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ON SOME PROPERTIES OF UNIFORM DISTRIBUTION SEQUENCES

ALEKS KIRTADZE

Dedicated to the memory of Academician Vakhtang Kokilashvili

Abstract. Some properties of uniform distribution sequences for invariant extensions of linear
Lebesgue measures are considered.

For a real number x, let x = x − [x] be a fractional part of x, where [x] denotes the integer part
of x, that is, the greatest integer which is less or equal to x. Let {xn : n ∈ N} be a given sequence
of real numbers. Notice that the fractional part of any real number is contained in the unit interval
I = [0, 1).

A sequence of real numbers {xn : n ∈ N} is said to be uniformly distributed sequence modulo 1
(abbreviated u.d.s. mod 1) if for each a, b, with 0 ≤ a < b ≤ 1, we have

lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ [a, b))

n
= b− a.

The above-mentioned equation can be written in the following form:

lim
n→∞

1

n

∑
k≤n

χ[a,b)({xk}) =
1∫

0

χ[a,b)(x)dx,

where χ[a,b) denotes the characteristic function on the interval [a, b) ⊂ I.
The following theorem is valid.

Theorem 1. The sequence {xn : n ∈ N} of real numbers is u.d.s. mod 1 if and only if for every
real-valued continuous function f defined on the closed interval I = [0, 1]; we have

lim
n→∞

1

n

∑
k≤n

f({xk}) =
1∫

0

(x)dx.

(For the above definitions and theorem, see [1–3,6–8]).

In the present paper, an approach to some questions of the theory of uniform distribution sequences
is discussed. Such an approach is suitable for certain situations, where the given [0,1] interval is
equipped with the class of invariant extensions of the linear Lebesgue measure on [0,1], and in this
case we consider the theorems, analogous to those due to E. Hlawka and H. Weyl (see, for example, [6]).

For our purpose, we will need some auxiliary notions and facts from the Measure Theory.
Throughout this article, we use the following standard notation:
R is the set of all real numbers;
N is the set of all natural numbers;
c is the cardinality of the continuum (i.e., c = 2ω);
λ is the linear Lebesgue measure on R.
dom(µ) is the domain of a given measure µ;
µ1 ⊃ µ - a measure µ1 is an extension of the given measure µ.
Let E be a nonempty set, G be a group of transformations of E, and let X be a subset of E.
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We say that X is an almost G-invariant set (in the set-theoretical sense) if for each transformation
g ∈ G, we have

card(g(X)△X) < card(E),

where the symbol △ denotes the operation of symmetric difference of two sets.
Two measures µ1 and µ2 are called mutually singular if there exists a measurable set X such that

µ1(X) = 0 and µ2(E \X) = 0.
The next propositions are useful for our further consideration.

Lemma 1. There exists a family {Xi : i ∈ [0, 1]} of subsets of the real line R such that:
(1) Xi ∩Xi′ = ∅.
(2) If F is an arbitrary closed subset of the real line R such that λ(F ) > 0, then card(Xi ∩F ) = c.

(3) ∪i∈I′Xi is an almost R-invariant set in R, where I
′
is an arbitrary subset of [0, 1].

Lemma 2. There exists a family {Yi : i ∈ [0, 1]} of subsets of the real line R such that:
(a) for any sequence {ik : k ∈ N} ⊂ [0, 1], the intersection

∩k∈NYik ,

where

Yik = Yik ∨ Yik = R \ Yik

is an almost invariant set.
(b) for any sequence {ik : k ∈ N} ⊂ [0, 1] and for any closed subset F of the real line R with

λ(F ) > 0, we have

card
((

∩k∈N Yik

)
∩ F

)
= c.

(For the proofs of Lemma 1 and Lemma 2, see [4]).

According to the above-mentioned lemmas, we come to the following statement.

Lemma 3. There exists a family {µt : t ∈ [0, 1]} of measures defined on some shift-invariant σ-algebra
S(R) of subsets of the real axis R such that:

1) each measure µt is a shift-invariant extension of the linear Lebesgue measure λ;

2) measures µt and µt′ are mutually singular, (t ̸= t
′
).

Moreover, µt(R \Xt) = 0 for each t ∈ [0, 1], where {Xt : t ∈ [0, 1]} follows from Lemma 2.

Proof. For an arbitrary t ∈ [0, 1], we denote by Kt a shift-invariant σ-ideal generated by the set R\Xt.
Applying Marczewski’s method, we can extend the Lebesgue measure λ to the measure µt. We obtain
the family {µt : t ∈ [0, 1]} of shift-invariant extensions of the Lebesgue measure λ.

Denote by S(R) the shift-invariant σ-algebra of subsets of the real line R, generated by the union

L(R) ∪ F(R) ∪ {Xt : t ∈ [0, 1]},

where L(R) denotes a class of all Lebesgue measurable subsets of the real line R and

F(R) = {X : X ⊂ R, card(X) < c}.

For each t ∈ [0, 1], we assume that

µt = µt|S(R).

The family of measures {µt : t ∈ [0, 1]} satisfies the conditions of Lemma 3. □

Remark 1. Let us consider the family {µt : t ∈ [0, 1]} of shift-invariant extensions of the measure λ
obtained from Lemma 3. Let λt denote the restriction of the measure µt to the class

S[0, 1] = {Y ∩ [0, 1] : Y ∈ S(R)},

where S(R) follows from Lemma 3. It is obvious that for each t ∈ [0, 1], the measure λt is concentrated
on the set Zt = Xt ∩ [0, 1], provided that

λt([0, 1] \ Zt) = 0.
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Consider the family of probability measures {λt : t ∈ [0, 1]} and the family {Zt : t ∈ [0, 1]} of
subsets of [0,1] which come from Remark 1 and let λ∞

t denote an infinite power of λt.
The next lemma is valid.

Lemma 4. For t ∈ [0, 1], we denote by L([0, 1], λt) the class of λt-integrable functions. Then for
f ∈ L([0, 1], λt), we have

λ∞
t

({
{xk : k ∈ N} ∈ [0, 1]∞ : lim

n→∞

n∑
k=1

f(xk)

n
=

1∫
0

f(x)dλt(x)

})
= 1.

(For the proof of Lemma 4, see [5]).

A sequence of real numbers {xk : k ∈ N} ∈ [0, 1]∞ is said to be λ-uniformly distributed sequence
(λ-u.d.s.) if for each c, d, with 0 ≤ c < d ≤ 1, we have

lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ [c, d])

n
= d− c.

A sequence of real numbers {xk : k ∈ N} ∈ R∞ is said to be uniformly distributed module 1 if the
sequence of its fractional parts {xk : k ∈ N} is λ-u.d.s.

Remark 2. It is obvious that {xk : k ∈ N} ∈ [0, 1]∞ is uniformly distributed module 1 if and only if
{xk : k ∈ N} is λ-u.d.s.

A sequence of real numbers {xk : k ∈ N} ∈ [0, 1]∞ is said to be λt-uniformly distributed sequence
(λt-u.d.s.) if for each c, d, with 0 ≤ c < d ≤ 1, we have

lim
n→∞

card({xk : 1 ≤ k ≤ n} ∩ [c, d] ∩ Ct)

n
= d− c.

We say that a family {fk : k ∈ N} of elements of L([0, 1], λt) defines a λt-u.d.s. on [0, 1], if for each
{xn : n ∈ N} ⊂ [0, 1]∞, the validity of the condition

lim
n→∞

1

n

∑
k≤n

fk(xk =

1∫
0

fk(x)dλt(x)

for k ∈ N implies that {xn : n ∈ N} is λt-u.d.s.
Notice that the indicator functions of the sets [a, b] ∩ Zt with rational a, b is an example of such a

family.

Theorem 2. Let Tt be the set of all real-valued sequences from [0, 1]∞ which are λt-u.d.s. Then
λ∞
t (Tt) = 1.

Proof. Let {fk : k ∈ N} be a countable subclass of L([0, 1], λt) that defines a λt-u.d.s. on [0, 1]. For
k ∈ N, we set

Bk =

{
{xk : k ∈ N} : {xk : k ∈ N} ∈ [0, 1]∞, lim

n→∞

1

n

∑
k≤n

fk(xk =

1∫
0

fk(x)dλt(x)

}
.

By Lemma 4, we know that
λ∞
t (Bk) = 1

for k ∈ N, which implies

λ∞
t

( ⋂
k∈N

Bk

)
= 1.

Hence we have

λ∞
t {xk : k ∈ N} ∈ [0, 1]∞ : (∀k)(k ∈ N) ⇒ lim

n→∞

1

n

∑
k≤n

fk

(
xk =

1∫
0

fk(x)dλt(x)

)
= 1.



504 A. KIRTADZE

The latter relation means that λ∞
t -almost every elements of [0, 1]∞ are λt-u.d.s, or equivalently,

λ∞
t (Tt) = 1. □

Theorem 3. For t ∈ [0, 1], we put

Zt[0, 1] =
{
f̃ = f(x)× χZt(x):fi∈C[0,1]

}
.

Then the sequence {xn : n ∈ N} is λt-u.d.s. if and only if the condition

lim
n→∞

1

n

∑
k≤n

f̃(xk) =

1∫
0

f̃(x)dλt(x)

holds for each f̃ ∈ Zt[0, 1].

The proof of Theorem 2 is similar to that of H. Weyl’s Theorem (see [6]).

Remark 3. Some results presented in the paper were accepted jointly by Professor Gogi Pantsulaia.
Here is a modified version of our previous unpublished survey.
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