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Abstract. In this paper, the effect of Prandtl numbers on the transition of a heat-conducting flow

subjected to the action of a radial fluid through the horizontal permeable cylinder walls is investi-

gated. The cylinders are heated up to different temperatures and driven by a constant azimuthal
pressure gradient.

Introduction

The stability of a heat-conducting flow between porous cylinders heated up to different temperatures
and driven by a constant azimuthal pressure gradient can be affected by various parameters, including
the Prandtl number (Pr). As is known, this number is dimensionless and represents the ratio of
kinematic viscosity to thermal conductivity. When the Prandtl number is low, it means that thermal
diffusivity dominates over the kinematic viscosity. In such cases, thermal effects are more significant
than the viscous effects. Conversely, when the number Pr is high, kinematic viscosity dominates over
the thermal diffusivity and the flow is more subject to the viscous effects. In this case, the heat
transfer may not be as efficient and the stability behavior could differ from that observed for low Pr.

The influence of number Pr on the stability of a heat-conducting flow between concentric cylinders
was investigated by various authors (see e.g., [1–3, 5] and references therein). For instance, in [2],
the effect of Pr on the stability of Couette–Taylor flow by rotating cylinders is investigated in the
presence of gravity. Also, the influence of Pr neglecting the effect of gravity and taking into account
radial temperature gradient and constant azimuthal pressure gradient on the stability of flow between
horizontal cylinders is studied in [3]. In [1], it has been found that the flow for a low Pr under axisym-
metric disturbance is more stable as compared with the flow under non-axisymmetric disturbance.
When the gap between the cylinders is relatively small, the flow under non-axisymmetric disturbance
is most stable for the fluids having high Pr. The instability mechanisms of the mixed convective flow
and its dependence on the Prandtl number are studied in [5]. In these papers, the investigation of
stability of the main flow is carried out by the linear approximations. Based on the nonlinear theory
of hydrodynamic stability, in [12], for Pr = 0.71 (for air and gases), the bifurcations of Dean’s flow
between horizontal porous cylinders heated up to different temperatures, with a radial flow, and driven
by a constant azimuthal pressure gradient, were studied.

In the present paper, we are interested in how a high Prandtl number, for instance, Pr = 7 (for
liquid) affects the transition to possible complex modes in the main flow, which appearance precedes
the development of high instability.

1. Formulation of the Problem

The heat-conducting flow between horizontal porous concentric cylinders of radii R1, R2, and
temperature T1, T2 of the inner and outer cylinders, respectively, is maintained by a constant azimuthal
pressure gradient and in the presence of a diverging or converging flow through the horizontal cylinder
walls and is described by the Navier–Stokes system and a continuity equation in the cylindrical
coordinates r, θ, z with a velocity vector v′(v′r, v

′
θ, v

′
z). Under the above assumptions, there exists
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the following exact solution of the Navier–Stokes equations for the velocity V0, temperature T0, and
pressure Π0 (see [12]):

V0 =
{
u0(r), v0(r), 0

}
, T0 = c1 + c2r

κPr ,

u0(r) =
R1U0

r
, v0(r) =


K

κ

(
arκ+1 +

b

r
− r

)
, κ ̸= −2,

K

2

(a1 ln r + b1
r

)
, κ = −2,

∂Π0

∂r
=

ρ(u2
0 + v20)

r
,

(1.1)

where

K =
1

2ρν

(∂Π0

∂θ

)
0
= const , a =

R2 − 1

(Rκ+2 − 1)Rκ
1

, a1 =
R2

1(R
2 − 1)

lnR
,

b =
R2

2(R
κ − 1)

Rκ+2 − 1
, b1 = −R2

1 lnR2 −R2
2 lnR1

lnR
,

c1 =
T1R

Prκ − T2

Rκ Pr − 1
, c2 =

T2 − T1

Rκ Pr
1 (Rκ Pr − 1)

, R =
R2

R1
,

κ = U0R1

ν is the radial Reynolds number, U0 is the radial velocity of the flow through the wall of the
inner cylinder, Pr = ν

χ is the Prandtl number, ν, χ, β are, respectively, the coefficients of kinematic

viscosity, thermal diffusion and thermal expansion, ρ is a density of the fluid, the radial flow is inward
for κ < 0 (converging flow), outward for κ > 0 (diverging flow), and so the following boundary
conditions:

v′r
∣∣
r=R1

= U0, v′θ = 0, v′z = 0, T ′ = T1 (r = R1),

v′r
∣∣
r=R2

=
U0

r
, v′θ = 0, v′z = 0, T ′ = T2 (r = R2)

(1.2)

are satisfied.
The flow (1.1)–(1.2) with the velocity vector V0, temperature T0 and pressure Π0 will be called

the main stationary flow. In the sequel, it will always be assumed that the velocity, temperature and
pressure components are periodic with z and θ, with the periods 2π/α and 2π/m, respectively, α ≥ 0,
m = 0, 1.

Let the perturbed state be taken as

v′ = V0 + V (vr, vθ, vz), T ′ = T0 + T, Π′ = Π0 +Π. (1.3)

We introduce the dimensionless variables for time, length, velocity, temperature and pressure and
denote them by S, R2, SR2, T2 − T1, νρS, respectively, where the rotation shear S is denoted by
Vm

d , Vm is an average velocity in the azimuthal direction, d = R2 −R1. Under these assumptions, we
obtain the following nonlinear system of perturbation equations (see [12]):

∂v

∂t
+Nv − 1

Re
Mv +

1

Re
∇1Π = −L(v, v), (∇1, rv) = 0, v

∣∣
r=1/R,1

= 0, (1.4)

where

Mv =
{
∆1vr −

1− κ
r2

vr −
2

r2
∂vθ
∂θ

,∆1vθ −
1 + κ
r2

vθ +
2

r2
∂vr
∂θ

,∆1vz,
1

Pr
∆1T

}
,

Nv = ω1
∂v

∂θ
+
{
Raω2 − 2ω1vθ,−g1vr, 0,

g2
Pr

vr,
}
,

L(v, v) =
{
(v,∇1)vr −

vθvθ
r

, (v,∇1)vθ +
vrvθ
r

, (v,∇1)uz, (v,∇1)T1

}
,
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∂2

∂r2
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∂

∂r
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1

r2
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{ ∂
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∂
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, 0
}
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Re =
Vmd

ν
is the azimuthal Reynolds number ,

Ra =
β(T2 − T1)

2
is the Rayleigh number,

Vm = K
R1R

2

R− 1
D(R), D(R) =

Rκ − 1

Rκ+2 − 1
lnR− κ(R2 − 1)

2R2(κ + 2)
,

ω1 =
v0(r)

r
= λg(r) + g0(r), ω2 = ω2

1r,

g(r) =
d

R2

D1(R)rκ+2 +D2(R)− r2

rD(R)
, g0(r) = D3(R)rκ+1 +

D4(R)

r
,

g1(r) = −
(dv0
dr

+
v0
r

)
= −

( d

R2

D1(R) (κ + 2)rκ − 2

D(R)

)
, g2(r) =

κ Pr2 Rκ Pr

Rκ Pr − 1
rκ Pr−1,

D1(R) =
(R2 − 1)Rκ

Rκ+2 − 1
, D2(R) = 1−D1(R), D3(R) =

Rκ − 1

Rκ+2 − 1
.

Problem (1.4) is written in terms of the Boussinesq approximation [4], which is based on the
assumption that the thermal expansion coefficient is small. The flow with the velocity vector V0,
temperature T0 and pressure Π0 will be called the main stationary flow and defined by the parameters
Re, R, Ra, Pr, κ, α, m.

Our aim is to investigate oscillatory regimes arising in a small neighborhood of the point of inter-
section of neutral curves corresponding to the rotationally symmetric and oscillatory instability of the
main stationary flow (1.1)–(1.2).

2. Transitions to Complex Regimes

In studying the transition of flow (1.1)–(1.2) to complex regimes, particular attention was given to
identifying the points of intersection of neutral curves. At these points, a strong interaction between
the vortices and azimuthal flows and also the emergence of rather complex regimes of a fluid motion
are expected.

To construct neutral curves, we assume that the perturbations V , temperature T and pressure Π
are infinitely small. The neutral curves which correspond to the bifurcation of vortices and azimuthal
waves are found by solving the following spectral problems:

(M − ReN)Φ0 = ∇1p0, (∇1, rΦ0) = 0, Φ0

∣∣
r=1,R

= 0, (2.1)

and
(M − ReN − icRe)Φ1 = ∇1p1, (∇1, rΦ1) = 0, Φ1

∣∣
r=1,R

= 0, (2.2)

where

Φ0 =
{
u0(r), v0(r), iw0(r), τ0(r)

}
eiαz, p0 = q0(r)e

iαz, (2.3)

Φ1 =
{
u1(r), v1(r), w1(r), τ1(r)

}
e−i(mθ+αz), p1 = q1(r)e

−i(mθ+αz), (2.4)

c is an unknown frequency of neutral azimuthal waves.
The eigenvalues problems (2.1)–(2.4) have been solved by the shooting method for fixed κ, α, R,

m, Pr. Thus for the fixed values of these parameters, we have investigated the dependence of a critical
value of numbers Re, Ra and the neutral mode of frequency c corresponding to the emergence of
vortices and azimuthal waves. Further, using the Newton method, one can calculate with sufficient
exactness the values Re0, Ra0 and c0 corresponding to the point of intersection of neutral curves.

Let (Ra0,Re0) be the points lying on the plane of parameters (Ra,Re) and corresponding to the
intersection of neutral curves corresponding to the monotone (m = 0) axisymmetric and oscillatory
non-axisymmetric three-dimensional loss of stability of the main stationary flow (1.1)–(1.2).

The flow regimes appearing in a small neighborhood of the point of intersection of neutral curves
of axisymmetric and oscillatory instabilities are investigated by the analysis of dynamical system of
amplitude equations which are used for a wide class of problems with a cylinder symmetry (see,
e.g., [6–13] and references therein). The system describes the nonlinear interaction of axisymmetric
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and oscillatory three-dimensional flow regimes and is a system of three complex differential equations of
the first order. The G = SO(2) ∗O(2) symmetry enables us to reduce the six-dimensional amplitude
system to the four-dimensional system with free parameters σ, µ (the damping decrements of the
monotone and oscillatory perturbations, respectively). The system is called a motor subsystem. As
it was shown in [6], the motor subsystem has equilibria lying on the invariant subspaces and also
equilibria of general state. Following this monograph, the motor subsystem has the following type of
equilibria:

(i) Equilibria lying on the invariant planes:
(a) The main flow;
(b) Vortices;
(c) Purely azimuthal waves;
(d) Spiral Waves;
(e) A pair of mixed azimuthal waves;

(ii) General equilibria not lying on the invariant planes: two-frequency quasiperiodic modes;
(iii) Limit cycles: three-frequency quasiperiodic modes.

We present here the scheme of equilibria bifurcations of a motor subsystem for the main stationary
flow (1.1)–(1.2). This scheme allows us to show the influence of the magnitude for Pr = 7 (liquid) as
comparison with the transition to complex flows after the loss of stability of the main stationary flow
in case Pr = 0.71 (air and gases).

In Figures 1–3, we present the scheme of equilibria bifurcations of the motor subsystem, which we
consider the most interesting and allowing us to judge about the transition character of the system
under consideration.

The single lines show symmetric equilibria, the double lines indicate a connected pair of equilibria.
Stable equilibria are drawn by solid lines and unstable equilibria by dotted lines. The circles are the
points at which the motor subsystem limit cycles bifurcate.

We present here several of our results obtained for R = 2 (the radius of the outer cylinder is two
times greater than that of the inner one), Pr = 7, m = 0, 1, α ∈ [4, 8] (short-wave axially directed
perturbations) and for small absolute values of the radial Reynolds number.

In Figure 1, we consider the scheme of transitions when the main flow is directed from the outer
cylinder to the inner cylinder (κ = −0.5), the Rayleigh number Ra0 = 3.8654 (temperature of the
outer cylinders is higher than that of the inner cylinder), α = 4 (perturbation is π/2 periodical in the
axial direction), Re0 = 7.102 (the azimuthal Reynolds number), c0 = 3.5788 (unknown frequency of
neutral azimuthal waves).

Figure 1. σ< 0, α=4, κ=−0.5, Ra0 = 3.8654, Re0 = 7.1022, c0 = 3.5788. Bifur-
cation values: µ1

r = 0, µ2
r = 0.1232, µ3

r = 1.65, µ4
r= 1.87, µ5

r= 3.213, µ6
r = 3.722.
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The main flow exists for σ < 0 and for any value of a free parameter µr (µr is the real part of
a damping decrement of oscillatory perturbation µ). This flow is unstable. For µr = µ1

r = 0, from
the main flow bifurcate simultaneously unstable spiral waves, pure azimuthal waves and vortices. For
µr = µ2

r, from purely azimuthal waves branch off mixed azimuthal waves, these waves exist in the
range µ2

r < µr < µ5
r and disappear for µr = µ5

r merging with unstable vortices. For µr = µ3
r, from

mixed azimuthal waves bifurcates a quasi-periodic flow, which merges with the spiral flow. From the
unstable vortices µr = µ4

r bifurcate mixed azimuthal waves merging with unstable pure azimuthal
waves.

In contrast to the case for Pr = 0.71 (see [12], Figure 3), when after the loss of stability in the
main flow we have both the bifurcation cycles branching from the equilibria and also several stable
equilibria, which can be observed in the experiments as hysteresis states, whereas in the case for
Pr = 7, after the loss of stability in the main flow the bifurcation of cycles does not take place; there
are only unstable equilibria. Consequently, in this case, with the corresponding values of the problem
parameters, after the loss of stability of the main flow, there immediately arise quite complex regimes
(see [13]).

The following transition diagram (Figure 2) describes the case in which κ = −3 (converging flow),
Rayleigh number Ra0 = 24.2054 (temperature of the outer cylinders is higher than that of the inner
cylinder), α = 8 (perturbation is π/4 periodical in the axial direction), Re0 = 17.985 (the azimuthal
Reynolds number), c0 = 3.79358 (an unknown frequency of neutral azimuthal waves).

Figure 2. σ > 0, α = 8, κ = −3, Ra0 = 24.20541, Re0 = 17.985, c0 = 3.793.
Bifurcation values: µ1

r = −0.4038, µ2
r = −0.086, µ3

r = −0.0666, µ4
r = 0, µ5

r = 0.14588.

The main stationary flow exist for any value of the parameter µ. For σ > 0, it is unstable. For
µr = µ4

r = 0, from this flow, in a subcritical space, bifurcate unstable pure azimuthal waves and spiral
waves, and for σ = 0, bifurcate stable vortices. For µr = µ2

r, from purely azimuthal waves bifurcate
unstable mixed azimuthal waves and for µr = µ1

r, from vortices bifurcates an unstable guasiperiodic
flow, which exists in the range µ1

r < µr < µ5
r and disappears for µr = µ5

r merging with an unstable
spiral flow. For µr = µ2

r, from mixed azimuthal waves there also bifurcate unstable cycles.
In this case, as compared with the case for Pr = 0.71 (see [12], Table 1), for sufficiently large values

of α = 8, i.e., for the π/4 periodical axially directed perturbations, no crossing points of neutral curves
are found, whereas for Pr = 7, we observe the crossing of neutral curves; this indicates that π/4 is an
axially directed perturbation generating vortices and azimuthal waves that are interacting and with
a high probability, there arise various regimes including likewise the complex ones [6].

The scheme in Figure 3 shows the transitions when the flow is directed from the inner cylinder to the
outer cylinder (κ = 3), Rayleigh number Ra0 = 17.616 (temperature of the outer cylinders is higher
than that of the inner cylinder), α = 4 (perturbations are π/2 periodical in the axial direction),
Re0 = 16.5196 (the azimuthal Reynolds number), c0 = 2.68958 (an unknown frequency of neutral
azimuthal waves) In this case, we have the scheme of transition for a diverging flow. From the main
flow bifurcate unstable pure azimuthal waves and spiral waves. From the spiral waves, for νr = ν2r ,
bifurcates an unstable quasiperiodic flow. There are no other bifurcations.
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Figure 3. σ > 0, α = 4, κ = 3, Ra0 = 17.616, Re0 = 16.5196, c0 = 2.68995.
Bifurcation values: µ1

r = 0, µ2
r = 2.39146, µ3

r = 4.12.

As compared with the case Pr = 0.71 (see [12], Figure 2), when there exist a stable vortex, several
unstable bifurcations and also the bifurcation of cycles branching from equilibria, in case Pr = 7, we
have a simple scheme of transition of the main flow to complex modes.

3. Conclusion

The paper studies the influence of the magnitude of the Prandtl number Pr = 7 on the transition
of the heat-conducting flow between the porous horizontal cylinders as a result of the loss of stability
of the main stationary flow. The cylinders are heated up to different temperatures and driven by
a constant azimuthal pressure gradient. By the results of numerical analysis, the presented schemes
allow us to see the influence of a magnitude of the Prandtl number, or more specifically, of the numbers
Pr = 0.71 (for air and gases) and Pr = 7 (for liquid), on the transitions of the main flow to the complex
regimes that differ from each other and of importance in experiments.
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