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Abstract. The Opial type necessary and sufficient (as well as effective sufficient) conditions are
established for the convergence of difference schemes of the Cauchy problem for linear systems of

ordinary differential equations.

1. Statement of the Problem and Basic Notation

Consider the initial problem

dx

dt
= P0(t)x+ q0(t) for t ∈ I, (1.1)

x(t0) = c0, (1.2)

where P0 ∈ L(I;Rn×n), q0 ∈ L(I;Rn), t0 ∈ I and c0 ∈ Rn, and I = [a, b] is the closed interval,
non-degenerated at the point.

Let x0 ∈ AC(I;Rn) be a unique solution of this initial problem.
Along with the problem, we consider the difference scheme

∆y(k − 1) = G1m(k) y(k) +G2m(k − 1) y(k − 1) + g1m(k) + g2m(k − 1) (k = 1, . . . ,m), (1.1m)

y(km) = ζm (m = 1, 2, . . . ), (1.2m)

where Gjm and gjm (j = 1, 2) are, respectively, the discrete n × n-matrix- and n-vector-functions,
km ∈ {0, . . . ,m} and ζm ∈ Rn.

In the paper, we wish to present the so-called Opial type necessary and sufficient (in particular,
the effective sufficient) conditions for the convergence, in the definite sense, of solutions of difference
scheme (1.1m), (1.2m) to x0.

The numerical solvability of problem (1.1), (1.2) is classical. There are a lot of papers dealing
with this problem (see, for example, [4, 7, 8, 10, 13, 16] and references therein). In our opinion, in
these papers, with the exception of [4], only sufficient conditions are established for the numerical
solvability of problem (1.1), (1.2). In the last paper, the criteria are obtained for the question under
consideration, but the obtained results differ from the Opial type conditions. The goal of the present
paper is to establish the conditions, analogous to the Opial type conditions.

In the paper, we use the following notation and definitions.

N = {1, 2, . . . }, Ñ = {0, 1, . . . }, Nl = {1, . . . , l}, Ñl = {0, . . . , l} (l ∈ N). R =]−∞,+∞[.
[t] is the integer part of t ∈ R.

Rn×m is the space of real n×m-matrices X = (xij)
n,m
i,j=1 with the norm ∥X∥ = max

j=1,...,m

n∑
i=1

|xij |.

On×m is the zero n×m-matrix. 0n is the zero n-vector.
If X = (xij)

n,m
i,j=1 ∈ Rn×m, then |X| = (|xij |)n,mi,j=1 .
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Rn = Rn×1 is the space of real column n-vectors x = (xi)
n
i=1.

X−1 and det(X) are, respectively, the matrix, inverse to X ∈ Rn×n, and the determinant of X.
In is the identity n× n-matrix;
δij is the Kroneker symbol, i.e., δii = 1 and δij = 0 for i ̸= j (i, j = 1, . . . ).
The inequalities between the matrices are understood componentwise.
A matrix-function is said to be continuous, integrable, etc., if each of its components is such.
b∨
a
(X) is the sum of total variations of components xij (i = 1, . . . , n; j = 1, . . . ,m) of the matrix-

function X : [a, b] → Rn×m; V (X)(t) ≡ (v(xij)(t))
n,m
i,j=1, where v(xij)(a) = 0, v(xij)(t) ≡

t∨
a
(xij);

X(t−) and X(t+) are, respectively, the left and the right limits of X at the point t (X(a−) = X(a)
and X(b+) = X(b)); d1X(t) = X(t)−X(t−), d2X(t) = X(t+)−X(t). ∥X∥∞ = sup {∥X(t)∥ : t ∈ I}.
Somewhere else we use the designation ∥X∥J = sup {∥X(t)∥ : t ∈ J}, where J ⊂ I.

BV(I;Rn×m) is the normed space of all bounded variation matrix-functions X : I → Rn×m with
the norm ∥X∥∞.
C(I;Rn×m) is the space of all continuous on I matrix-functions X : I → Rn×m with the standard

norm ∥X∥c = max{∥X(t)∥ : t ∈ I}.
AC(I;Rn×m) is the set of all absolutely continuous matrix-functions.
s0, s1 and s2 are the operators defined, respectively, as follows:

s1(x)(a) = s2(x)(a) = 0, s1(x)(t) =
∑

a<τ≤t

d1x(τ), s2(x)(t) =
∑

a≤τ<t

d2x(τ);

s0(x) = x(a), s0(x)(t) ≡ (t)− s1(x)(t)− s2(x)(t).

If g ∈ BV(I;R), f : I → R and s < t, then we assume

t∫
s

x(τ) dg(τ) = (L− S)

∫
]s,t[

x(τ) dg(τ) + f(t)d1g(t) + f(s)d2g(s),

where (L − S)
∫

]s,t[

f(τ) dg(τ) is the Lebesgue–Stieltjes integral over the open interval ]s, t[. It is

known (see [14, 17, 18]) that if the integral exists, then the right-hand side of the above integral

equality coincides with the Kurzweil–Stieltjes integral (K − S)
t∫
s

f(τ) dg(τ). So,
t∫
s

f(τ) dg(τ) =

(K − S)
t∫
s

f(τ) dg(τ).

If G(t) = (gik(t))
l,n
i,k=1 and X(t) = (xkl(t))

n,m
k,l=1 for t ∈ I, then

Sj(G)(t) ≡ (sj(gik)(t))
l,n
i,k=1 (j = 0, 1, 2),

b∫
a

dG(τ) ·X(τ) =

( n∑
k=1

b∫
a

xkl(τ) dgik(τ)

)l,m

i,l=1

.

Sometimes we use the designation
.∫
a

dG(s) · X(s) for the integral
t∫
a

dG(s) · X(s) as the matrix-

function to the variable t.
We introduce the following operators:
(a) if X ∈ BV(I;Rn×n), det(In + (−1)jdjX(t)) ̸= 0 for t ∈ I (j = 1, 2), and Y ∈ BVloc(I;Rn×m),

then

A(X,Y )(a) = On×m,

A(X,Y )(t) ≡ Y (t) +
∑

a<τ≤t

d1X(τ) (In − d1X(τ))−1 d1Y (τ)−
∑

a≤τ<t

d2X(τ) (In + d2X(τ))−1 d2Y (τ).
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(b) if X ∈ BV(I;Rn×n) and Y ∈ BV(I;Rn×m), then

B(X,Y )(t) ≡ X(t)Y (t)−X(a)Y (a)−
t∫

a

dX(τ) · Y (τ);

(c) if X ∈ BV(I;Rn×n), detX(t)) ̸= 0, and Y ∈ BV(I;Rn×n), then

I(X,Y )(t) ≡
t∫

a

d
(
X(τ) + B(X,Y )(τ)

)
·X−1(τ).

E(J,Rn×m), where J ⊂ N, is the space of all matrix-functions Y : J → Rn×m with the norm
∥Y ∥J = max {∥Y (k)∥ : k ∈ J} .

∆ is the difference operator of the first order, i.e.,

∆Y (k − 1) = Y (k)− Y (k − 1) for Y ∈ E(Ñl,Rn×m), k ∈ Nl.

If a matrix-function Y is defined on Nl, or on Ñl−1, then we assume Y (0) = On×m, or Y (l) = On×m,
respectively, if necessary.

Let τm = (b− a)m−1 and

τ0m = a, τkm = a+ kτm, Ikm =]τk−1m, τkm[ (k = 1, . . . ,m; m = 1, 2, . . . ).

Let νm (m = 1, 2, . . . ) be the functions defined by the equalities

νm(t) ≡
[ t− a

b− a
m
]

(m = 1, 2, . . . ).

It is evident that

νm(τkm) = k (k = 0, . . . ,m; m = 1, 2, . . . ).

For each natural m, we introduce the following operators:

a) pm : BV(I;Rn) → E(Ñm;Rn) and qm : E(Ñm;Rn) → BV(I;Rn) defined as follows:

pm(x)(k) = x(τkm) for x ∈ BV(I;Rn) (k = 0, . . . ,m)

and

qm(y)(t) =

{
y(k) for t = τkm (k = 0, . . . ,m),

(In −G1m(k))y(k) + g1m(k)) for t ∈ Ikm (k = 0, . . . ,m);

b) operator Bm, defined for X ∈ E(Ñm;Rn×n) and Y, Z ∈ E(Ñm;Rn×l), by

Bm(X,Y, Z)(a) = On×n, Bm(X,Y, Z)(τkm) =

k∑
i=1

X(i)Y (i) +

k∑
i=1

X(i)Z(i− 1),

Bm(X,Y, Z)(t) = Bm(X,Y, Z)(τkm)−X(k)Y (k) for t ∈ Ikm (k = 1, . . . ,m);

c) operator Im, defined for X,Y1, Y2 ∈ E(Ñm;Rn×n), Z ∈ E(Ñm;Rn×l), by

Im(X,Z, Y1, Y2)(a) = On×n, Im(X1, X2, Y1, Y2)(τkm)

≡
k∑

i=1

(
In −X(i)(In − Y1(i))Z(i)

)
+

k−1∑
i=0

(
X(i+ 1)(In + Y2(i))Z(i)− In

)
,

Im(X,Z, Y1, Y2)(t) = Im(X,Z, Y1, Y2)(τkm)−
(
In −X(k)(In − Y1(k))Z(k)

)
for t ∈ Ikm (k = 1, . . . ,m).

Let X0, X0(t0) = In, be the fundamental matrix of the system

dx

dt
= P0(t)x.
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Here, the use will be made of the following formulas from [18]:

b∫
a

f(t) dg(t) +

b∫
a

f(t) dg(t) = f(b)g(b)− f(a)g(a) +
∑

a<t≤b

d1f(t) · d1g(t)−
∑

a≤t<b

d2f(t) · d2g(t)

(integration-by-parts formula), (1.3)

b∫
a

f(t)ds1(g)(t) =
∑

a<t≤b

f(t) d1g(t),

b∫
a

f(t)ds2(g)(t) =
∑

a≤t<b

f(t)d2g(t), (1.4)

b∫
a

f(t) d

( t∫
a

g(s)dh(s)

)
=

b∫
a

f(t)g(t) dh(t), (1.5)

dj

( t∫
a

f(s) dg(s)

)
= f(t) djg(t) for t ∈ [a, b] (j = 1, 2). (1.6)

1.1. Formulation of the Results on the Numerical Solvability of Problem (1.1), (1.2). With-
out loss of generality, we assume that

G1m(0) = G2m(m) = On×n, g1m(0) = g2m(m) = 0n (m = 1, 2, . . . ).

Definition 1.1. We say that a sequence (G1m, G2m, g1m, g2m; km) (m = 1, 2, . . . ) belongs to the set
CS(P0, q0; t0) if for every c0 ∈ Rn and the sequence ζm ∈ Rn (m = 1, 2, . . . ), satisfying the condition

lim
m→+∞

ζm = c0, (1.7)

the difference problem (1.1m), (1.2m) has a unique solution ym ∈ E(Ñm;Rn) for any sufficiently large
m and

lim
m→+∞

∥ym − pm(x0)∥Ñm
= 0. (1.8)

We assume that

lim
m→+∞

tm = t0, (1.9)

where tm = a+ km(b− a)m−1.
Somewhere else we need the condition

det
(
In + (−1)jGjm(k)

)
̸= 0 (j = 1, 2; k ∈ Nm; m ∈ N). (1.10)

Theorem 1.1. The inclusion(
(G1m, G2m, g1m, g2m; km)

)+∞
m=1

∈ CS(P0, q0; t0) (1.11)

holds if and only if there exists a sequence of matrix-functions Hjm ∈ E(Ñm;Rn) (j = 1, 2; m =
1, 2, . . . ) such that

lim
m→+∞

max{∥Hjm(k)− In∥ : k ∈ Ñm} = 0 (j = 1, 2), (1.12)

and the conditions

lim
m→+∞

{
∥Pm(H1m, H2m)(t)− P0(t)∥

(
1 +

∣∣∣ t∨
a

(Pm(H1m, H2m)− P0)
∣∣∣)} = 0,

lim
m→+∞

{
∥qm(H1m)(t)− q0(t)∥

(
1 +

∣∣∣ t∨
a

(Pm(H1m, H2m)− P0)
∣∣∣)} = 0

(1.13)

are fulfilled uniformly on I, where Pm(H1m, H2m)(t) ≡ Im(H1m, H2m, G1m, G2m)(t) and qm(H1m)(t) ≡
Bm(H1m, g1m, g2m)(t).
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Condition (1.13) is known as the Opial type condition which has been obtained by Z. Opial in [15],
where the author investigated the well-posed question of the initial problem for ordinary differential
systems. The analogous conditions are obtained in [4] for generalized ordinary differential (GOD)
systems.

Let Ym, Ym(0) = In, for each natural m, be the fundamental matrix of the difference system

∆y(k − 1) = G1m(k) y(k) +G2m(k − 1) y(k − 1) (k ∈ Nm).

Theorem 1.2. Let condition (1.10) hold. Then inclusion (1.11) holds if and only if conditions

lim
m→+∞

Bm(Y −1
m , Q1m, Q2m)(t) = X−1

0 (t),

lim
m→+∞

Bm(Y −1
m , g1m, g2m)(t) = B(X−1

0 , f)(t)

are fulfilled uniformly on I, where Qjm(i) ≡
(
In + (−1)jGjm(i)

)−1
Gjm(i) (j = 1, 2; m = 1, 2, . . . ).

Remark 1.1. If condition (1.10) holds, then

Ym(k) =

1∏
i=k

(
In −G1m(i)

)−1(
In +G2m(i− 1)

)
(k ∈ Nm; m = 1, 2, . . . ).

Theorem 1.3. Let condition (1.7) hold and the conditions

lim
m→+∞

{
∥Pm(t)− P0(t)∥

(
1 +

∣∣∣ t∨
a

(Pm − P0)
∣∣∣)} = 0,

lim
m→+∞

{
∥qm(t)− q0(t)∥

(
1 +

∣∣∣ t∨
a

(Pm − P0)
∣∣∣)} = 0

be fulfilled uniformly on I, where Pm(t) ≡ Bm(In, G1m, G2m)(t) and qm(t) ≡ Bm(In, g1m, g2m)(t).

Then the difference problem (1.1m), (1.2m) has a unique solution ym ∈ E(Ñm;Rn) for any sufficien-
tly large m and (1.8) holds.

Proposition 1.1. Let the conditions of Theorem 1.3 hold. Then there exists a positive r such that

∥ym − pm(x0)∥Ñm
≤ r(∥γm − c0∥+ εm + δm) (m = 1, 2, . . . ),

where ym is the solution of problem (1.1m), (1.2m),

lim
m→+∞

εm = 0 and lim
m→+∞

δm = 0, (1.14)

here,

εm = αm(2 + 3ρ0 + 3γm), δm = βm(2 + 2αm + γm) + 3ϱ0αm, αm = ∥Bm(In, G1m, G2m)−A∥∞,

βm = ∥Bm(In, g1m, g2m)− f∥∞, γm = ∥V (Bm(In, G1m, G2m)−A)∥∞, ρ0 =

b∨
a

(A), ϱ0 =

b∨
a

(f).

Theorem 1.4. Let P ∗
0 ∈ L(I;Rn×n), q∗0 ∈ L(I;Rn), c∗0 ∈ Rn and x∗0 be a unique solution of the

initial problem

dx

dt
= P ∗

0 (t)x+ q∗0(t) for t ∈ I,

x(t0) = c∗0.

Let, moreover, the sequences Gjm, Hjm ∈ E(Ñm;Rn); gjm ∈ E(Ñm;Rn) (j = 1, 2; m = 1, 2, . . . ) be
such that conditions (1.12) and

lim
m→+∞

c∗m = c∗0, (1.15)

hold, and the conditions

lim
m→+∞

{
∥Pm(H1m, H2m)(t)− P ∗

0 (t)∥
(
1 +

∣∣∣ t∨
a

(Pm(H1m, H2m)− P ∗
0 )
∣∣∣)} = 0, (1.16)
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lim
m→+∞

{
∥qm(H1m)(t)− q∗0(t)∥

(
1 +

∣∣∣ t∨
a

(Pm(H1m, H2m)− P ∗
0 )
∣∣∣)} = 0

are fulfilled uniformly on I, where the matrix- and vector-functions Pm(H1m, H2m) and qm(H1m) are
defined as in Theorem 1.1, and c∗m = H2m(km)ζm. Then condition (1.8) holds, where ym is a unique
solution of the difference initial problem (1.1m), (1.2m) for any sufficiently large m.

Corollary 1.1. Let sequences Gjm ∈ E(Ñm;Rn), gjm ∈ E(Ñm;Rn), ζm ∈ Rn and km ∈ Ñm (j =
1, 2; m = 1, 2, . . . ) be such that conditions (1.12) and

lim
m→+∞

(ζm − ψm(km)) = c0

hold, and conditions (1.16) and

lim
m→+∞

{
∥Bm(H1m, g1m − ψm, g2m − ψm)(t) + Im(H1m, H

−1
2m ψm, G1m, G2m)(t)− f0(t)∥

×
(
1 +

∣∣∣∣ t∨
a

(Pm(H1m, H2m)− P0)

∣∣∣∣)} = 0

are fulfilled uniformly on I, where Hjm ∈ E(Ñm;Rn), ψm ∈ E(Ñm;Rn) (j = 1, 2; m = 1, 2, . . . ) and
Pm(H1m, H2m) is defined as in Theorem 1.1. Then the difference problem (1.1m), (1.2m) has a unique
solution ym for any sufficiently large m and

lim
m→+∞

∥ym − ψm − pm(x0)∥Ñm
= 0.

2. The Well-Posedness of Initial Problem for Generalized Ordinary Differential
Systems

The proofs of the results given in Section 1 are based on the following concept.
We rewrite the initial problem under consideration for ordinary and difference systems as the initial

one for the following type of the so-called GOD system

dx = dA(t) · x+ df(t) for t ∈ I, (2.1)

x(t0) = c0, (2.2)

where A ∈ BV(I;Rn×n), A(a) = On×n; f ∈ BV (I;Rn), f(a) = 0n.
The theory of GOD equations has been introduced by J. Kurzweil in [12], where he investigated

the well-posedness of the initial problem for ordinary differential equations. Some questions of the
theory have been investigated in [1–6,9, 11,12,14,17,18] (see also references therein).

A vector-function x ∈ BV(I;Rn) is said to be a solution of system (2.1) if

x(t)− x(s) =

t∫
s

dA(τ) · x(τ) + f(t)− f(s) for s < t; s, t ∈ I.

It is evident that system (1.1) is equivalent to (2.1), where

A(t) ≡
t∫

a

P0(s)ds and f(t) ≡
t∫

a

q0(s)ds.

So, in this case, A and f are the continuous matrix- and vector-functions.
Let a vector-function x0 ∈ BV(I;Rn) be the solution of problem (2.1), (2.2) and letX0, X0(t0) = In,

be the fundamental matrix of the system

dx = dA(t) · x.
Along with the Cauchy problem (2.1), (2.2), we consider the sequence of the Cauchy problems

dx(t) = dAm(t) · x(t) + dfm(t) (2.1m)

x(tm) = cm (2.2m)
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(m = 1, 2, . . . ), where Am ∈ BV(I;Rn×n), fm ∈ BV (I;Rn), tm ∈ I and cm ∈ Rn.
Concerning system (2.1), if

det
(
In + (−1)jdjA(t)

)
̸= 0 for t ∈ I (j = 1, 2), (2.3)

then problem (2.1), (2.2) has a unique solution (see [14,17,18]).
We assume that A0(t) ≡ A(t), f0(t) ≡ f(t) and condition (1.9) holds.
We rewrite the discrete problems (1.1m), (1.2m) (m ∈ N) as the initial problems for GOD systems

of type (1.1). So, the discrete systems (1.1m) (m ∈ N) are, really, the generalized systems. Therefore
the convergence of the difference scheme (1.1m), (1.2m) (m ∈ N) to the solution of problem (1.1),
(1.2) is equivalent to the well-possed question of the initial problems for the GOD systems.

We give some results from [4], concerning the well-posedness of problem (2.1), (2.2), where the
necessary and sufficient, as well as the efficient sufficient conditions are established for the Cauchy
problem (2.1m), (2.2m) to have a unique solution xm for every sufficiently large m and

lim
m→+∞

xm(t) = x0(t) uniformly on I. (2.4)

To a considerable extent, the interest to the theory of generalized ordinary differential equations has
also been stimulated by the fact that this theory enables one to investigate linear ordinary differential,
impulsive and difference equations from a unified point of view.

Along with systems (2.2m) (m = 1, 2, . . . ), we consider the corresponding homogeneous systems

dx = dAm(t) · x. (2.1mo)

Definition 2.1. We say that the sequence (Am, fm; tm) (m = 1, 2, . . . ) belongs to the set S(A0, f0; t0)
if for every c0 ∈ Rn and a sequence cm ∈ Rn (m = 1, 2, . . . ) such that

lim
m→+∞

cm = c0, (2.5)

problem (2.1m), (2.2m) has a unique solution xm for any sufficiently largem and condition (2.4) holds.

Theorem 2.1. The inclusion

((Am, fm; tm))
+∞
m=1 ∈ S(A0, f0; t0) (2.6)

holds if and only if there exists a sequence of matrix-functions Hm ∈ BV(I;Rn×n) (m = 1, 2, . . . ) such
that the conditions

lim
m→+∞

Hm = In, (2.7)

lim
m→+∞

{∥∥I(Hm, Am)(t)−A0(t)
∥∥(1 + t∨

a

(I(Hm, Am)−A0)
)}

= 0, (2.8)

lim
m→+∞

{∥∥B(Hm, fm)(t)− f0(t)
∥∥(1 + t∨

a

(I(Hm, Am)−A0)
)}

= 0 (2.9)

are fulfilled uniformly on I.

Theorem 2.2. Let condition (2.3) hold. Then inclusion (2.6) holds if and only if the conditions

lim
m→+∞

X−1
m (t) = X−1

0 (t),

lim
m→+∞

B(X−1
m , fm)(t) = B(X−1

0 , f)(t)

are fulfilled uniformly on I, where Xm is the fundamental matrix of system (2.1mo) for any m.

Theorem 2.3. Let A0 ∈ BV(I;Rn×n), f0 ∈ BV(I;Rn), c0 ∈ Rn, t0 ∈ I and let the sequences of
matrix- and vector-functions Am ∈ BV(I;Rn×n) and fm ∈ BV(I;Rn) (m = 1, 2, . . . ) and the sequence
of constant vectors cm ∈ Rn (m = 1, 2, . . . ) be such that condition (2.5) holds and the conditions

lim
m→+∞

{
∥Am(t)−A0(t)∥

(
1 +

∣∣∣ t∨
a

(Am −A0)
∣∣∣)} = 0, (2.10)
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lim
m→+∞

{
∥f(t)− f0∥

(
1 +

∣∣∣ t∨
a

(Am −A0)
∣∣∣)} = 0 (2.11)

are fulfilled uniformly on I. Then the initial problem (2.1m), (2.2m) has the unique solution xm for
any sufficiently large m and (2.4) holds.

Proposition 2.1. Let the conditions of Theorem 2.3 be satisfied. Then there exists a positive number r
such that

∥xm − x0∥∞ ≤ r(∥cm − c0∥+ εm + δm) (m = 1, 2, . . . ) (2.12)

and condition (1.14) holds, where xm is the solution of problem (2.1m), (2.2m),

εm = αm(2 + 3ρ0 + 3γm), δm = βm(2 + 2αm + γm) + 3ϱ0αm,

ρ0 =

b∨
a

(A), ϱ0 =

b∨
a

(f), αm = ∥Am −A∥∞, βm = ∥fm − f∥∞, γm = sup
t∈[a,b]

t∨
a

(Am −A).

Theorem 2.4. Let A∗
0 ∈ BV(I;Rn×n) and f∗0 ∈ BV (I;Rn) be continuous and let c∗0 ∈ Rn be such

that the problem

dx = dA∗
0(t) · x+ df∗0 (t), (2.13)

x(t0) = c∗0 (2.14)

has a unique solution x∗0. Let, moreover, there exist the sequences Hm ∈ BV(I;Rn×n), fm, hm ∈
BV (I;Rn) and cm ∈ Rn (m = 1, 2, . . . ) such that condition (1.15) holds and the conditions (2.7),

lim
m→+∞

{
∥A∗

m(t)−A∗
0(t)∥

(
1 +

∣∣∣∣ t∨
a

(A∗
m −A∗

0)

∣∣∣∣)} = 0 (2.15)

and lim
m→+∞

{
∥f∗m(t)− f∗0 ∥

(
1 +

∣∣∣∣ t∨
a

(A∗
m −A∗

0)

∣∣∣∣)} = 0 (2.16)

are fulfilled uniformly on I, where

A∗
m(t) = I(Hm, Am)(t), f∗m(t) = hm(t)− hm(a) + B(Hm, fm)(t)−

t∫
a

dA∗
m(s) · hm(s),

c∗m = Hm(tm) cm + hm(tm) (m = 1, 2, . . . ).

Then problem (2.1m), (2.2m) has a unique solution xm for any sufficiently large m and

lim
m→+∞

∥Hm(t)xm(t) + hm(t)− x∗0(t)∥ = 0 uniformly on I. (2.17)

Remark 2.1. In Theorem 2.4, the vector-function x∗m(t) = Hm(t)xm(t) + hm(t) is a solution of the
problem

dx = dA∗
m(t) · x+ df∗m(t), (2.13m)

x(tm) = c∗m (2.14m)

for every sufficiently large m.

Corollary 2.1. Let Am ∈ BV(I;Rn×n), fm ∈ BV (I;Rn), cm ∈ Rn and tm ∈ I (m = 0, 1, . . . ) be
such that

lim
k→+∞

(cm − φm(tm)) = c0, (2.18)

and conditions (2.7), (2.8) and

lim
k→+∞

{∥∥∥∥I(Hm, fm − φm)(t)− f0(t) +

t∫
a

dI(Hm, Am)(τ) · φm(τ)

∥∥∥∥
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×
(
1 +

∣∣∣∣ t∨
a

(I(Hm, Am)−A0)

∣∣∣∣)} = 0 (2.19)

are fulfilled uniformly on I, where Hm ∈ BV(I;Rn×n) and φm ∈ BV(I;Rn) (m = 0, 1, . . . ). Then
problem (2.1m), (2.2m) has a unique solution xm for any sufficiently large m and

lim
m→+∞

(xm(t)− φm(t)) = x0(t) uniformly on I. (2.20)

2.1. Proofs of the results concerning the well-posedness of the generalized initial problem
(2.1), (2.2). For the completeness, we present here the proofs of the given results in brief (the full
version can be found in [1, 2, 4]).

Proof of Theorem 2.3. By (2.10),

lim
m→+∞

∥Am −A0∥∞ = 0

and, therefore,

lim
m→+∞

djAm(t) = 0n uniformly on I (j = 1, 2)

So, according to Lemma 1.2.6 from [4], there exists a positive number r0 such that

det
(
In + (−1)jdjAm(t)

)
̸= 0 for t ∈ I (j = 1, 2)

and ∥∥(In + (−1)jdjAm(t)
)−1∥∥ ≤ r0 for t ∈ I (j = 1, 2)

for every sufficiently large m.
Therefore, there exists a natural numberm0 such that problem (2.1m), (2.2m) has a unique solution

xm for every m, without loss of generality.
Let zm(t) ≡ xm(t)− x0(t) for every m.
Let ε be an arbitrarily small positive number.
It is not difficult to check that

zm(t) = zm(tm)+

t∫
tm

dA0(s) · zm(s)+

t∫
tm

dAm(s) · xm(s) + fm(t)− fm(tm) for t ∈ I,

where

Am(t) = Am(t)−A0(t), fm(t) = fm(t)− f0(t) (m = 0, 1, . . . ).

Using (1.6), we find

djxm(t) = djAm(t) · xm(t) + djf(t) for t ∈ I (j = 1, 2).

Consequently, by the integration-by-parts formula (1.3), we conclude that

t∫
tm

dAm(s) · xm(s) = Am(t)xm(t)−Am(tm)xm(tm)

−
t∫

tm

Am(s)dxm(s) +
∑

tm<s≤t

d1Am(s) · d1xm(s)−
∑

tm≤s<t

d2Am(s) · d2xm(s)

= Am(t)xm(t)−Am(tm)xm(tm)−
t∫

tm

Am(s)
(
dAm(s) · xm(s) + dfm(s)

)
+

∑
tm<s≤t

d1Am(s) ·
(
d1Am(s) · xm(s) + d1fm(s)

)
−

∑
tm≤s<t

d2Am(s) ·
(
d2Am(s) · xm(s) + d2fm(s)

)
for t ∈ I.
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So,

zm(t) = zm(tm) + Jm(t, tm) +Qm(t, tm) +

t∫
tm

dA0(s) · zm(s) for t ∈ I. (2.21)

where

Jm(t, τ) = Am(t) · xm(t)−Amj(τ) · xm(τ)−
t∫

τ

Am(s)dAm(s) · xm(s)

+
∑

s∈]τ,t]

d1Am(s) · d1Am(s) · xm(s)−
∑

s∈[τ,t[

d2Am(s) · d2Am(s) · xm(s) for τ < t (j = 1, 2),

Jmj(t, t) ≡ 0 (j = 1, 2) and Jm(t, τ) = −Jm(τ, t) for t < τ (j = 1, 2),

and
Qm(t, τ) ≡ fm(t)− fm(τ)− B(Am, fm)(t) + B(Am, fm)(τ) (j = 1, 2).

From (2.21), it follows that

∥zm(t)∥ ≤ ∥zm(tm)∥+ ∥Jm(t, tm)∥+ ∥Qm(t, tm)∥+
∣∣∣∣

t∫
tm

∥zm(τ)∥ d∥V (A0)(τ)∥
∣∣∣∣ for t ∈ I. (2.22)

Further, let αm, βm, γm, δm, εm (m = 1, 2, . . . ) and ρ0, ϱ0 be defined as in Proposition 2.1.
In view of the conditions A0 ∈ BV(I;Rn×n), f0 ∈ BV(I;Rn), (2.10) and (2.11), we have

lim
k→+∞

αm(1 + γm) = lim
m→+∞

βm(1 + ϱ0 + γm) = 0. (2.23)

Moreover, by the inequalities∣∣∣∣ t∨
tm

(Am)

∣∣∣∣ ≤ ∣∣∣∣ t∨
tm

(Am −A0)

∣∣∣∣+ ∣∣∣∣ t∨
tm

(A0)

∣∣∣∣ for t ∈ I (m = 1, 2, . . . ),

we find

∥Jm(t, tm)∥ ≤ 2αm∥xm∥m + αm(γm + ρ0)∥xm∥m

+2αm∥xm∥m
( ∑

tm<s≤t

(∥∥d1(Am(s)−A0(s))
∥∥+ ∥d1A0(s)∥

)
+

∑
tm≤s<t

(∥∥d2(Am(s)−A0(s))
∥∥+ ∥d2A0(s)∥

))
and therefore, ∥∥Jm(t, tm)

∥∥ ≤ εm∥xm∥∞ for t ∈ I, (2.24)

where εm = αm(2 + 3ρ0 + 3γm) (m = 1, 2, . . . ). In addition, if we take into account the fact that
the operator B is linear with respect to every its variable and equals zero if the second variable is a
constant function, then we conclude that∥∥B(Am, fm)(t)− B(Am, fm)(tm)

∥∥
≤

∥∥B(Am, fm)(t)− B(Am, fm)(tm)
∥∥+

∥∥B(Am, f0)(t)− B(Am, f0)(tk + ε)
∥∥ for t ∈ I.

By the definition of the operator B, we have∥∥B(Am, fm)(t)− B(Am, fm)(tm)
∥∥ ≤ βm(2αm + γm) for t ∈ I.

Using the integration-by-parts formula, we find∥∥B(Am, f0)(t)− B(Am, f0)(tm)
∥∥

≤ αm

t∨
tm

(f0) + 2αm

( ∑
tm<s≤t

∥d1f0(s)∥+
∑

tm≤s<t

∥d2f0(s)∥
)

for t ∈ I
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and therefore, ∥∥B(Am, f0)(t)− B(Am, f0)(tm)
∥∥ ≤ 3ϱ0αm for t ∈ I.

So,
∥Qm(t, tm)∥ ≤ δm for t ∈ I, (2.25)

where δm = βm(2 + 2αm + γm) + 3ϱ0αm.
From (2.22), by (2.24) and (2.25), we find

∥zm(t)∥ ≤ r1

(
∥zm(tm)∥+ εm∥xm∥∞ + δm +

t∫
tm

∥zm(τ)∥ d∥V (A0)(τ)∥
)

for t ∈ I.

Hence, according to Gronwall’s inequality (see [18, Theorem I.4.30]),

∥zm(t)∥ ≤ r1
(
∥zm(tm)∥+ εm∥xm∥∞ + δm

)
exp

(
r1∥V (A0)(t)− V (A0)(tm)∥

)
≤ r1

(
∥zm(tm)∥+ εm∥xm∥∞ + δm

)
exp(ρ0r1) for t ∈ I.

Now, passing to the limit as ε→ 0 in the last inequality, we conclude that

∥zm∥∞ ≤ r1

(
∥zm(tm)∥+ εm∥xm∥∞ + δm

)
exp(ρ0r1). (2.26)

Due to (2.23), we have
lim

m→+∞
εm = 0. (2.27)

Hence there exists a natural m1 such that

r1εm exp(ρ0r1) <
1

2
for m > m1,

whence, owing to (2.26), it follows that

∥xm∥∞ ≤ ∥x0∥∞ + ∥zm∥∞ ≤ ∥x0∥∞ +
1

2
∥xm∥∞ + r1

(
∥zm(tm)∥+ δm

)
exp(ρ0r1).

Therefore

∥xm∥∞ ≤
(
∥x0∥∞ + r1

(
∥zm(tm)∥+ δm

)
exp(ρ0r1)

)
for m > m1, which, due to (2.5), implies that the sequence ∥xm∥∞ (m = 1, 2, . . . ) is bounded.

In view of conditions (2.10) and (2.11),

lim
m→+∞

δm = 0. (2.28)

On the other hand, using (2.5), (2.27) and (2.28), it follows from (2.26) that

lim
m→+∞

∥zm∥∞ = 0.

The theorem is proved. □

Proof of Proposition 2.1. Estimate (2.12) immediately follows from estimate (2.26). In addition, by
(2.27) and (2.28), condition (1.14) holds. The proposition is proved. □

Proof of Theorem 2.4. Analogously to the proof of Theorem 2.3, we show that the initial problem
(2.13m), (2.14m) has the unique solution x∗m for every sufficiently large m. Moreover, according to
Lemma 1.2.2 from [4], the mapping x → x∗, x∗ = Hm x + hm, ensures a one-to-one correspondence
between the solutions of problem (2.1m), (2.2m) and those of the initial problem (2.13m), (2.14m) for
every such m. Thus problem (2.1m), (2.2m) has the unique solution xm and

x∗m(t) ≡ Hm(t)xm + hm(t),

for every sufficiently large m.
Conditions (2.15), (2.16) guarantee the fulfilment of the conditions of Theorem 2.3 for the initial

problem (2.13), (2.14) and for the sequence of the initial problems (2.13m), (2.14m) (m = 1, 2, . . . ).
Thus, owing to Theorem 2.3,

lim
m→+∞

x∗m(t) = x∗0(t) uniformly on I.
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So, condition (2.17) holds. The theorem is proved. □

Remark 2.1 immediately follows from the proof of Theorem 2.4.

Proof of Corollary 2.1. Verify the conditions of Theorem 2.4. From (2.7), it follows that

lim
m→+∞

H−1
m (t) = In (2.29)

holds uniformly on I.
Put

hm(t) ≡ −Hm(t)φm(t) (m = 1, 2, . . . ).

Due to (2.7), we get

lim
m→+∞

Hm(tm) = In,

and in view of the above and by (2.18), condition (1.15) is fulfilled for c∗0 = c0.
Moreover, by (2.8) and (2.19), conditions (2.15) and (2.16) hold uniformly on I, where

hm(t) ≡ −Hm(t)φm(t), A∗
m(t) ≡ I(Hm, Am)(t)− I(Hm, Am)(tm) (m = 0, 1, . . . );

f∗0 (t) ≡ f0(t)− f0(t0),

f∗m(t) ≡ B(Hm, fm − φm)(t)− B(Hm, fm − φ)(tm) +

t∫
tm

dI(Hm, Am)(s) · φm(s) (m = 1, 2, . . . ).

Owing to the described above Lemma 1.2.2, from [4], it is evident that problem (2.13), (2.14) has the
unique solution x∗0(t) ≡ x0(t).

By Theorem 2.4 and Remark 2.1, we have

lim
m→+∞

∥Hm(t)xm(t)−Hm(t)φm(t)− x∗0(t)∥ = 0

uniformly on I. Therefore, owing to (2.7) and (2.29), condition (2.20) holds uniformly on I. □

Proof of Theorem 2.1. The sufficiency follows from Corollary 2.1 if we assume φm(t) ≡ 0 (m =
1, 2, . . . ) therein.

Let us show the necessity. Let inclusion (2.6) hold and cm ∈ Rn (m = 0, 1, . . . ) be an arbitrary
sequence of constant vectors satisfying condition (2.5).

In view of (2.6), we may assume that problem (2.1m), (2.2m) has a unique solution xm for every
natural m, without loss of generality.

For any m ∈ Ñ and j ∈ {1, . . . , n}, let us denote zmj(t) ≡ xm(t)− xmj(t), where xmj is the unique
solution of system (2.1m) under the initial condition x(tm) = cm−ej ; here, ej = (δij)

n
i=1, and δij is the

Kronecker symbol. Moreover, let Xm(t) be the matrix-function with the columns zm1(t), . . . , zmn(t).

If
n∑

j=1

αjzmj(t) ≡ 0 for some m ∈ Ñ and α1, . . . , αn ∈ R, then by the equalities zmj(tm) = ej

(j = 1, . . . , n; m = 0, 1, . . . ), we have
n∑

j=1

αjej = 0 and, therefore, α1 = · · · = αn = 0, i.e., Xm

(X0(t) ≡ X(t)) is the fundamental matrix of the homogeneous system (2.1mo).

We may assume without loss of generality that Xm(a) = In (m ∈ Ñ).
Further, due to (2.6), we have

lim
m→+∞

∥Xm −X0∥∞ = 0,

which in view of Lemma 2 in [1] implies that

lim
m→+∞

∥X−1
m −X−1

0 ∥∞ = 0.

Put Hm(t) ≡ X0(t)X
−1
m (t) (m ∈ Ñ) and verify conditions (2.7), (2.8), (2.9) of the theorem. Due

to the last equality, condition (2.7) holds uniformly on I.
By the general equality B(GH,B)(t) ≡ B(G,B(H,B)(t) (see Lemma 2.1 in [2]) and the equality

X−1
m (t) = X−1

m (s)− B(X−1
m , Am)(t) + B(X−1

m , Am)(s) for t, s ∈ I
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(m = 0, 1, . . . ) (see Proposition 1.1.4 from [4]), we have

Hm(t)+B(Hm, Am)(t) = X0(t)X
−1
m (t) + B(X0,B(X−1

m , Am))(t)

= X0(t)X
−1
m (t) + B(X0, In −X−1

m )(t) =

t∫
a

dX0(s) ·X−1
m (s) for t ∈ I (m ∈ Ñ).

Hence, due to (1.5),

I(Hm, Am)(t) =

t∫
a

dX0(s) ·X−1
m (s)H−1

m (s) =

t∫
a

dX0(s) ·X−1
0 (s)

=

t∫
a

dA0(s) ·X0(s)X
−1
0 (s) = A0(t) for t ∈ I (m ∈ Ñ).

So, condition (2.8) is fulfilled uniformly on I.
On the other hand, by (2.1), the described above Lemma 2.1 of [2] and the definition of the solutions

of system (2.1), we have

B(Hm,fm)(t) = B(Hm, xm)(t)− B
(
Hm,

·∫
a

dAm(s) · xm(s)

)
(t)

= B(Hm, xm)(t)− B(Hm, xm)(a)−
t∫

a

dB(Hm, Am)(s) · xm(s) for t ∈ I (m = 0, 1, . . . ),

which yields

B(Hm, fm)(t) ≡ Hm(t)xm(t)−Hm(a)xm(a)−
t∫

a

dX0(s) ·X0(s)X
−1
m (s)xm(s) (m = 0, 1, . . . ).

By this, if we take into account the fact that due to the necessity of the theorem condition (2.4) holds,
we conclude that condition (2.9) holds uniformly on I, as well. The theorem is proved. □

Proof of Theorem 2.2. The theorem follows due to the proof of the necessity of Theorem 2.1. □

3. Auxiliary Propositions and Proofs of the Main Results

Consider now the difference problem (1.1m), (1.2m), where m ∈ N.
Let the matrix-function Am ∈ BV(I;Rn×n) and the vector-function fm ∈ BV(I;Rn) be defined,

respectively, by the equalities

Am(a) = Am(τ0m) = On×n, Am(τkm) =

k∑
i=0

G1m(i) +

k∑
i=1

G2m(i− 1),

Am(t) =

k−1∑
i=0

G1m(i) +

k∑
i=1

G2m(i− 1) for t ∈ Ikm (k ∈ Nm); (3.1)

fm(a) = f(τ0m) = 0n, fm(τkm) =

k∑
i=0

g1m(i) +

k∑
i=1

g2m(i− 1),

fm(t) =

k−1∑
i=0

g1m(i) +

k∑
i=1

g2m(i− 1) for t ∈ Ikm (k ∈ Nm); (3.2)

tm = a+ km τm, cm = γm (m = 1, 2, . . . ). (3.3)
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Let

Gm(i) ≡ G1m(i) +G2m(i), gm(i) ≡ g1m(i) + g2m(i) (m = 1, 2, . . . ).

It is not difficult to verify that by (3.1)–(3.3) the defined matrix- and vector-functions Am and fm
(m = 1, 2, . . . ) have the following properties:

d1Am(τkm) = G1m(k), d2Am(τkm) = G2m(k) (k = 1, . . . ,m),

Am(τkm−) =

k−1∑
i=0

Gm(i), Am(τkm+) =

k∑
i=0

Gm(i) (k = 1, . . . ,m),

djAm(t) = On×n for t ∈ I \ {τ1m, . . . , τkm} (j = 1, 2), S0(Am)(t) ≡ On×n; (3.4)

d1fm(τkm) = g1m(k), d2fm(τkm) = g2m(k) (k = 1, . . . ,m),

fm(τkm−) =

k−1∑
i=0

gm(i), fm(τkm+) =

k∑
i=0

gm(i) (k = 1, . . . ,m),

djfm(t) = 0n for t ∈ I \ {τ1m, . . . , τkm} (j = 1, 2), S0(fm)(t) ≡ 0n. (3.5)

Moreover,

Am(t) ≡ Bm(In, G1m, G2m)(t) and fm(t) ≡ Bm(In, g1m, g2m)(t) (m = 1, 2, . . . ). (3.6)

Lemma 3.1. Let m be fixed. Then the discrete vector-function y ∈ E(Ñm;Rn) is a solution of
problem (1.1m), (1.2m) if and only if the vector-function x = qm(y) ∈ BV(I;Rn) is a solution of the
generalized problem (2.1), (2.2), where the matrix-Am and the vector-fm functions are defined by (3.1)
and (3.2), respectively, and tm and cm are defined by (3.3).

The lemma is proved in [4, 6].

Remark 3.1. Due to this lemma, under condition (1.9), the convergence of the difference scheme
(1.1m), (1.2m) (m = 1, 2, . . . ) is equivalent to the well-possed question for the corresponding initial
problem (2.1), (2.2).

So, in view of Definitions 1.1 and 2.1, the following lemma is true.

Lemma 3.2. Inclusion (1.11) holds if and only if inclusion (2.6) holds, where the matrix-functions
A,Am, the vector-functions f, fm, the points tm and the constant vectors cn (m = 1, 2, . . . ) are defined
by (3.1)–(3.3).

Remark 3.2. In view of (3.1) and (3.2), we have Am(t) = const and fm(t) = const for t ∈ Ikm

(k = 1, . . . ,m; m = 1, 2, . . . ), i.e., they are the break matrix- and vector-functions. Therefore all the
solutions of systems (2.1m) (m = 1, 2, . . . ) have the same property.

In order to use Theorems 2.1–2.4, we have to establish the forms of operators applied to the results
for a particular case which correspond to the matrix- and vector- functions defined by (3.1)–(3.3).

Let Hm (m ∈ N) be the matrix-functions appearing in Theorem 2.1. It follows from the proof
of this theorem that the matrix-functions Hm (m ∈ N) appearing in the proof have the property,
analogous to the matrix-functions Am (m ∈ N). In particular, we may assume that Hm(t) = In for
t ∈ Ikm (k ∈ Nm, m ∈ N). So, we have

Hm(τk−1m+) = Hm(τkm−) (k ∈ Nm, m ∈ N). (3.7)

By the definition of the operator B, integration-by-parts formula (1.3) and equalities (1.4), we have

B(Hm, Am)(t) =

t∫
a

Hm(τ)dAm(τ)−
∑

a<τ≤t

d1Hm(τ) · d1Am(τ) +
∑

a≤τ<t

d2Hm(τ) · d2Am(τ)

=
∑

a<τ≤t

Hm(τ) d1Am(τ) +
∑

a≤τ<t

Hm(τ) d2Am(τ)−
∑

a<τ≤t

d1Hm(τ) · d1Am(τ)
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+
∑

a≤τ<t

d2Hm(τ) · d2Am(τ) for t ∈ I (m ∈ N).

Therefore

B(Hm, Am)(t) ≡
∑

a<τim≤t

Hm(τim−) d1Am(τim) +
∑

a≤τim<t

Hm(τim+) d2Am(τim) e(m ∈ N). (3.8)

Analogously, we show that

B(Hm, fm)(t) ≡
∑

a<τim≤t

Hm(τim−) d1fm(τim) +
∑

a≤τim<t

Hm(τim+) d2fm(τim) (m ∈ N). (3.9)

Let

H1m(k) = Hm(τkm−) and H2m(k) = Hm(τkm) (k ∈ Nm, m ∈ N).
Then due to (3.7), we get

H1m(k) ≡ Hm(τk−1m+) and Hm(τkm+) ≡ H1m(k + 1) (m ∈ N).

From this and equalities (3.8) and (3.9), using equalities (3.4) and (3.5), for every natural m and
k ∈ Nm, we obtain

B(Hm, Am)(t) =
∑

a<τim≤t

H1m(i)G1m(i) +
∑

a≤τim<t

H1m(i+ 1)G2m(i),

=

k−1∑
i=1

H1m(i)G1m(i) +

k−1∑
i=0

H1m(i+ 1)G2m(i) for t ∈ Ikm,

B(Hm, Am)(τkm) ≡
k∑

i=1

H1m(i)G1m(i) +

k−1∑
i=0

H1m(i+ 1)G2m(i);

B(Hm, fm)(t) =
∑

a<τim≤t

H1m(i)g1m(i) +
∑

a≤τim<t

H1m(i+ 1)g2m(i)

=

k−1∑
i=1

H1m(i)g1m(i) +

k−1∑
i=0

H1m(i+ 1)g2m(i) for t ∈ Ikm,

B(Hm, fm)(τkm) ≡
k∑

i=1

H1m(i)g1m(i) +

k−1∑
i=0

H1m(i+ 1)g2m(i).

So, for every m, we have the equalities

B(Hm, Am)(t) ≡ Bm(H1m, G1m, G2m)(t), B(Hm, fm)(t) ≡ Bm(H1m, g1m, g2m)(t); (3.10)

djHm(t) = djB(Hm, Am)(t) = On×n, djB(Hm, fm)(t) = 0n

for t ∈ I \ {τ0m, . . . , τmm} (j = 1, 2); (3.11)

d1Hm(τkm) ≡ H2m(k)−H1m(k), d2Hm(τkm) ≡ H1m(k + 1)−H2m(k),

d1B(Hm, Am)(τkm) ≡ H1m(k)G1m(k), d2B(Hm, Am)(τkm) ≡ H1m(k + 1)G2m(k). (3.12)

Hence, by (3.10)–(3.12), using (1.4), for every m, we conclude that

I(Hm, Am)(t) =

t∫
a

d
(
Hm(τ) + B(Hm, Am)(τ)

)
·H−1

m (τ)

=
∑

a<τim≤t

d1
(
Hm(τim) + B(Hm, Am)(τim)

)
·H−1

m (τim)

+
∑

a≤τim<t

d2
(
Hm(τim) + B(Hm, Am)(τim) ·H−1

m (τim)
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=

k−1∑
i=1

(
H2m(i)−H1m(i) +H1m(i)G1m(i)

)
·H−1

2m(i)

+

k−1∑
i=0

(
H1m(i+ 1)−H2m(i) +H1m(i+ 1)G2m(i)

)
·H−1

2m(i) for t ∈ Ikm.

Therefore

I(Hm, Am)(t) = Im(H1m, H
−1
2m, G1m, G2m)(t) for t ∈ Ikm (m = 1, 2, . . . ). (3.13)

Similarly, we show

I(Hm, Am)(τkm) ≡ Im(H1m, H
−1
2m, G1m, G2m)(τkm) (m = 1, 2, . . . ). (3.14)

Let now φm ∈ E(Ñm;Rn) and φm(k) ≡ φm(τkm) (m = 1, 2, . . . ). Then, as above, we conclude that

t∫
a

dI(Hm, Am)(τ) · φm(τ) ≡ Im(H1m, H
−1
2m ψm, G1m, G2m)(t) (m = 1, 2, . . . ). (3.15)

By (3.10), (3.13) and (3.14), the conditions of Theorem 2.1 coincide with the conditions of
Theorem 1.1, respectively. In addition, according to Lemmas 3.1 and 3.2, Theorem 2.1 has the
form of Theorem 1.1. So, Theorem 1.1 is proved.

Owing to Lemmas 3.1, 3.2 and equalities (3.6)–(3.15), we conclude that Theorems 2.2–2.4 have the
forms of Theorems 1.2–1.4, and Corollary 2.1 has the forms of Corollary 1.1, respectively.

Proposition 1.1 is a realization of Proposition 2.1 for the considered difference case.
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