ3 + i t+ i|ξ′|) 2 (−i|ξ′|)

= − i [S
(−)

(B)]−1(ξ′,−i|ξ′|)
2 |ξ′|Θ(+)(ξ′ , ξ3)

. (5.16)

Now, from (5.13), by virtue of (5.16), we derive

e1(ξ
′) = −Π′

{
S

(−)

(B)S
(+)

(B)[S
(+)

(B)]−1Π+
(
[S

(−)

(B)]−1S(P)
)}

(ξ′)

= −Π′{S(−)

(B)Π+
(
[S

(−)

(B)]−1S(P)
)}

(ξ′) = Π′
{S

(−)

(B)

Θ(+)

}
(ξ′)

( i [S(−)

(B)]−1(ξ′,−i|ξ′|)
2 |ξ′|

)
= − 1

2 π

∫
Γ−

S
(−)

(B)(ξ′, τ)

τ + i| ξ′|
dτ

( i [S(−)

(B)]−1(ξ′,−i|ξ′|)
2 |ξ′|

)
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= −i S
(−)

(B)(ξ′,−i |ξ′|) i [S
(−)

(B)]−1(ξ′,−i|ξ′|)
2 |ξ′|

=
1

2 |ξ′|
I. (5.17)

Quite similarly, from (5.14), with the help of (5.16), we get

e2(ξ
′) = a Π′{[S(+)

(B)]−1Π+
(
[S

(−)

(B)]−1S(P)
)}

(ξ′) =

− a Π′
{ [S

(+)

(B)]−1

Θ(+)

}
(ξ′)

( i [S(−)

(B)]−1(ξ′,−i|ξ′|)
2 |ξ′|

)
= − ia

2 |ξ′|

(
− 1

2 π

∫
Γ−

[S
(+)

(B)]−1(ξ′, τ)

τ + i| ξ′|
dτ

)
[S

(−)

(B)]−1(ξ′,−i|ξ′|)

=
ia

4π |ξ′|

∫
Γ−

[M
(+)

(ξ′, τ)]−1dτ (−2 i |ξ′|) [M
(−)

(ξ′,−i |ξ′|)]−1

= ia
{ 1

2π i

∫
Γ−

[M
(+)

(ξ′, τ)]−1dτ
}
[M

(−)

(ξ′,−i|ξ′|)]−1.

Therefore due to (5.12), (5.15), (5.17) and Lemma 4.2, we have

e2(ξ
′) =

i

a(+)(ξ′)
aC

(+),0

(ξ′) [M
(−)

(ξ′,−i |ξ′|)]−1,

where deta ̸= 0, detC
(+),0

(ξ′) ̸= 0 and detM
(−)

(ξ′,−i |ξ′|) ̸= 0 for all ξ′ ̸= 0. Then it is clear that

det e(ξ′) = − i(
a(+)(ξ′)

)3 deta detC
(+),0

(ξ′) det[M
(−)

(ξ′,−i |ξ′|)]−1 ̸= 0

for all ξ′ ̸= 0.
Thus we have found that for the operator D, the Šapiro–Lopatinskĭı condition holds. Therefore the

operator

D : Hr+1(Ω)×Hr−1/2(S) → Hr+1(Ω)×Hr+1/2(S)

is Fredholm for r > − 1
2 . □

Lemma 5.4. Let χ ∈ X∞. The operator D given by (5.3) is Fredholm with a zero index.

Proof. For t ∈ [0, 1], let us consider the operator

Dt :=

[
rΩBtE̊ −rΩV
tN+E̊ −V

]
with Bt = a+ tN and establish that it is homotopic to the operator D = D1. We have to check that
for the operator D t, the Šapiro–Lopatinskĭı condition is satisfied for all t ∈ [0, 1]. Indeed, in this case,
the Šapiro–Lopatinskĭı condition reads as

det et(ξ
′) ̸= 0 for all ξ′ ̸= 0,

where (cf. (5.11))

et(ξ
′) = −Π′{(S(Bt)− a

)
[S

(+)

(Bt)]
−1Π+

(
[S

(−)

(Bt)]
−1S(P)

)}
(ξ′)−S(V)(ξ′)

= e
(1)
t (ξ′) + e

(2)
t (ξ′)−S(V)(ξ′) (5.18)

with

e
(1)
t (ξ′) = −Π′{S(Bt)[S

(+)

(Bt)]
−1Π+

(
[S

(−)

(Bt)]
−1S(P)

)}
(ξ′) =

1

2 |ξ′|
I, (5.19)

e
(2)
t (ξ′) = aΠ′{[S(+)

(Bt)]
−1Π+

(
[S

(−)

(Bt)]
−1S(P)

)}
(ξ′),

S(Ṽ)(ξ′) = 1

2|ξ′|
I. (5.20)
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By direct calculations, we get

e
(2)
t (ξ′) = aΠ′

{
[S

(+)

(Bt)]
−1Π+

(
[S

(−)

(Bt)]
−1S(P)

)}
(ξ′)

= −a Π′
{ [S

(+)

(Bt)]
−1

Θ(+)

}
(ξ′)

( i [S(−)

(Bt)]
−1(ξ′,−i|ξ′|)

2 |ξ′|

)

= − ia

2 |ξ′|

(
− 1

2 π

∫
Γ−

[S
(+)

(Bt)]
−1(ξ′, τ)

τ + i| ξ′|
dτ

)
[S−(Bt)]

−1(ξ′,−i|ξ′|)

=
ia

4π |ξ′|

∫
Γ−

[M
(+)

t (ξ′, τ)]−1dτ (−2 i |ξ′|) [M
(−)

t (ξ′,−i |ξ′|)]−1

= ia

{
1

2π i

∫
Γ−

[M
(+)

t (ξ′, τ)]−1dτ

}
[M

(−)

t (ξ′,−i |ξ′|)]−1, (5.21)

where Mt(ξ) = (1 − t) |ξ|2 a + tM(ξ), Mt(ξ
′, ξ3) = M

(−)

t (ξ′, ξ3)M
(+)

t (ξ′, ξ3) and M
(±)

t (ξ′, ξ3) are the
“plus” and “minus” polynomial matrix factors in ξ3 of the polynomial symbol matrix Mt(ξ

′, ξ3). Due
to (5.18), (5.19), (5.20), (5.21) and Lemma 4.2, we have

e
(2)
t (ξ′) =

i

a
(+)

t (ξ′)
aC

(+),0

t (ξ′) [M
(−)

t (ξ′,−i |ξ′|)]−1,

where C
(+),0

t (ξ′) =
[
c
(+)

ij,t
(ξ′)

]6
ij=1

and c
(+),0

ij,t
, i, j = 1, 6, are the main coefficients of the co-factors

p
(+)

ij,t
(ξ′, τ) of the polynomial matrix M

(+)

t (ξ′, τ) and a
(+)

is the coefficient at τ3 in the determinant

detM
(+)

t (ξ′, τ). In addition,

deta ̸= 0, detC
(+),0

t (ξ′) ̸= 0, detM
(−)

t (ξ′,−i |ξ′|) ̸= 0

for all ξ′ ̸= 0 and t ∈ [0, 1].
Then it is clear that

det et(ξ
′) = − i(

a+t (ξ
′)
)3 deta detC

(+),0

t (ξ′) det [M
(−)

t (ξ′,−i |ξ′|)]−1 ̸= 0

for all ξ′ ̸= 0 and for all t ∈ [0, 1], which implies that for the operator Dt, the Šapiro–Lopatinskĭı
condition is satisfied.

Therefore the operator

Dt : Hr+1(Ω)×Hr−1/2(S) → Hr+1(Ω)×Hr+1/2(S)

is Fredholm for all r > − 1
2 and for all t ∈ [0, 1]. Consequently,

IndD = IndD1 = IndDt = IndD0 = 0. □

Theorem 5.1 proof. Since the operator D is by Lemma 5.4 Fredholm with zero index, its injectivity
implies the invertibility. Thus it remains to prove that the null space of the operator D is trivial for
r > − 1

2 . Assume that V = (U,ψ)⊤ ∈ Hr+1(Ω)×Hr−1/2(S) is a solution to the homogeneous equation

DV = 0. (5.22)

The operator

D : Hr+1(Ω)×Hr−1/2(S) → Hr+1(Ω)×Hr+1/2(S)

is Fredholm with index zero for all r > − 1
2 . It is well known that there exists a left regularizer L of

the operator D,

L : Hr+1(Ω)×Hr+1/2(S) → Hr+1(Ω)×Hr−1/2(S),

such that

LD = I + T,
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where T is the operator of order −1 (cf., proofs of Theorems 22.1 and 23.1 in [17]), i.e.,

T : Hr+1(Ω)×Hr−1/2(S) → Hr+2(Ω)×Hr+1/2(S). (5.23)

Therefore from (5.22), we have

LDV = V + TV = 0 (5.24)

and from (5.23), we can see that

TV ∈ Hr+2(Ω)×Hr+1/2(S).

Consequently, in view of (5.24),

V = (U,ψ)⊤ ∈ Hr+2(Ω)×Hr+1/2(S). (5.25)

If r ≥ 0, this implies U ∈ H1, 0(Ω,M). If − 1
2 < r < 0, we iterate the above reasoning for V satisfying

(5.25) to obtain

V = (U,ψ)⊤ ∈ Hr+3(Ω)×Hr+3/2(S)

which again implies U ∈ H1, 0(Ω,M). Next, we can apply the equivalence Theorem 3.1 to conclude
that a solution V = (U,ψ)⊤ to the homogeneous equation (5.22) is trivial, i.e.,

U = 0 in Ω, ψ = 0 on S.

Thus KerD = {0} in the class Hr+1(Ω)×Hr−1/2(S) and therefore the operator

D : Hr+1(Ω)×Hr−1/2(S) → Hr+1(Ω)×Hr+1/2(S)

is invertible for all r > − 1
2 .

For localizing function χ of finite smoothness, we have the following result.

Corollary 5.5. Let a localising function χ ∈ X3
+. Then the operator

D : H1(Ω)×H−1/2(S) → H1(Ω)×H1/2(S)

is invertible.

Proof. Can be presented by word for word arguments employed in the proofs of Lemmas 5.2–5.4
and Theorem 5.1, with r = 0, and by using the mapping properties of the localized potentials for a
localizing function of finite smoothness (see Appendix B). □

Relying on Lemma 2.2, Theorem 3.1 and Corollaries 2.3 and 5.5, we have the following assertion.

Corollary 5.6. Let a localising function χ ∈ X3
+. Then the operator

D : H1,0(Ω,M)×H−1/2(S) → H1,0(Ω,∆)×H1/2(S)

is invertible.

Appendix A. Classes of Localising Functions

Here, we present the classes of localizing functions used in the main text (see [7] for details).

Definition A.1. We say χ ∈ Xk for integer k ≥ 0 if χ(x) = χ̆(|x|), χ̆ ∈ W k
1 (0,∞) and

ϱχ̆(ϱ) ∈ L1(0,∞). We say χ ∈ Xk
+ for integer k ≥ 1 if χ ∈ Xk, χ(0) = 1 and σχ(ω) > 0 for all

ω ∈ R, where

σχ(ω) :=


χ̂s(ω)

ω
> 0 for ω ∈ R \ {0},

∞∫
0

ϱχ̆ (ϱ) dϱ for ω = 0,
(A.1)

and χ̂s(ω) denotes the sine-transform of the function χ̆,

χ̂s(ω) :=

∞∫
0

χ̆ (ϱ) sin(ϱω) dϱ. (A.2)
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Evidently, we have the following imbeddings: Xk1 ⊂ Xk2 and Xk1
+ ⊂ Xk2

+ for k1 > k2. The class

Xk
+ is defined in terms of the sine-transform. The following lemma from [7] provides an easily verifiable

sufficient condition for non-negative non-increasing functions to belong to this class.

Lemma A.2. Let k ≥ 1. If χ ∈ Xk, χ̆(0) = 1, χ̆(ϱ) ≥ 0 for all ϱ ∈ (0,∞), and χ̆ is a non-increasing
function on [0,+∞), then χ ∈ Xk

+.

The following (and other) examples for χ are presented in [7],

χ
1k
(x) =


[
1− |x|

ε

]k
for |x| < ε,

0 for |x| ≥ ε,
(A.3)

χ2(x) =

exp
[ |x|2

|x|2 − ε2

]
for |x| < ε,

0 for |x| ≥ ε,

(A.4)

One can observe that χ
1k

∈ Xk
+ for k ≥ 1, while χ

2
∈ X∞

+ , due to Lemma A.2.

Appendix B. Properties of Localized Potentials

Here, we collect some assertions describing the mapping properties of the localized potentials. The
proofs coincide with or are similar to the ones in [7] and [12, Appendix B] (see also [19], Chapter 8
and references therein).

Let us introduce the boundary operators generated by the localized layer potentials associated with
the localized parametrix P (x− y) ≡ Pχ(x− y) :

V g(y) : = −
∫
S

P (x− y) g(x) dSx, y ∈ S, (B.1)

W g(y) : = −
∫
S

[
T (x, ∂x)P (x− y)

]
g(x) dSx, y ∈ S, (B.2)

W ′ g(y) : = −
∫
S

[
T (y, ∂y)P (x− y)

]
g(x) dSx, y ∈ S, (B.3)

L±g(y) : = T±(y, ∂y)Wg(y), y ∈ S. (B.4)

Theorem B.1. The operators

P : H̃s(Ω) → Hs+2,s(Ω;∆), −1

2
< s <

1

2
, χ ∈ X1, (B.5)

: Hs(Ω) → Hs+2,s(Ω;∆), −1

2
< s <

1

2
, χ ∈ X1, (B.6)

: Hs(Ω) → H
5
2−ε, 12−ε(Ω;∆),

1

2
≤ s <

3

2
, ∀ ε ∈ (0, 1), χ ∈ X2, (B.7)

are continuous and ∆ is the Laplace operator.

Theorem B.2. The operators

V : Hs− 3
2 (S) → Hs(R3), s <

3

2
, if χ ∈ X1, (B.8)

: Hs− 3
2 (S) → Hs,s−1(Ω±; ∆),

1

2
< s <

3

2
, if χ ∈ X2, (B.9)

W : Hs− 1
2 (S) → Hs(Ω±), s <

3

2
, if χ ∈ X2, (B.10)

: Hs− 1
2 (S) → Hs,s−1(Ω±; ∆),

1

2
< s <

3

2
, if χ ∈ X3. (B.11)

are continuous.
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Theorem B.3. If χ ∈ Xk has a compact support and − 1
2 ≤ s ≤ 1

2 , then the following localized
operators

V :Hs(S) → Hs+ 3
2 (Ω±) for k = 2, (B.12)

W :Hs+1(S) → Hs+ 3
2 (Ω±) for k = 3 (B.13)

are continuous.

Theorem B.4. Let ψ ∈ H− 1
2 (S) and φ ∈ H

1
2 (S). Then the following jump relations hold on S

γ±V ψ =Vψ, χ ∈ X1, (B.14)

γ±Wφ =∓ bφ+Wφ, χ ∈ X2, (B.15)

T±V ψ =± bψ +W ′ψ, χ ∈ X2, (B.16)

where

b(y) :=
1

2

[
[δij (µ(y) + κ(y)) + (λ(y) + µ(y))ni(y)nj(y)]3×3 [0]3×3

[0]3×3 [δij (γ(y)) + (α(y) + β(y))ni(y)nj(y)]3×3

]
6×6

,

y ∈ S and b(y) is positive definite due to (2.3).

Theorem B.5. Let − 1
2 ≤ s ≤ 1

2 . The operators

V : Hs(S) → Hs+1(S), χ ∈ X2, (B.17)

W : Hs+1(S) → Hs+1(S), χ ∈ X3, (B.18)

W ′ : Hs(S) → Hs(S), χ ∈ X3, (B.19)

L± : Hs+1(S) → Hs(S), χ ∈ X3, (B.20)

are continuous.
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1. M. S. Agranovič, Elliptic singular integro-differential operators. (Russian) Uspehi Mat. Nauk 20 (1965), no. 5 (125),

3–120.

2. L. Boutet de Monvel, Boundary problems for pseudo-differential operators. Acta Math. 126 (1971), no. 1-2, 11–51.
3. A. V. Brenner, E. M. Shargorodsky, Boundary value problems for elliptic pseudodifferential operators. Translated

from the Russian by Brenner. Encyclopaedia Math. Sci., 79, Partial differential equations, IX, 145–215, Springer,

Berlin, 1997.
4. T. Buchukuri, O. Chkadua, D. Natroshvili, Mixed and crack type problems of the thermopiezoelectricity theory

without energy dissipation. Mem. Differ. Equ. Math. Phys. 74 (2018), 39–78.

5. O. Chkadua, R. Duduchava, Pseudodifferential equations on manifolds with boundary: Fredholm property and
asymptotic. Math. Nachr. 222 (2001), 79–139.

6. O. Chkadua, S. E. Mikhailov, D. Natroshvili, Analysis of direct boundary-domain integral equations for a mixed
BVP with variable coefficient. I. Equivalence and invertibility. J. Integral Equations Appl. 21 (2009), no. 4, 499–543.

7. O. Chkadua, S. E. Mikhailov, D. Natroshvili, Analysis of some localized boundary-domain integral equations.

J. Integral Equations Appl. 21 (2009), no. 3, 405–445.
8. O. Chkadua, S. E. Mikhailov, D. Natroshvili, Analysis of direct boundary-domain integral equations for a mixed

BVP with variable coefficient. II. Solution regularity and asymptotics. J. Integral Equations Appl. 22 (2010), no. 1,

19–37.
9. O. Chkadua, S. E. Mikhailov, D. Natroshvili, Analysis of segregated boundary-domain integral equations for variable-

coefficient problems with cracks. Numer. Methods Partial Differential Equations 27 (2011), no. 1, 121–140.

10. O. Chkadua, S. E. Mikhailov, D. Natroshvili, Localized direct segregated boundary-domain integral equations for
variable coefficient transmission problems with interface crack. Mem. Differential Equations Math. Phys. 52 (2011),
17–64.

11. O. Chkadua, S. E. Mikhailov, D. Natroshvili, Analysis of direct segregated boundary-domain integral equations for
variable-coefficient mixed BVPs in exterior domains. Anal. Appl. (Singap.) 11 (2013), no. 4, 1350006, 33 pp.

12. O. Chkadua, S. E. Mikhailov, D. Natroshvili, Localized boundary-domain singular integral equations based on
harmonic parametrix for divergence-form elliptic PDEs with variable matrix coefficients. Integral Equations Operator
Theory 76 (2013), no. 4, 509–547.

13. M. Costabel, Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19 (1988),
no. 3, 613–626.



LOCALIZED BOUNDARY-DOMAIN INTEGRAL EQUATIONS 389

14. L. Ephremidze, An elementary proof of the polynomial matrix spectral factorization theorem. Proc. Roy. Soc.

Edinburgh Sect. A 144 (2014), no. 4, 747–751.
15. L. Ephremidze, G. Janashia, E. Lagvilava, A simple proof of the matrix-valued Fejér-Riesz theorem. J. Fourier

Anal. Appl. 15 (2009), no. 1, 124–127.

16. L. Ephremidze, I. M. Spitkovsky, A remark on a polynomial matrix factorization theorem. Georgian Math. J.
19 (2012), no. 3, 489–495.

17. G. Eskin, Boundary Value Problems for Elliptic Pseudodifferential Equations. Translated from the Russian by

S. Smith. Translations of Mathematical Monographs, 52. American Mathematical Society, Providence, R.I., 1981.
18. R. Grzhibovskis, S. Mikhailov, S. Rjasanow, Numerics of boundary-domain integral and integro-differential equations

for BVP with variable coefficient in 3D. Comput. Mech. 51 (2013), no. 4, 495–503.
19. G. C. Hsiao, W. L. Wendland, Boundary Integral Equations. Applied Mathematical Sciences, 164. Springer-Verlag,

Berlin, 2008.

20. V. D. Kupradze, T. G. Gegelia, M. O. Basheleishvili, T. V. Burchuladze, Three-dimensional Problems of the Math-
ematical Theory of Elasticity and Thermo-elasticity. North-Holland Series in Applied Mathematics and Mechanics,

25. North-Holland Publishing Co., Amsterdam-New York, 1979.

21. J. L. Lions, E. Magenes, Non-homogeneous Boundary Value Problems and Applications. vol. I. Translated from
the French by P. Kenneth. Die Grundlehren der mathematischen Wissenschaften, Band 181. Springer-Verlag, New

York-Heidelberg, 1972.

22. W. McLean, Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge,
2000.

23. S. E. Mikhailov, Localized boundary-domain integral formulations for problems with variable coefficients. Engineer-

ing Analysis with Boundary Elements 26 (2002), no. 8, 681–690.
24. S. E. Mikhailov, Analysis of united boundary-domain integro-differential and integral equations for a mixed BVP

with variable coefficient. Math. Methods Appl. Sci. 29 (2006), no. 6, 715–739.

25. S. E. Mikhailov, Traces, extensions and co-normal derivatives for elliptic systems on Lipschitz domains. J. Math.
Anal. Appl. 378 (2011), no. 1, 324–342.

26. S. E. Mikhailov, I. S. Nakhova, Mesh-based numerical implementation of the localized boundary-domain integral-
equation method to a variable-coefficient Neumann problem. J. Engrg. Math. 51 (2005), no. 3, 251–259.
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